6,470 research outputs found

    Spare parts on demand using additive manufacturing : a simulation model for cost evaluation.

    Get PDF
    Little is known about the impact of additive manufacturing in the spare part supply chain. A few studies are available, but they focus on specific parts and their applications only. A general model, which can be adapted to different applications, is nonexistent. This dissertation proposes a decision making framework that enables an interested practitioner/manager to decide whether using additive manufacturing to make spare parts on demand is economical when compared to conventional warehousing strategy. The framework consists of two major components: a general discrete event simulation model and a process of designing a wide range of simulation scenarios. The goal of the dissertation is to help verify existing as well as gain new knowledge about operations of additive manufacturing and the cost implication in the spare parts supply chains. Particularly, the proposed model enables simulation based analysis with various strategies, setups, specific parts, machines and system operating parameters. Furthermore, the process related issues of interest are the influence of building speed, building space volume, material price, machine purchase price and cool down time. Strategy related issues are multi-machine and multi-material production strategies in several setups. Also simulation investigation of different spare part stock properties are executed and analyzed by using different part size distributions. This dissertation establishes fundamental understanding of the characteristics of the additive manufacturing system for spare part supply strategies. This model could directly help the decision-making processes in whether to adopt additive manufacturing technology, and also helps the evaluation of different additive manufacturing strategies when the technology is adopted. Both decisions (adoption and strategies) are made based on cost analysis for spare parts in a broader supply chain

    Additive Manufacturing of Slow-Moving Automotive Spare Parts: A Supply Chain Cost Assessment

    Get PDF
    This study develops a cost model for the additive manufacturing (AM)-produced spare parts supply chain in the automotive industry. Moreover, we evaluate the economic feasibility of AM for slow-moving automotive spare parts by comparing the costs of the traditional manufacturing (TM) spare parts supply chain (SPSC) with centralized, outsourced AM SPSC. Data from a multiple case study of an OEM in the automotive industry regarding SPSC is utilized. The supply chain costs of 14 individual spare parts were analyzed, and the total SPSC cost for the AM and TM, were compared. Three of the fourteen parts showed potential for cost-savings, if they were produced with AM instead of TM. In this context, AM polymer parts showed greater potential than metal to replace TM as the more economical option of manufacturing from a total supply chain cost perspective. This study shows that the AM competitiveness to TM, from a financial perspective, increases for spare parts with low demand, high minimum order quantity, and high TM production price. The SPSC cost model included: cost of production, transport, warehousing, and service costs. This study contributes to the emerging field of part identification for AM and the existing literature regarding cost modeling in SPSCs

    Digital manufacturing for spare parts: scenarios for the automotive supply chain

    Get PDF
    Additive Manufacturing for spare parts is often discussed from a supply chain perspective, extoling the opportunities to reduce inventory and improve service in the supply chain. This paper examines possible scenarios for the mechanisms through which additively-manufactured automotive spare parts might be realised in the future, building on previous reviews of literature in this field. The paper also examines the technical challenges which may exist in the transition from traditional manufacturing processes to Additive processes for automotive spare parts

    A framework to assess the sustainability of additive manufacturing for spare parts

    Get PDF
    Additive manufacturing (AM) is a promising technology for the optimization of the spare parts supply chain. A complete evaluation of whether it is advantageous to switch to this technology for spare parts management should include a comprehensive assessment of its sustainability in addition to its techno-economic viability. General analyses of the economic, environmental, and social impacts of AM have been conducted, but assessments of the sustainability effects of AM in the spare parts field is limited to specific industries. Thus, based on the literature, we designed a framework that can support a life cycle evaluation of the emerging application of AM technology. It represents a methodological approach that covers all the stages of the spare parts life cycle and the three dimensions of sustainability. It has been designed to support both researchers and practitioners who are considering AM for the manufacturing of spare parts. Copyright (C) 2022 The Authors

    New Business Models for Sustainable Spare Parts Logistics: A Case Study

    Get PDF
    ProducciĂłn CientĂ­ficaAdditive manufacturing of spare parts significantly impacts industrial, social, and environmental aspects. However, a literature review shows that: (i) academic papers on the adoption of additive manufacturing have focused mainly on large companies; (ii) the methods required by SMEs to adopt new technologies differ from those employed by large companies; and (iii) recent studies suggest that a suitable way to help small- and medium-sized enterprises (SMEs) to adopt new additive manufacturing technologies from the academic world is by presenting case studies in which SMEs are involved. Given the increasing number of global SMEs (i.e., SMEs that manufacture locally and sell globally), we claim that these companies need to be assisted in adopting spare-parts additive manufacturing for the sake of resource and environmental sustainability. To bridge this gap, the purpose of this article is to present a case study approach that shows how a digital supply chain for spare parts has the potential to bring about changes in business models with significant benefits for both global SMEs (more effective logistic management), customers (response time), and the environment (reduced energy, emissions, raw materials, and waste).Junta de Castilla y LeĂłn - Fondo Europeo de Desarrollo Regional (grant VA049P17

    Active Duty Training For Support of Navy\u27s Additive Manufacturing Strategy

    Get PDF
    Additive manufacturing has recently gained the attention of multiple stakeholders, including those in the advanced manufacturing industry, research and government labs, academia, and the Navy community. Various efforts within the Navy focus on studying the best way for parts to be built and repaired for marine and naval vessels. Rapid manufacturing of spare components is particularly important for sailors, especially while deployed on warships, as they often do not have timely access to spare parts from the supply chain. For that purpose, a multidisciplinary team of engineering and education faculty have developed a series of workshops to train on-duty sailors in designing, testing, reverse engineering, and printing parts needed for their daily operations. The workshop has modules focused on rapid prototyping, reverse engineering, computer aided design, material testing, product data management, and product lifecycle management. The Office of Naval Research Workforce Development program funds this program
    • …
    corecore