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ABSTRACT
In this paper we examine opportunities arising from the conver-
gence of two trends in data management: in-memory database sys-
tems (IMDBs), which have received renewed attention following the
availability of affordable, very large main memory systems; and
language-integrated query, which transparently integrates database
queries with programming languages (thus addressing the famous
‘impedance mismatch’ problem). Language-integrated query not
only gives application developers a more convenient way to query
external data sources like IMDBs, but also to use the same querying
language to query an application’s in-memory collections. The lat-
ter offers further transparency to developers as the query language
and all data is represented in the data model of the host program-
ming language. However, compared to IMDBs, this additional free-
dom comes at a higher cost for query evaluation. Our vision is
to improve in-memory query processing of application objects by
introducing database technologies to managed runtimes.

We focus on querying and we leverage query compilation to im-
prove query processing on application objects. We explore dif-
ferent query compilation strategies and study how they improve
the performance of query processing over application data. We
take C] as the host programming language as it supports language-
integrated query through the LINQ framework. Our techniques de-
liver significant performance improvements over the default LINQ
implementation. Our work makes important first steps towards a
future where data processing applications will commonly run on
machines that can store their entire datasets in-memory, and will
be written in a single programming language employing language-
integrated query and IMDB-inspired runtimes to provide transparent
and highly efficient querying.

1. INTRODUCTION
Over the last two decades, DRAM prices have been dropping at

an annual average of 33% with this trend projected to continue. As
of April 2014, enterprises can buy servers with a DRAM capacity
of more than 1TB for under US$50,000. This trend has led to the
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emergence of in-memory database systems, which keep the entire
dataset in main memory to allow for more efficient query process-
ing. Such deployments, useful as they may be, still require the
application programmer to think at two different levels: the appli-
cation level, with data expressed in the data model of a host pro-
gramming language; and the data manipulation level, with data ex-
pressed in the relational model and processed through SQL. There
is no synergy between these two runtimes; the programmer needs
to either take care of the impedance mismatch through manual and
error-prone data model translation, or through a high-level API that
bridges the two data models and manipulation methods.

The impedance mismatch has led to the introduction of language-
integrated query, which has been revived, in part because of its
support in Microsoft’s LINQ framework [13]. Language-integrated
query presents a single, uniform framework to query data both in
the memory space of an application as well as in external data
sources such as database systems. Using a query language that is
integrated into the programming language offers various benefits to
an application developer over the traditional approach of formulat-
ing SQL queries as string literals and then submitting the query to
a database system using middleware APIs such as ODBC or JDBC.
Language-integrated query is transparent to the developer by pro-
viding a query syntax that is native to the programming language
and by representing externally stored data in the data model of the
host programming language. However, for data that is stored in
an external DBMS, the developer is limited to the expressive power
of the relational model whereas for all other data she can harness
the full power of the host programming language (e.g., nested data,
inheritance). Furthermore, it is not (efficiently) possible to use im-
perative constructs to process data stored in an external DBMS or to
keep references to elements in the database. Therefore, the devel-
oper might prefer to store data in the memory space of the applica-
tion instead of in an external DBMS. More so if the application does
not need the bloat of a DBMS server [10], e.g., because there are no
concurrent applications accessing the data and, hence, no need for
transactions. Such applications often employ static schema defi-
nitions and queries that are constructed from a limited number of
predefined query patterns and whose instances only vary in a few
parameters (e.g., a selection predicate) based on user interaction
(e.g., via GUI elements). These queries are an excellent opportunity
to be compiled to native code either through just-in-time compila-
tion or as a library to be embedded in the application.

In this work we explore database-inspired strategies to make
query processing on data elements in the managed memory space
of a host programming language more efficient by leveraging query
compilation [12, 16, 19]. Query compilation is a highly efficient
and easily realisable way to improve the performance of language-
integrated query in managed runtimes. We propose to store all data
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in the memory space of the programming language to give the ap-
plication developer direct access to the dataset, but to move the
heavy lifting of query processing to a different runtime, here na-
tive C code, that is better geared towards the task. Our techniques
could be applied to process queries in any modern object-oriented
language, but for concreteness we will focus here on query pro-
cessing using LINQ as the querying language and C] as the pro-
gramming language. We present three approaches to improve the
performance of queries on data in the memory space of a managed
application. The baseline approach compiles the query statement
to optimized C] code for processing the query. We then focus on
a special case where the use of arrays of C] structs allows us to
directly process the query in native C code. This approach enables
row-oriented data storage and, hence, permits processing strategies
that are closer to those of database systems. Finally, we propose
processing generic C] queries using a combination of compiled C]

and C code. The compiled C] code stages the input data to allow
the compiled C code do the heavy lifting of the query. We believe
our approaches pave the way towards a tighter integration between
the two runtimes by carefully introducing main-memory database
query processing primitives into host programming languages. Our
main contributions, and a roadmap of the rest of this paper, are:

• We outline the main inefficiencies that are inherent to pro-
cessing queries on in-memory collections using language-
integrated query and LINQ in particular (§2).

• We explore ways for improving the efficiency of querying
data in the memory space of a managed application by lever-
aging query compilation and techniques from IMDBs (§3).

• We present three novel approaches to the problem that rely
on compiling (parts of) the query into native C code (§§4–6).
We look at a broad spectrum of techniques, from generating
efficient host programming language code, to offloading the
entire computation to an efficient C runtime, to combining
the two extremes. We show how these approaches can be im-
plemented and what benefits and drawbacks they have. The
approaches are optimized for both response time and cache
behavior—though to a different extent depending on the spe-
cific approach—as is expected in an in-memory setting.

• We evaluate our approaches on LINQ-to-objects, the default
query processor for in-memory objects in C]. We use both re-
sponse time and cache profiling as metrics and show how our
approaches lead to significant performance improvements (§7).
Our techniques exhibit the potential of achieving query pro-
cessing performance over native objects of a programming
language that approaches that of a tuned IMDB using state-
of-the-art techniques stemming from query compilation.

Finally, we present related work in §8 and conclude and identify
future work directions in §9.

2. LINQ
Language-Integrated Query (LINQ) is a framework introduced

by Microsoft that adds powerful query-like capabilities to C] and
Visual Basic (in this paper we focus exclusively on C]). This is
achieved by defining a design pattern of general-purpose query
operators and extending both programming languages with spe-
cial query syntax that is compiled into these operators. The LINQ
framework also provides a number of domain-specific implementa-
tions of the query operators that enable use of LINQ over in-memory
.NET collections (e.g., arrays, lists, etc.), relational databases and
XML documents. The framework is designed to be extensible, so
developers can create their own domain-specific implementations.

LINQ bridges the semantic gap between programming languages
and query languages. Previously, programming languages accessed

query engines via a weak embedding, where queries are expressed
as strings and are interpreted at runtime by the query engine. This
approach has several disadvantages for developers. First, they have
to learn a new query language for each type of data source that they
must support (e.g., SQL for relational data; or XQuery for XML).
Second, there is no support from the programming language to en-
sure that the embedded query is well-formed, or well-typed. Lastly,
this approach is (infamously) insecure: injection attacks are a direct
consequence of the naı̈ve representation of queries as strings.

