1,607 research outputs found

    Automated Verification of Practical Garbage Collectors

    Full text link
    Garbage collectors are notoriously hard to verify, due to their low-level interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were hand-written or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness

    Heap Reference Analysis Using Access Graphs

    Full text link
    Despite significant progress in the theory and practice of program analysis, analysing properties of heap data has not reached the same level of maturity as the analysis of static and stack data. The spatial and temporal structure of stack and static data is well understood while that of heap data seems arbitrary and is unbounded. We devise bounded representations which summarize properties of the heap data. This summarization is based on the structure of the program which manipulates the heap. The resulting summary representations are certain kinds of graphs called access graphs. The boundedness of these representations and the monotonicity of the operations to manipulate them make it possible to compute them through data flow analysis. An important application which benefits from heap reference analysis is garbage collection, where currently liveness is conservatively approximated by reachability from program variables. As a consequence, current garbage collectors leave a lot of garbage uncollected, a fact which has been confirmed by several empirical studies. We propose the first ever end-to-end static analysis to distinguish live objects from reachable objects. We use this information to make dead objects unreachable by modifying the program. This application is interesting because it requires discovering data flow information representing complex semantics. In particular, we discover four properties of heap data: liveness, aliasing, availability, and anticipability. Together, they cover all combinations of directions of analysis (i.e. forward and backward) and confluence of information (i.e. union and intersection). Our analysis can also be used for plugging memory leaks in C/C++ languages.Comment: Accepted for printing by ACM TOPLAS. This version incorporates referees' comment

    A selective dynamic compiler for embedded Java virtual machine targeting ARM processors

    Get PDF
    Tableau d’honneur de la FacultĂ© des Ă©tudes supĂ©rieures et postdoctorales, 2004-2005Ce travail prĂ©sente une nouvelle technique de compilation dynamique sĂ©lective pour les systĂšmes embarquĂ©s avec processeurs ARM. Ce compilateur a Ă©tĂ© intĂ©grĂ© dans la plateforme J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device Con- figuration). L’objectif principal de notre travail est d’obtenir une machine virtuelle accĂ©lĂ©rĂ©e, lĂ©gĂšre et compacte prĂȘte pour l’exĂ©cution sur les systĂšmes embarquĂ©s. Cela est atteint par l’implĂ©mentation d’un compilateur dynamique sĂ©lectif pour l’architecture ARM dans la Kilo machine virtuelle de Sun (KVM). Ce compilateur est appelĂ© Armed E-Bunny. PremiĂšrement, on prĂ©sente la plateforme Java, le Java 2 Micro Edition(J2ME) pour les systĂšmes embarquĂ©s et les composants de la machine virtuelle Java. Ensuite, on discute les diffĂ©rentes techniques d’accĂ©lĂ©ration pour la machine virtuelle Java et on dĂ©taille le principe de la compilation dynamique. Enfin, on illustre l’architecture, le design (la conception), l’implĂ©mentation et les rĂ©sultats expĂ©rimentaux de notre compilateur dynamique sĂ©lective Armed E-Bunny. La version modifiĂ©e de KVM a Ă©tĂ© portĂ©e sur un ordinateur de poche (PDA) et a Ă©tĂ© testĂ©e en utilisant un benchmark standard de J2ME. Les rĂ©sultats expĂ©rimentaux de la performance montrent une accĂ©lĂ©ration de 360 % par rapport Ă  la derniĂšre version de la KVM de Sun avec un espace mĂ©moire additionnel qui n’excĂšde pas 119 kilobytes.This work presents a new selective dynamic compilation technique targeting ARM 16/32-bit embedded system processors. This compiler is built inside the J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device Configuration) platform. The primary objective of our work is to come up with an efficient, lightweight and low-footprint accelerated Java virtual machine ready to be executed on embedded machines. This is achieved by implementing a selective ARM dynamic compiler called Armed E-Bunny into Sun’s Kilobyte Virtual Machine (KVM). We first present the Java platform, Java 2 Micro Edition (J2ME) for embedded systems and Java virtual machine components. Then, we discuss the different acceleration techniques for Java virtual machine and we detail the principle of dynamic compilation. After that we illustrate the architecture, design, implementation and experimental results of our selective dynamic compiler Armed E-Bunny. The modified KVM is ported on a handheld PDA and is tested using standard J2ME benchmarks. The experimental results on its performance demonstrate that a speedup of 360% over the last version of Sun’s KVM is accomplished with a footprint overhead that does not exceed 119 kilobytes

    Garbage collection in distributed systems

    Get PDF
    PhD ThesisThe provision of system-wide heap storage has a number of advantages. However, when the technique is applied to distributed systems automatically recovering inaccessible variables becomes a serious problem. This thesis presents a survey of such garbage collection techniques but finds that no existing algorithm is entirely suitable. A new, general purpose algorithm is developed and presented which allows individual systems to garbage collect largely independently. The effects of these garbage collections are combined, using recursively structured control mechanisms, to achieve garbage collection of the entire heap with the minimum of overheads. Experimental results show that new algorithm recovers most inaccessible variables more quickly than a straightforward garbage collection, giving an improved memory utilisation

    Code Generation for Efficient Query Processing in Managed Runtimes

    Get PDF
    In this paper we examine opportunities arising from the conver-gence of two trends in data management: in-memory database sys-tems (IMDBs), which have received renewed attention following the availability of affordable, very large main memory systems; and language-integrated query, which transparently integrates database queries with programming languages (thus addressing the famous ‘impedance mismatch ’ problem). Language-integrated query not only gives application developers a more convenient way to query external data sources like IMDBs, but also to use the same querying language to query an application’s in-memory collections. The lat-ter offers further transparency to developers as the query language and all data is represented in the data model of the host program-ming language. However, compared to IMDBs, this additional free-dom comes at a higher cost for query evaluation. Our vision is to improve in-memory query processing of application objects by introducing database technologies to managed runtimes. We focus on querying and we leverage query compilation to im-prove query processing on application objects. We explore dif-ferent query compilation strategies and study how they improve the performance of query processing over application data. We take C] as the host programming language as it supports language-integrated query through the LINQ framework. Our techniques de-liver significant performance improvements over the default LINQ implementation. Our work makes important first steps towards a future where data processing applications will commonly run on machines that can store their entire datasets in-memory, and will be written in a single programming language employing language-integrated query and IMDB-inspired runtimes to provide transparent and highly efficient querying. 1
    • 

    corecore