LINQ, in contrast, offers a consistent model for representing and
querying various kinds of data sources based on the principles and
syntax of the host programming language. Moreover, the query lan-
guage is deeply integrated into the host language to further support
the programmer when creating the data representation and queries
for an application. LINQ supports an SQL-like query syntax:

var qry_stmt = from s in source where s.Name == ‘London’
select s.Population;

This query syntax is merely (convenient) syntactic sugar, as it is
compiled away to a series of method calls, e.g.

var qry_stmt = source.Where(s => s.Name == ‘London’)
.Select(s => s.Population);

These methods on the data source (e.g., Where) are known as the
standard query operators. Many of these operators take lambda
expressions (e.g., s => s.City == ‘London’) as arguments, and
some of these methods directly correspond to relational algebraic
operations. The methods are overloaded to allow querying differ-
ent types of data sources using the same syntax. We next describe
the two implementations provided by the LINQ framework.

2.1 LINQ-to-objects
All the in-memory .NET collections, e.g., List<T> or Array, im-

plement the IEnumerable or IEnumerable<T> interfaces, and im-
plementations of the standard query operators are provided. This
implementation is known as LINQ-to-objects. Each operator is im-
plemented as an iterator method that returns an enumerable to iter-
ate over its result (via an IEnumerator). This enumerable serves
as input to the following iterator method. Iterator methods can
be chained to processes the query in an object-at-a-time fashion
closely resembling the tuple-at-a-time [8] paradigm of relational
query engines. Each enumerable continuously pulls the next object
from its input enumerable(s) until it can produce its next output
object. It returns the object and once the caller requests the next
object from the enumerable, it resumes processing.

The semantics of iterators is lazy—as it stands the code above
simply returns the constructed query statement, but does not actu-
ally execute the query. Each object of the query statement’s result
is only produced when the application consumes it (deferred exe-
cution). One way to execute the query statement and produce all
objects in its result set is to iterate over them in a foreach loop.
When qry_stmt is executed in a foreach loop, the loop requests the
first object of the query’s result from the enumerable of the Select

method. The Select method in turn requests an object from the
enumerable of the Where method. The Where method iterates over
the data source until it finds an object that satisfies the filtering con-
dition and returns that object to the Select method which performs
the appropriate projection on the object and returns the result to the
foreach loop. This process repeats until all results are produced.

2.2 LINQ query providers
LINQ provides two additional interfaces which are derived from

the enumerable interfaces: IQueryable and IQueryable<T>. These
interfaces also support the standard query operators but the chief
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Figure 1: Example of an expression tree

difference is that any lambda expression arguments are quoted, i.e.,
they are implicitly converted into expression trees.1 This implicit
conversion is implemented by the C] compiler.

Implementations of these queryable interfaces are known as LINQ
query providers. This is the means by which data-source-specific
implementations are defined, typically by interpreting the expres-
sion tree to retrieve the query’s result from a data source. Expres-
sion trees are at the core of the LINQ extensibility model. One
example of a provider that is part of LINQ is LINQ-to-SQL which
translates the expression tree to a SQL query statement. Execut-
ing the resulting query statement actually executes the query on an
external DBMS with the results returned as C] objects.

The expression tree for the query statement from earlier is shown
in Figure 1. It follows the sequence of method calls that would have
been executed in LINQ-to-objects. The ConstantExpression nodes
represent any kind of constant data, which includes the query’s in-
put. The MethodCallExpression nodes represent method calls (i.e.,
the standard query operators) and the LamdaExpressions, together
with their descendants, represent the arguments of the method call.

2.3 Inefficiencies in LINQ-to-objects
Querying data in an application’s memory space through LINQ-

to-objects exhibits many inefficiencies, more so as the data volume
grows. As the source code for the System.LINQ namespace classes
is closed source, we cannot authoritatively say how LINQ processes
queries; however, by looking at the decompiled source code of
these classes and running microbenchmarks, we can posit a fairly
complete picture of the internals and their inefficiencies. Most of
these inefficiencies are inherent to LINQ’s execution paradigm and
are also found in other implementations (i.e., in Mono).
Execution paradigm LINQ’s execution paradigm resembles the
tuple-at-a-time paradigm in database systems, and so shares some
of its drawbacks, i.e., mainly a high per-element overhead [2, 17].
The enumerable returned by iterator methods is auto-generated by
the compiler. When an iterator method iterates over its input enu-
merable in a foreach loop, the compiler emits the following code:

IEnumerable<T> enumerable = /* Call Input Method */;
IEnumerator<T> enumerator = enumerable.GetEnumerator();
while(enumerator.MoveNext()) {
T s = enumerator.Current;
/* Body of foreach loop */ }

Since MoveNext() and Current are defined in an interface, they are
virtual functions. Thus, each iterator imposes the overhead of two
virtual calls per input element [14]. In an object-oriented language,

1An expression tree is an AST representation of a given query.

virtual calls are expensive, since the compiler cannot inline code at
the call site as the receiver method is known only at run-time. Fur-
thermore, iterators contain state machine logic in the MoveNext()

method, which further adds to the per-element overhead [14].
Generics and lambda expressions LINQ defines a set of stan-
dard query operators that are used to compose arbitrary queries.
This is achieved by using generic types to specify the output type
of iterator methods and by using lambda expressions as parameters
of the iterator methods to perform operation and type-specific tasks
on each input element (e.g., test a filtering condition). However,
replacing all generic types with their respective types and lambda
expressions by their equivalent code improves the execution time.
Independent operators LINQ-to-objects does not exploit syn-
ergies between successive query operators. Consider a query that
contains an OrderBy with a subsequent Take(N). LINQ-to-objects
first evaluates the OrderBy and then returns the first N result ele-
ments. A better approach would be to merge both operations and
maintain a heap with the N highest/lowest values instead of sorting
the entire input of the OrderBy operation.
Aggregation Aggregation is a good example to illustrate missed
synergies between query operators. In LINQ, aggregation is ex-
pressed by a GroupBy method call that groups all input elements
by a key and either a result selector in the GroupBy or a successive
Select method call that constructs the result for each key and con-
tains one or more aggregation operations (also method calls) such
as Sum or Count. In both cases, each aggregation iterates over all
elements in the group to compute the aggregate. We conducted a
simple experiment based on the aggregation in Q1 of the TPC-H
benchmark. Our results show that LINQ could process the aggre-
gation 38% faster if it would process all aggregations in a single
loop over all elements of the same group. Furthermore, LINQ does
not recognize overlaps in the aggregation computations and com-
putes the count of a group for each aggregate computation individ-
ually. Eliminating these duplicate computations improves perfor-
mance by a further 12%. Then, by collapsing the grouping and the
aggregate computations in a single loop, it could gain another 10%.
Limited query optimization The query syntax in LINQ resem-
bles SQL but LINQ-to-objects lacks the optimization stages com-
mon in relational DBMS due to the lack of semantic information
(e.g., schemata, histograms) about the underlying data. The query
syntax is usually translated into method calls composed in the or-
der in which operations are declared. This requires the program-
mer to have an understanding of query processing to write efficient
LINQ queries. Query avalanches [4, 9] when dealing with nested
sub-queries are one of the unfortunate artifacts of this approach.
Despite the lack of semantic information, some heuristic rewrites
could still be applied on LINQ queries e.g., selection push-down
or reordering selection predicates according to expected process-
ing cost. For instance, forcing the selections of Q3 of the TPC-H
benchmark to be applied before the join between lineitem and
order results in a 35% performance improvement; LINQ in no way
enforces this more efficient evaluation order.
C] LINQ-to-objects is implemented in C], whereas database sys-
tems are usually written in a lower-level systems language to allow
better control over how a query is processed and for performance.
To compare, the same quicksort implementation on the same data
runs 58% faster in compiled C code over its C] counterpart. C],
furthermore, has additional inherent overheads including the inter-
pretation overhead; dynamic dispatching; and garbage collection.

3. OVERVIEW
In a typical managed application, data can either be stored as

collections of objects in the memory space of an application (Fig-
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Figure 2: Strategies for managing queryable datasets

ure 2a) or in a separate database process (Figure 2b). The for-
mer allows developers to access data with the expressive power of
the programming language (e.g., references, custom loops or LINQ
queries) whereas the latter allows them to access data only through
a particular query provider (e.g., LINQ-to-SQL). By restricting data
access to queries on relations of a predefined schema, databases
have more liberty on how to store data, how to optimize queries,
and how to deal with concurrent requests. In contrast, querying
collections in the memory space of an application is limited by the
implementation of the querying language and the storage layout
imposed by the runtime’s garbage collector. In Figure 2c we il-
lustrate our vision of a database-inspired runtime that allows faster
query processing than regular managed runtimes. We do not want
to integrate a database system into a managed runtime, but rather
to make query processing of collections in the memory space of the
application more efficient by leveraging database technology. This
allows developers to access and query data elements with the full
expressive power of the host programming language at much bet-
ter performance. We focus on the querying aspects of our vision.
We provide new alternatives for querying data inside an applica-
tion’s memory space, e.g., collections of objects or structures, using
LINQ. We propose to replace the default LINQ-to-objects execu-
tion paradigm that utilizes a pipeline of enumerables with a single,
query-specific enumerable that is generated at run-time. We lever-
age query compilation techniques to generate the source code of
the enumerable, then compile and execute it. Query compilation is
comparable to query plan generation in a relational DBMS, but gen-
erates and compiles highly optimized code instead of an operator
plan. Previous work [12, 16, 19, 14] has shown that query compi-
lation results in significantly faster query processing than compet-
ing interpretative approaches (e.g., tuple-at-a-time) by providing
more predictable and register/cache-friendly memory access pat-
terns; more options for the compiler to perform loop-based opti-
mizations; less interpretation overhead per data element; all these
enhancements are present in our techniques. Query compilation is
also a good fit with in-memory data processing where keeping the
CPU(s) busy is one of the key challenges. Our approach could also
be used to statically generate the code to answer a LINQ query at
compile-time. Doing so would save the cost of generating the bi-
nary executable each time the query is run. However, this would
require rewriting the C] compiler, so we leave this to future work.

We use a custom LINQ query provider to dynamically gener-
ate, compile, and execute the source code for processing a query.
As queries on collections of objects or structures (which imple-
ment IEnumerable<T>) are automatically processed using LINQ-to-
objects, we bypass this behavior by defining wrapper classes that
implement IQueryable<T> around all collection types that we sup-
port (e.g., we wrap the List<T> collection with QList<T>). The
query statement then uses these wrapper classes as source data in-
stead of the underlying collections. Our approach is transparent to
developers: application code does not need to be modified more

than replacing the C] collection classes with their functionally-
equivalent wrapper collections to use our execution model.

Queries in LINQ are not executed when the application reaches
the declaration of a query statement, but when it tries to consume
parts of the query’s result. However, when the application reaches
the declaration of a query statement on a data source that imple-
ments the IQueryable<T> interface (i.e., our wrapper collections),
then its query provider is consulted to return an IQueryable<T> that
represents the query’s result; type T refers to the type of the result.
This queryable contains a reference to the query’s expression tree.
We use the expression tree as input for code generation. Figure 3
gives an overview of the processing by our query provider once the
evaluation of a query statement is triggered, e.g., by iterating over
its result in a foreach loop. The foreach loop requests an instance
of IEnumerator<T> from the previously created IQueryable<T> ob-
ject by calling its GetEnumerator() method. This object will allow
the foreach loop to execute the query by iterating over its result.
The GetEnumerator() call invokes the query provider to obtain an
IEnumerable<T> object capable of evaluating the query. It then
calls GetEnumerator() on this enumerable and returns the result to
the foreach loop. The query provider creates the IEnumerable<T>

object by generating the code of an iterator method that returns the
enumerable, compiling the code, and executing the method.

When generating the source code to evaluate a query, we first
traverse the query’s expression tree to eliminate all constant sub-
trees (ConstantEvaluator). If the expression tree contains parts
that can be evaluated independently of the source data, we evalu-
ate these expressions and replace them with an expression node of
the result. This is the canonical representation of the query. Af-
ter replacing all constant parts, we consult a cache (QueryCache)
that contains compiled code of previous queries to see if we al-
ready have a compiled version of the current query. Queries in the
cache are identified by their expression tree. If we have a cache hit
the compiled code is executed; otherwise, new code is generated.
The system also supports reusing compiled code if the expression
trees are essentially the same, but one or more parameters in the
query differ (e.g., different values in a selection predicate). Keep-
ing a cache with compiled queries alleviates the non-negligible cost
of compiling the generated code [12, 16, 19]. Note that a typical
LINQ application does not contain many different query patterns.
These are typically hard-coded into the application and the queries
only vary in parameter values, which are either generated by the
application or supplied by a graphical user interface. Thus, caching
compiled code for each query pattern can significantly reduce the
compilation overhead and, hence, the query response time.

If the query cache does not contain a compiled version of the
query, we must generate and compile the source code to evaluate
the query before executing it. We first translate the expression tree
into a tree representation of the source code that is to be used to
evaluate the query (ExpressionTreeTranslator). We then walk
this tree to emit source code to be compiled (CodeTreeTranslator).
The following shows the skeleton of the generated code:
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// Namespace Declarations
public static class Executor {
public static IEnumerable<ReturnType> Execute(

IEnumerable<SourceType> data_1,
Parameter1 param_1, ...) {

/* ... */ } }

The iterator method Execute serves as access point to the compiled
code. Once the source code has been generated and compiled, we
create a delegate (C] function pointer) to allow easy and fast access
to the Execute method. Executing the delegate returns an enumer-
able that is capable of evaluating the query by iterating over its
result. The query provider then returns the corresponding enumer-
ator object to the foreach loop and the foreach loop produces the
result of the query by iterating over each element in the result.

We have identified three options to leverage code generation for
evaluating LINQ queries. The first option is to generate only C]

code and do all processing in C] (§4). Alternatively, we can gen-
erate streamlined C code to evaluate the entire query (§5). A third
option is to combine the two, where C] and C are used synergisti-
cally to process queries (§6). We examine each option in turn.

4. GENERATING PURE C] CODE
This is a baseline approach that resembles [14]. We generate C]

code to process the query. However, the generated code does not
exhibit the deficiencies of §2.3 (other than the ones inherent to C]).

4.1 The generated code
To process a LINQ query, we generate C] code that is capable of

producing the result of the query and encapsulate it in an enumer-
able to allow the application to iterate over the query’s result. The
generated C] code follows the same principles as previous work
on code generation in database systems [12, 16]. We reduce the
per-object processing overhead of LINQ-to-objects by replacing the
enumerable pipeline with a single enumerable, all generic types
with their actual types and all lambda expression calls with their
source code equivalent. The code to evaluate a query is struc-
tured into one or more tight loops that each incorporate a subset
of the LINQ query’s operations. This strategy provides more op-
tions for the compiler to perform loop-based optimizations and ex-
hibits more predictable and register/cache-friendly memory access
patterns. Each loop either produces the final result of a query or
an intermediate result of a blocking operation (e.g., aggregation or
sort). We only create a single intermediate result per loop construct.
For instance, if a loop contains the probing part of several joins fol-
lowed by an aggregation, then we only create result objects for the
combined result and not for each intermediate result, as LINQ-to-
objects would. The operations inside each loop are modeled after
common database practices (e.g., hash joins). We do not cover par-
allel execution, but because of our database-centric approach, exist-
ing parallelisation strategies [5, 21] are applicable. The following
illustrates the generated C] code for the example query of §2:

public static class Executor {
public static IEnumerable<int> Execute(

IEnumerable<SourceType> data_1,
String param_1) {

foreach (SourceType elem_1 in data_1) {
if (elem_1.Name == param_1) {
yield return elem_1.Population; } }

yield break; } }

All processing is done by one enumerable in a single loop. The
equivalent LINQ implementation would require a chain of two itera-
tor methods (Where and Select) and frequent virtual function calls
to transfer data between them. The LINQ implementation would
also invoke a lambda expression on each input element to test the
filtering predicate and another one on qualifying objects to extract
the Population member. These lambda expressions are inlined into
the generated source code (the if and yield statements).

4.2 The code generation process
Our query provider implementation uses the expression tree of a

query to generate code. After converting the expression tree into a
canonical form and checking the query cache, we translate the oper-
ations defined by the method call nodes in the expression tree into a
tree representation of the source code to evaluate the query. We first
traverse the expression tree to identify parts that can be combined
into a single loop construct. This is not possible for all operations
in the expression tree as blocking operations end the current loop
and require to start a successive one. In this case, we use the type
specified in the expression tree (result type of the corresponding
MethodCallExpression) to create objects of the intermediate result
that connects both loops. This allows us to access the members of
each object as depicted in the expression tree. We do not create any
other objects representing intermediate results from the expression
tree inside a loop segment, but instead apply pending operations
on the objects of the loop’s result. To aid the creation of the code
tree for each loop segment, we track the names of all variables that
we assign to the inputs of the loop (using numerical identifiers) to-
gether with the nodes in the expression tree that define each input.
These inputs include the current object in each loop iteration and all
objects retrieved inside the loop (e.g., from probing a hash table).
We further track all assignments that the expression tree defines for
operations that are part of the loop segment and the name of the
variable storing the objects that embody the result of the loop. This
allows us to interleave the processing of the operations defined in
the expression tree that we combine into the loop construct.

Each node of the generated code tree represents a fragment of
code; the nodes are arranged to reflect fragment order. A node’s
children are code fragments to be placed in the body of the opera-
tion that the node represents (e.g., the body of a foreach loop). The
order of siblings dictates the code emission order. The information
stored about the code fragment at each node is mostly derived from
lambda expressions in the expression tree. In Figure 4 we show the
code tree that corresponds to the expression tree of Figure 1 and
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Figure 4: Code tree that is generated from the expression tree
of Figure 1.

translated into the source code in §4.1. IterateObjects creates the
variable for accessing the current element of the loop (elem_1) and
FilterObjects and YieldObject access this variable by name.

We then traverse the code tree and generate source code. The C]

class CSharpCodeProvider provides access to instances of the C]

code generator and compiler. Its CompileAssemblyFromSource()

method allows us to compile the generated source code in-memory,
without having to utilize any external processes. C] also supports
other means to create executable code, e.g., directly emitting Com-
mon Intermediate Language (CIL) instructions. We chose to com-
pile from source as it provides us with the full set of tools that
any other C] implementation has and is more readable than CIL.
However, the second step of the code generation phase could be
replaced with any method that translates source to executable code
regardless of any method-specific intermediate representations.

5. SUBSTITUTING C FOR C]

In many situations, compiled native C code can outperform gen-
eral purpose C] code running in a managed environment. How-
ever, to be able to process LINQ queries in C, we have to be able
to access C] data from C. While modern managed runtimes pro-
vide some means to make object-oriented data accessible to native
code, they do not allow access to arbitrary collections of objects.
The reasons for this span from safety concerns to more practical
issues related to garbage collection. Garbage collectors are free to
move objects around in the managed heap and, hence, only objects
that are explicitly pinned (not allowed to be moved) and that do not
contain references to other, non-pinned objects can be made avail-
able to native code. Fortunately, there are cases where LINQ queries
can be processed by native code. In C], structs are considered
value types. Hence, an array of structs stores the data elements at
each array position instead of a reference. Storing the source data
in fixed-length arrays of structs without references leads to con-
secutive storage of data in memory and to a flat representation of
each data element, comparable to a row-store in a database system.
.NET allows to make such arrays accessible to native code. This ap-
proach lets us process the data as if it was stored in an in-memory
row-oriented DMBS, while still allowing C] to directly access it. We
further restrict LINQ query definitions to ensure that the query can
be evaluated in C. A query statement may not define calls to meth-
ods defined in the application (including non-default constructor
calls) and may only use supported types (no objects or structs that
contain references) as intermediate results. We will now explore
the use of native C code to greatly improve the evaluation time of
queries that are posed on such, database-inspired, arrays.

5.1 The generated code
Even though query processing is performed by native C code, we

still need to generate a C] enumerable to allow application code to
iterate over the result. The enumerable acts as a wrapper around the
C call that processes the query. The following fragment illustrates
the generated C] code for the query statement example from §2:2

public static class Executor {
[DllImport("query0.dll", ...)]
public static extern int EvaluateQuery(IntPtr ctx);

public static unsafe
IEnumerable<int> Execute(IntPtr data_1,

IntPtr param_1) {
Context* ctx = CreateContext(data_1, param_1);
while (EvaluateQuery(ctx) > 0) {
yield return ctx->out_elem; }

yield break; } }

The C function called to evaluate the query is EvaluateQuery. C]’s
platform invoke services (PInvoke) allow us to declare it inside the
class definition and then call it as if it was a standard C] method.
The Execute method receives a pointer to the source data and the
query’s parameters. It first allocates and initializes a context struc-
ture that contains all relevant information for accessing the input
data, parameters for evaluating the query, and fields that describe
the current state. The EvaluateQuery function is called to retrieve
the next element of the query’s result which can be accessed through
the out_elem field of the context structure. This evaluation strategy
allows support for the deferred execution principle of LINQ: only
parts of the query that are consumed by the application have to
be evaluated. If the result elements of a query are structs, the
out_elem field of the context structure will contain a pointer to
the next result element. As structs in C] are value types, we do
not directly return result elements to the caller to prevent C] from
copying them. Instead, we return a pointer to the result element
as IntPtr (C]’s pointer type) and cast it to the correct type in the
caller. This significantly reduces the cost of queries with huge re-
sults as the result is no longer copied to return it.

The generated C code follows the principles of the generated C]

code in §4 and exhibits the same optimizations. The following is
the C code of the EvaluateQuery function to evaluate the query:

int EvaluateQuery(Context* ctx) {
int i;
for (i = ctx->curr_elem; i < ctx->input_sze; i++) {
Input* elem_1 = &(ctx->input[i]);
if (elem_1->City == ctx->param_1) {
ctx->out_elem = elem_1->Population;
ctx->curr_elem = i + 1;
return 1; } }

return 0; }

Similar to the generated C] code for the same query in §4.1, we
iterate over all elements in the input array, filter them, and return the
value of the Population field. The value is returned by writing it
to the out_elem field of the context structure before returning. The
curr_elem field in the context structure is used to split the iteration
over the source data into several function calls. Before returning,
curr_elem is set to the next element of the input array to continue
processing from that element in the next EvaluateQuery call.

Memory allocated in C ceases to exist after the C function re-
turns. Thus, we must save state shared between different calls to
EvaluateQuery (e.g., pointers to hash tables). We do so in the con-
text structure so all invocations of EvaluateQuery can access them.
2For better readability, we omit some C] intrinsics that do not im-
pact the general approach.
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5.2 The code generation process
Generating C code for LINQ is similar to generating C] code. By

traversing the LINQ expression tree, we create a separate tree rep-
resentation of the C code. The basic approach for generating the
code tree remains as outlined in §4.2. However, where we have
previously been able to access the source data and (intermediate)
results as depicted in the expression tree, the definitions of these
structures do not exist in the generated C code. We utilize C]’s re-
flection API to recreate these structure definitions. Thus, there is no
need to create a separate mapping to translate data accesses defined
in the expression tree into equivalent C code. Using (arrays of)
structs to access the source data and intermediate results in C im-
proves readability of the generated C code by avoiding unnecessary
pointer arithmetic and type casts to access the data. As all interme-
diate results are only used by the generated C code, we can mod-
ify the layout of the fields in their structure definition to improve
the query’s evaluation time. For instance, we can place fields in a
structure that are frequently accessed together (e.g., group-by keys
in an aggregation) in close proximity or fields that do not change
between two successive intermediate results next to each other to
allow to block-copy them between both results. Such optimizations
are frequently encountered in IMDBs but are not widely applied in
query processing or just-in-time compilation in the context of man-
aged runtimes, thereby bringing another level of performance en-
hancement to LINQ. While building the code tree, for each loop
that produces an intermediate result, we check if there are fields in
the result that are either not modified in the loop or are accessed to-
gether in the successive loop; in both cases we group them together.
Note that the definition of the context structure is also part of the
generated code as it has to be adapted to each individual query.

In contrast to C] compilation, the compilation of the C code
cannot be performed in-memory or without invoking external pro-
cesses. We compile the C code by placing the generated source
code into a file and creating a new process that calls an external
compiler to compile the file into a dynamic library. This library
is linked into the generated C] code by using C]’s platform invoke
services to define a method for calling the generated C function.

6. COMBINING C] AND C CODE
Ideally, we would like to lift all type restrictions that have been

imposed in §5 and process all LINQ queries with C code. However,
.NET forbids direct access to arbitrary collections of objects in the
managed heap. Instead, we propose to copy the part of the input
that is relevant for processing the query into a representation that
can be accessed by native code and then evaluate the query or a part
of it using C code. As only data that is relevant for processing the
query is copied to the native representation, the copied data exhibits
better spatial locality than in the previous approaches, which allows
us to leverage cache-conscious query processing techniques.

6.1 The generated code
For simple select-project queries, the cost of copying the source

data into a representation that can be accessed from C outweighs
the performance benefits of processing in native code. Thus, we
only generate C] code for such queries; however, for queries that
contain complex operations like aggregations, sorting, or joins, we
process the most expensive parts in C. A salient decision is whether
we fully materialize the data to be exchanged between the two run-
times, or incrementally push processing from C] to C using a buffer.

6.1.1 Full materialization
In this approach, we copy the data into unmanaged memory so

native code can access it. We only copy data that will be processed

by C rather than the entire input. The data is copied to a linked list
of buffer pages and the generated C code is only invoked once data
has been staged. The parts of the query to be processed by native
code and, hence, the data to be copied depend on the query. Queries
with single operations (e.g., sort) may require less data movement
than complex queries. The following is the Execute method of the
generated C] code pattern for the most common case:

public static unsafe IEnumerable<ReturnType> Execute(
IEnumerable<SourceType> data_1,
String param_1) {

Context* ctx = CreateContext();
CInput* buffer = AddBuffer(ctx);
int count = 0;

foreach (SourceType elem_1 in data_1) {
if (elem_1.Name == param_1) {
if (count == ctx->elems_per_buffer) {
buffer = AddBuffer(ctx);
count = 0; }

buffer[count].key = elem_1.key;
buffer[count].price = elem_1.price;
count++; } }

while (EvaluateQuery(ctx) > 0) {
yield return new ReturnType(ctx->out_elem); } }

Here, we process most of the query in native code. To reduce the
number of objects copied to unmanaged memory, however, we ap-
ply all filtering operations in C]. The generated code injects an
implicit projection that copies only the members of the source ob-
jects that will be accessed by native code (key and price). To copy,
we produce one or more linked lists of buffer pages that are allo-
cated in unmanaged memory and, hence, accessible in C. We cast
the data part of each buffer page to an array of primitive C] type
(e.g., int or Decimal); or an array of a custom structure type that is
defined in the generated code. The former represents columnar, the
latter row-wise storage. Once all data is staged, the C code is called
as was shown in §5. The generated C code follows similar princi-
ples as in §5. For every result element returned from C, we create a
result object. We assign its members from the native representation
of the result elements and yield the object to the caller.

The code pattern above assumes that result objects can be con-
structed from the output produced by native code; this is not al-
ways possible. Consider the case of the query results containing
references to objects of the input; or when we have only partially
copied data into unmanaged memory (e.g., through implicit projec-
tions). In such cases we use the original objects to construct the
result rather than copies of them. This ensures that our results are
consistent with the results of LINQ-to-objects which allows an ap-
plication to modify elements of the source collection that have been
retrieved using a LINQ query. To achieve this we create a C] array of
all source objects that satisfy all filters in the query before copying
data to unmanaged memory. We then also copy the object’s index
in the array to unmanaged memory so we can later retrieve the cor-
responding source object from the array and use it to construct the
result object. Consider sorting all elements in a collection. When
LINQ-to-objects processes the query, it first creates an array that
contains references to all objects, an int array that contains the in-
dexes of all objects, and an array that contains the keys to sort by.
The latter two arrays are passed to a quicksort algorithm to sort the
indexes. Our approach would do the same, but then give C access
to the index and key arrays and execute quicksort in native code.

6.1.2 Buffered materialization
The previous approach results in a large memory footprint. Con-

sider aggregating a huge dataset to reduce it to a couple of aggre-
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gate objects. The approaches of §4 or §5 do not require much mem-
ory as the hash table for the aggregation only contains the resulting
couple of objects. The approach of §6.1.1, however, must first copy
all relevant data to unmanaged memory thus increasing the memory
footprint. To keep the memory footprint fixed we call the generated
C code to process the content of a buffer page once it is full. After
all elements in the buffer are consumed by native code, C] can over-
write the content of the buffer with the next set of input elements.
However, transferring data in a single buffer does not always help
to reduce the memory footprint. If the generated C code has to
keep all streamed data without any modifications (e.g., streaming
the blocking part of a join operation), then we would rather copy
everything to unmanaged memory before processing it in C.

The following sample shows the Execute method of the gener-
ated C] code to process a query similar to that of §6.1.1:

public static unsafe IEnumerable<ReturnType> Execute(
IEnumerable<SourceType> data_1,
String param_1) {

Context* ctx = CreateContext();
CInput* buffer = AddBuffer(ctx);
int count = 0;

foreach (SourceType elem_1 in data_1) {
if (elem_1.Name == param_1) {
if (count == ctx->elems_per_buffer) {
EvaluateQuery(ctx);
count = 0; }

buffer[count].key = elem_1.key;
buffer[count].price = elem_1.price;
count++; } }

ctx->streaming_done = 1;

while (EvaluateQuery(ctx) > 0) {
yield return new ReturnType(ctx->out_elem); } }

Instead of adding a new buffer page to the linked list whenever
the current one is full, C is called to process its content. The sample
assumes that the generated C code contains a blocking operation
and, thus, does not return a result before all input is consumed. We
use the context structure to maintain state between different calls to
EvaluateQuery. The streaming_done field of the context structure
indicates whether the entire input is consumed. Once this is the
case, the generated C code can start producing result elements.

6.2 The code generation process
The source code is generated similarly to §5. As before, we use

some of the types defined in the expression tree (result types of
MethodCallExpressions) to create the structure definitions of the
input and output of each loop construct in the C code and of the
types C] uses to copy the data to and from unmanaged memory.
However, the expression tree may now refer to arbitrary C] types.
Object-oriented languages like C] allow for a nested data represen-
tation through references to arbitrary data types—even other collec-
tions. The generated C code, in contrast, relies on a flat, value-type
data representation without references allowing us to leverage re-
lational query processing techniques. The mismatch in representa-
tions is a key challenge in processing data in unmanaged memory.
We address this issue by creating mappings between the object-
oriented data layouts of the expression tree and the flat data layouts
that the generated C code expects. This allows us to directly trans-
late data accesses depicted in the expression tree to native code that
accesses the corresponding data elements in the unmanaged heap.

A mapping consists of two parts: (a) an object-oriented represen-
tation of the data as found in the expression tree; and (b) a native
representation of the data layout that we have chosen to use for
processing the query in unmanaged memory. The object-oriented
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Figure 5: Mapping between C] and C value types

data layout is represented by a tree with nodes of four types: value,
reference, enumerable value or enumerable reference. Value types
represent non-composed types such as integer, float or string

values. Reference types represent composed types such as classes
or structs. The children of reference types represent their (public)
members. Both enumerable types represent enumerable versions of
their respective types. The native data layout is represented by one
or more trees that each can either be a single value type node or a
reference type node that only contains value type children.

The native representation is usually similar to its object-oriented
equivalent, but with all references flattened out, leading to a row-
wise data layout in unmanaged memory. Value type nodes of the
object-oriented representation map to value type nodes of the native
representation (e.g., in Figure 5). However, there are cases where
the representations diverge. For example, if some elements in the
object-oriented representation are not copied to unmanaged mem-
ory but instead represented by an index to a C] array that allows C]

to look them up (see §6.1.1). Then, the reference type to represent
these elements maps to the value type that represents the index.

The mappings are created in the same bottom-up pass over the
expression tree that constructs the tree representations of the source
code. Before generating the tree representation of the code that
corresponds to a MethodCallExpression node, we have to obtain
the mapping for its result. We decide, based on the type of the
MethodCallExpression, whether to use the same mapping as its
child (e.g., Where, OrderBy) or create a new one (e.g., Select, Join).
In the latter case, one of the LambdaExpressions usually specifies
the creation of the method’s result either by defining a constructor
call to produce result objects or by providing a projection that ex-
tracts them from the result of its child. We use these definitions to
create the object representation of the method’s result. Based on
the type of the method call and its parameters, we decide how to
process it and create the corresponding native representation of its
result. We use the native representation of an intermediate result to
create its structure definition. For readability, we name the fields of
the structure as their equivalent in the object-oriented representa-
tion, but append a unique identifier to the name to avoid collisions.

As mentioned in §6.1.1, we inject an implicit projection step into
the generated C] code before staging the input data to reduce the
data volume that has to be copied to unmanaged memory. This pro-
jection is driven by the mapping of the type that is copied i.e., the
type of the input. The input may contain members that are neither
accessed in the query nor part of the query’s result. We only add
members to the input mapping that are required for processing the
query in native code. When coming across a ConstantExpression

that represents an input collection in the bottom-up traversal of
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Figure 6: Steps of creating a source mapping (bottom-up; se-
lection ignored because it is performed in C])

the expression tree, we create an empty reference mapping for it.
Whenever a LambdaExpression in one of the expression’s ancestor
MethodCallExpressions references an element of the source data,
we check if that element has already been added to the source map-
ping; if not, we add it. Figure 6 illustrates this process. We perform
the implicit projection step by only copying parts of the input to
unmanaged memory that are contained in the mapping.

Finally, we use reflection to check if the mapping for the query
result has any references to source objects whose members have
not been accessed in the expression tree and, hence, have not been
added to the mapping. In this case, we extend it with an index to
allow us to look them up in C] after processing the query in C.

7. EVALUATION
We evaluate the approaches that have been presented in the pre-

vious sections for several LINQ queries. All queries are run over
a 1GB TPC-H dataset (i.e., a scale factor of one) loaded into the
memory space of the application. This use-case models how a pro-
grammer would work with a single data representation accessible
by programming language constructs (e.g., references); and also be
able to formulate complex data processing queries through LINQ.

The first step towards running queries on TPC-H inside an ap-
plication’s memory space is to choose data structures to represent
the dataset in C]. We tested fixed-length Arrays and Lists (C]’s
implementation of dynamic arrays) to represent each relation; and
objects or structs to represent a record in a relation. Using structs
is a poor choice as they are value types in C]. Thus, when process-
ing a query in LINQ, each struct is copied by value rather than by
reference, which significantly slows down query processing. The
choice between lists and arrays of objects was much closer with ar-
rays performing slightly better. In the end we chose Lists for their
ability to allow variable sizes. The SQL types of each column were
transformed into equivalent C] types. For the generated C code we
use an array of structs as discussed in §5 to give the generated C
code direct access to the data without any data staging.

All tests were performed on a dual core Intel i5-2415M processor
with 8GB of memory. Before each test we called the garbage col-
lector and waited until it was finished to ensure that we started with
a minimal memory footprint. We first micro-benchmark aggrega-
tion, sorting, and join processing individually and then study the
performance of queries that combine several of these operations.

7.1 Aggregation
We evaluate the aggregation performance on the aggregation of

TPC-H query Q1. We chose this query as it is aggregation-heavy
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Figure 8: Aggregation cost break down for compiled C]/C code

and exhibits all the shortcomings of the LINQ-to-objects paradigm
(see §2.3). We keep the selection predicate, but vary the selectivity
to show how each approach copes with a growing data volume to
be aggregated. In Figure 7 we show that all our approaches perform
significantly better than LINQ-to-objects; in the case of generated
C code even up to one order of magnitude better. As the volume of
data to be aggregated grows, LINQ-to-objects looses ground even
further. Most of the difference between LINQ-to-objects and the
compiled C] code is due to the inefficiencies of LINQ-to-objects.
The most severe inefficiency is that LINQ-to-objects computes ev-
ery aggregate in a separate loop over all elements of each group.
The generated C code performs the best, which is no surprise: all
data is stored row-wise in consecutive memory addresses and all
query processing is performed in C without any data staging. This
approach resembles the code that would have been generated for a
row-wise relational database without indexes, clustering, or a his-
togram. Combined C] and C code performs around 30% to 70%
worse than pure C code. This is due to the combined approach
having to stage the data in C] before shifting processing to C.

We next studied the two different approaches for combining C]

and C code generation: full or buffered intermediate data materi-
alization. Both perform similarly, but buffering performs slightly
better. When aggregating all six million tuples in the dataset, the
former approach consumes 390MB of memory for staging the data,
whereas the latter only requires the constant buffer size. We tested
different buffer sizes to see how sensitive our approach is to this
choice, but did not find any significant impact on performance; we
therefore settled for a modest buffer size of 64KB. We tested both
approaches with performing the selection either in C] before stag-
ing the data; or in C after staging the data. Applying the selec-
tion predicate in C] resulted in better performance, in particular
for lower selectivities. We further varied the number of aggregates
(e.g., Sum) that have to be computed while leaving the amount of
data that has to be staged constant. The compiled C] and C code al-
ready outperform LINQ-to-objects if the aggregation only contains
a single Sum operation. As the number of aggregates grows, the
performance difference between the two approaches grows rapidly.

Finally, we broke down the cost of the generated C] and C code
and report it in Figure 8 for the variant that first stages the data in C]

before invoking the C code. The cost of iterating over the input and
performing the selections is independent of selectivity. Whereas
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Figure 9: Sorting over selection; varying selectivity
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Figure 10: Cost break down of sorting for compiled C]/C code

the data staging cost grows with selectivity, it does not grow as fast
as the aggregation cost. These results suggest that as data volume
grows the relative cost of data staging might diminish further.

7.2 Sorting
To measure the performance of sorting, we sorted the lineitem

relation on extendedprice. The performance of all approaches
for varying selectivity is shown in Figure 9. As before, LINQ-to-
objects performs the worst, though it tracks the performance of C]

code much closer this time. The latter uses the same quicksort al-
gorithm as LINQ-to-objects, so the majority of the processing is
equivalent; better performance is due to the inherent cost of LINQ-
to-objects. To be fair we implemented the same quicksort algorithm
in the generated C code. Thus, the generated C code and the com-
bined C] and C code perform similarly. In the latter approach, we
fully materialize the C input as buffering is inapplicable: quicksort
requires full arrays. Though the C-only approach does not require
any data staging, its impact on overall performance is limited. To
support deferred execution, both approaches must call the C func-
tion for every result object. For high selectivities this can be up to
six million calls to native code. Despite calls to native code being
cheap in C] they still are several times the cost of a regular C] call.

When sorting by generating both C] and C code we must return
references to input objects instead of their copies. Thus, we transfer
to C an array containing all sort keys and an array containing their
indexes; and then sort the index array in C. After C has produced
the array of sorted indexes, the generated C] code looks up the
object represented by each index and returns it. A break down of
the costs of sorting is shown in Figure 10. The cost of quicksort
dominates. As we only transfer the sort keys and their indexes to C,
the cost of data staging is smaller than that of aggregation. This is
offset by the costs of repeatedly calling C and composing the result
in C] i.e., looking up the elements corresponding to the indexes.

7.3 Joins
We evaluate join performance using the joins and a variant of

the selections of TPC-H query Q3. We changed the selections on
the lineitem and orders relations to vary the selectivity, but kept
a constant selectivity on mktsegment for the costumers relation.
The result of the query is based on the intermediate result of the
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Figure 11: Join over selections; varying selectivity
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Figure 12: Cost break down of join processing for compiled
C]/C code (Max)

join sub-query of Q3. In an object-oriented language, the primary-
foreign-key relationship between relations can also be modelled
through references and pointer joins. We use a value join here,
however, since we want to test the performance of our code gen-
eration approaches. As shown in Figure 11, the generated C] code
performs better than LINQ-to-objects, even though it processes the
query in a similar way, by avoiding the inherent LINQ-to-objects
problems. The generated C code again performs the best overall.

There are four approaches to combining generated C] and C
code. One option (referred to as Min) is to transfer the minimum
amount of data to C by (a) transferring the indexes required for
joining the relations, and (b) looking up the objects in the C] code
to create the result objects. Another approach (referred to as Max)
is to transfer to C all data that is necessary to process the query and
construct the result. Doing so increases the data staging cost, but
does not require the exacerbated look up cost for creating results.
Both of these approaches have a buffering variant. Buffering, how-
ever, is only beneficial for the lineitem data; we build hash tables
for both other relations and the hash tables require full material-
ization. All four approaches perform very similarly, with buffering
performing slightly better and full-staging marginally outperform-
ing key/index joins. This suggests that in this case the cost of stag-
ing all data is cheaper than the cost of the random index lookups.

We show the cost break down when combining C] and C code for
the (Max, non-buffering) variant in Figure 10. In contrast to aggre-
gation and sorting, the join query does not block for the lineitem
relation. The C] code continuously requests the next result. The C
code supplies it by iterating over the unprocessed part of lineitem
and probing the hash tables for qualifying elements. As shown in
Figure 10 this cost accounts for the majority of the evaluation time.

7.4 Mixed queries
Finally, we evaluate all approaches on more complex queries

with several operations. In Figure 13 we show the evaluation times
for the first three TPC-H queries. The following observations are
consistent across all queries. The generated C code performs best,
followed by the combination of generated C] and C code. The
generated C] code comes third before LINQ-to-objects. As the
queries contain more operations, LINQ-to-objects iterates over a
longer pipeline of operations and, hence, transfers more objects

1104



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Q1 Q2 Q3

E
v
a
lu

a
ti
o
n
 T

im
e
 

(P
e
rc

e
n
ta

g
e
 o

f 
L
IN

Q
-t

o
-O

b
je

c
ts

)

Queries

LINQ-to-Objects
C# Code
C Code

C#/C Code
C#/C Code (Buffer)

Figure 13: Improvements for TPC-H queries Q1, Q2 and Q3
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Figure 14: Last level (L3) cache misses for TPC-H queries Q1,
Q2 and Q3

through the pipeline and materializes more intermediate result ob-
jects, which gives our approaches an additional advantage. The
combination of generated C] and C code has the advantage that the
cost of having to stage data before shifting processing to C is often
amortized over more operations. For example, sorting after an ag-
gregation does not need any extra data staging. The Min approach
from earlier is not possible for any of the complex queries tested:
C processes more than one operation and requires access to all the
data required to construct the resulting objects. Query Q2 contains
a nested sub-query. For LINQ-to-objects, we used a hand-optimized
query plan that eliminates the nested sub-query to prevent LINQ-to-
objects from re-evaluating it for every element and, hence, from
significantly increasing the evaluation time [4, 9].

In Figure 14 we show the number of last level cache misses of
each approach. All variants of compiled code exhibit fewer cache
misses than LINQ-to-objects. Query Q1 shows the greatest benefit
as the generated code avoids all additional passes over the input ob-
jects that take part in the aggregation (see §2.3); whereas the com-
piled C] code for Q3 only shows very little benefit as both execution
strategies exhibit similar memory access patterns. The generated C
code exhibits the smallest number of last level cache misses for Q1
and Q2 because of the more compact memory layout of its input
data. The number of cache misses in Q3 is dominated by hash table
probing. As both mixed C] and C approaches perform an implicit
projection step when staging the data, their hash tables are signif-
icantly smaller (e.g., the hash table of the customer relation only
contains an integer value per key) and are more likely to be par-
tially cache-resident when probing the hash tables, hence, reducing
the number of cache misses. In this case, the full materialization
variant performs better than the buffering one because it reduces
cache pressure by only iterating over the staged lineitem input
when probing the hash tables instead of interleaving this process
with fetching qualifying objects from the input and staging the data.
These results suggest that it is possible to apply database-centric
optimizations to LINQ queries if the managed runtime is treated as
an in-memory database system. At the same time, it reinforces the
observation that the line between code generation options is not as
clear and hybrid approaches that generate both C] and C code can
outperform native solutions under cache-profile-based metrics.

Q1 Q2 Q3
SQL Server 2014 10360ms 125ms 2766ms

SQL Server 2014—native 2875ms — 797ms
VectorWise 3.0 946ms 149ms 176ms

LINQ-to-objects 4570ms 41ms 931ms
Compiled C]/C code 567ms 21ms 208ms

Table 1: Performance comparison to an in-memory DBMS

We have so far not reported the cost of code generation and com-
pilation. This cost can be neglected assuming either: (a) static com-
pilation at application compile-time for fixed queries; or (b) caching
and reusing the compiled code for applications with a few query
patterns. However, we report these costs for completeness. Source
code generation takes between 30ms and 60ms; C] code compi-
lation needs around 75ms; and C code compilation takes around
720ms. The latter can be reduced by generating LLVM code [16].
Improving the synergy between runtime and compiler, however, is
not our focus. Rather, we showcase the potential of code generation
for efficient query processing in managed runtimes.

7.5 Comparison to a database system
A comparison between querying collections in a managed run-

time and querying data in a DBMS is not strictly fair as the two en-
vironments serve distinct use cases. It is not our intention to claim
that our approach outperforms a DBMS. Instead, we show that the
improvements obtained by our code generation approach are com-
parable to those obtained in a DBMS and result in performance sim-
ilar to a state-of-the-art in-memory DBMS. We report the results
for the TPC-H queries as executed on SQL Server 2014 in-memory
OLTP (Hekaton [6]) and VectorWise 3.0. The former system gen-
erates native C code for SQL queries expressed as stored proce-
dures, thus leveraging techniques similar to ours, but in the DBMS
realm. The cumulative results are shown in Table 1. To level the
playing field, we did not define indexes or utilize multi-core sup-
port. Note that Q2 could not be converted into native code as nested
queries and LIKE predicates are not supported for the stored proce-
dure functionality of this version of SQL Server. Query compilation
in SQL Server results in a three-fold improvement over the inter-
preted version. Our approach exhibits comparable improvements
over LINQ-to-objects with query Q1 showcasing a greater benefit
due to inefficient aggregate computations in LINQ-to-objects. Fur-
ther, our approach is comparable and at times surpasses the per-
formance of a heavily optimized in-memory DBMS (VectorWise).
By no means do these results imply that managed runtimes are a
substitute for relational DBMSs because they address different use-
cases. But seeing as native code over managed objects can poten-
tially outperform an in-memory DBMS by bypassing unnecessary
functionality, it makes sense to consider a tighter integration of the
two; and query compilation is the enabler to improve performance.

8. RELATED WORK
Query compilation in database systems has been around since

the times of System-R [3]. However, in recent years it gained trac-
tion in the research community [1, 5, 11, 12, 16, 18, 19, 20, 22]
as well as in industrial applications such as ParAccel, Netezza [7]
or Hekaton [6]. Rao et al. [19] present a relational, in-memory,
Java-based database prototype that generates Java code, compiles
it into Java Bytecode and loads and executes it through the JVM.
Data is stored as Java objects containing primitive types. Krikellas
et al. [12] propose generating C code instead. The authors pre-
cede query processing with a staging phase that prepares the input
data for cache conscious query processing. Neumann [16] proposes
generating LLVM code to reduce the compilation cost. Addition-
ally, he generates code that maximizes the processing performed
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in each loop and therefore keeps data in CPU registers as long as
possible. Sompolski et al. [20] studied the benefit of just-in-time
compilation at the query operator level in a vectorized query en-
gine. The DBToaster project [1] uses compiled C++ or Scala code
to incrementally maintain internal representations of materialized
views. Pirk et al. [22] combine the partially decomposed storage
model with query compilation to eliminate CPU-inefficient function
calls; and Dees et al. [5] explore code generation for many-cores
in main memory column-stores. We employ state-of-the art tech-
niques from previous work in query compilation and adapt them
to the challenges (e.g., restricted data access, slow environment for
query processing) of querying objects in a managed runtime.

Murray et al. [14] were the first to propose using compiled code
to process LINQ queries on in-memory objects. They provided
a comprehensive description of their code generation algorithm,
which generates code that is similar to our baseline approach (§4).
In contrast to our approach, they do not interleave the processing
done by LINQ operations in the same loop segment to save ma-
terialization costs and use nested loops to process join operations
instead of hash joins. We extend their work by providing further
approaches (§5 and §6) for significantly faster query processing.

Grust et al. [9] performed a comprehensive analysis of the per-
formance of LINQ queries on mixed external data sources (e.g.,
DBMSs and XML). They identified query avalanches as a key inef-
ficiency of LINQ when dealing with nested queries. They presented
a new query provider to optimize LINQ queries and avoid query
avalanches. In this work, we do not tackle the inefficiencies of
LINQ as a whole, but those that arise from the LINQ-to-objects im-
plementation. Cheney et al. [4] give a theory and implementation
for language-integrated query that is more robust and efficient than
LINQ and prevents query avalanches. This work is complementary
and can be used together with our work for better performance.

9. CONCLUSION AND FUTURE WORK
We explored strategies to improve the efficiency of processing

queries in the memory space of an object-oriented language by
leveraging code generation. We used Microsoft’s LINQ-to-objects
as a reference point and presented three approaches that—at run-
time—use a LINQ query provider to generate and compile query-
specific source code to process a query. We discussed how com-
piled C] code can improve the evaluation time. We then focused
on a special case where fixed-length arrays of structs can be used
to create a row-oriented data store, which enables processing the
query using C code. Finally, we proposed to combine compiled C]

and C code. We used the compiled C] code to stage data to make
it accessible to C code and then generated C code to perform the
heavy-lifting of the query. We evaluated our approaches against
LINQ-to-objects using queries based on the TPC-H benchmark and
showed that they deliver significant performance improvements.

From an ease-of-development viewpoint, the C]-only and the
combined approach are far superior as they are the most trans-
parent to the developer, merely requiring to change the collection
type used for managing data. The combined approach improves
the performance of the C]-only version if the majority of the query
processing can be offloaded to the C runtime. However, from a
performance viewpoint, the C-only approach delivers the best re-
sults. Based on this finding, we conclude that improving the query
engine is only a first step and that other parts of the runtime, such
as the garbage collector, must also be adapted for database-inspired
query processing (e.g., consecutive memory locations for objects in
a collection). Further optimizations include the integration of code
generation into the just-in-time compiler of the runtime and the in-

troduction of structures such as indexes as well as support for clus-
tering, histograms, parallel execution or query result caching [15].
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