University of Louisville

ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2015

Spare parts on demand using additive manufacturing : a simulation model for cost evaluation.

Stefan Jedeck

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Business Administration, Management, and Operations Commons, Engineering Science and Materials Commons, Industrial Engineering Commons, Industrial Technology Commons, Materials Science and Engineering Commons, Operational Research Commons, Operations and Supply Chain Management Commons, and the Technology and Innovation Commons

Recommended Citation

Jedeck, Stefan, "Spare parts on demand using additive manufacturing : a simulation model for cost evaluation." (2015). *Electronic Theses and Dissertations.* Paper 2290. https://doi.org/10.18297/etd/2290

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

SPARE PARTS ON DEMAND USING ADDITIVE MANUFACTURING: A SIMULATION MODEL FOR COST EVALUATION

By

Stefan Jedeck Dipl.-Ing. (FH), Fachhochschule Köln, 2006 Dipl.-Wirt.-Ing (FH), Fachhochschule Köln, 2007

A Dissertation

Submitted to the Faculty of the

J.B. Speed School of Engineering of the University of Louisville in Partial Fulfillment of the Requirements for the

Doctor of Philosophy in Industrial Engineering

Department of Industrial Engineering University of Louisville Louisville, Kentucky, USA

December 2015

© Copyright 2015 by Stefan Jedeck

All rights reserved

SPARE PARTS ON DEMAND USING ADDITIVE MANUFACTURING: A SIMULATION MODEL FOR COST EVALUATION

By

Stefan Jedeck Dipl.-Ing. (FH), Fachhochschule Köln, 2006 Dipl.-Wirt.-Ing (FH), Fachhochschule Köln, 2007

A Dissertation Approved on

December 01, 2015

by the following Dissertation Committee

Professor Lihui Bai, Committee Chair

Professor Li Yang, Committee Chair

Professor John S. Usher

Professor Ellen G. Brehob

ABSTRACT

SPARE PARTS ON DEMAND USING ADDITIVE MANUFACTURING:

A SIMULATION MODEL FOR COST EVALUATION

Stefan Jedeck

December 1, 2015

Little is known about the impact of additive manufacturing in the spare part supply chain. A few studies are available, but they focus on specific parts and their applications only. A general model, which can be adapted to different applications, is nonexistent. This dissertation proposes a decision making framework that enables an interested practitioner/manager to decide whether using additive manufacturing to make spare parts on demand is economical when compared to conventional warehousing strategy. The framework consists of two major components: a general discrete event simulation model and a process of designing a wide range of simulation scenarios. The goal of the dissertation is to help verify existing as well as gain new knowledge about operations of additive manufacturing and the cost implication in the spare parts supply chains. Particularly, the proposed model enables simulation based analysis with various strategies, setups, specific parts, machines and system operating parameters. Furthermore, the process related issues of interest are the influence of building speed, building space volume, material price, machine purchase price and cool down time. Strategy related issues are multi-machine and multi-material production strategies in several setups. Also simulation investigation of different spare part stock properties are executed and analyzed by using different part size distributions.

This dissertation establishes fundamental understanding of the characteristics of the additive manufacturing system for spare part supply strategies. This model could directly help the decision-making processes in whether to adopt additive manufacturing technology, and also helps the evaluation of different additive manufacturing strategies when the technology is adopted.

Both decisions (adoption and strategies) are made based on cost analysis for spare parts in a broader supply chain.

TABLE OF CONTENTS

LI	LIST OF TABLES iii		
LI	LIST OF FIGURES iv		
1	INTR	ODUCTION1	
	1.1	ADDITIVE MANUFACTURING FOR SPARE PART SUPPLY1	
	1.2	PROBLEM STATEMENT	
	1.3	RESEARCH OBJECTIVES4	
	1.4	RESEARCH CONTRIBUTIONS	
	1.5	OUTLINE	
2	LITE	RATURE REVIEW7	
	2.1	OPPORTUNITY FOR ISOLATED SYSTEMS AND REMOTE PRODUCTION CONTROL	
	2.2	MANUFACTURING USING AM TECHNOLOGIES12	
	2.2.1	ADVANTAGES AND POSSIBILITIES15	
	2.2.2	LIMITATIONS AND CHALLENGES	
	2.3	FURTHER PROCEEDING	
3	SIMU	JLATION OF SPARE PARTS ON DEMAND22	
	3.1	UNDERSTANDING THE SYSTEM	
	3.2	ESTABLISHING CLEAR GOALS	
	3.3	FORMULATION OF MODEL REPRESENTATION	
	3.4	TRANSLATION TO MODELING SOFTWARE	
	3.4.1	CREATION OF PARTS AND ROUTING	

	3.4.2	WAREHOUSE ROUTE	38
	3.4.3	AM ROUTE ARRIVAL AND QUEUEING	47
	3.4.4	BUILDING VOLUME COUNTER	51
	3.4.5	PRODUCTION SETUP	53
	3.4.6	AM PROCESS SIMULATION	57
	3.4.7	OVERVIEW OF RESULTS	63
3	.5	VERIFICATION OF THE SIMULATION MODEL	70
3	.6 .	VALIDATION OF THE SIMULATION MODEL	70
4	SIMU	LATION EXPERIMENTS	71
4	.1	PARAMETER OVERVIEW	74
4	.2 1	NUMBER OF REPLICATIONS	79
4	.3 9	SELECTED SPARE PART SET	82
5	BASE	CASE SIMULATION	91
5	.1	MODEL ADJUSTMENT	91
5	.2 1	PROCEEDING	94
5	.3	RESULTS AND FINDINGS	95
6	TECHI	NICAL INVESTIGATIONS	100
6	.1	BUILDING SPACE VOLUME	100
	6.1.1	RESULTS AND DISCUSSION	101
6	.2 1	BUILDING SPEED	103
	6.2.1	RESULTS AND DISCUSSION	104
6	.3	MATERIAL PRICE	111
	6.3.1	RESULTS AND DISCUSSION	112
6	.4 1	MACHINE PURCHASE PRICE	115
	6.4.1	RESULTS AND DISCUSSION	116

	6.5	COOL DOWN TIME	119
	6.5.1	RESULTS AND DISCUSSION	120
7	ADD	ITIVE STRATEGY INVESTIGATION	127
	7.1	TWO MACHINES WITH FIXED MATERIAL ASSIGNMENTS	131
	7.1.1	MODEL ADJUSTMENTS	131
	7.1.2	RESULTS AND DISCUSSION	134
	7.2	TWO MACHINES WITH FLEXIBLE MATERIAL ASSIGNMENT	141
	7.2.1	MODEL ADJUSTMENT	141
	7.2.2	RESULTS AND DISCUSSION	146
	7.2.3	3 THREE MACHINES WITH FIXED MATERIAL ASSIGNMENT	152
	7.2.4	MODEL ADJUSTMENT	152
	7.2.5	RESULTS AND DISCUSSION	153
	7.3	THREE MACHINES WITH FLEXIBEL MATERIAL ASSIGNMENT	158
	7.3.1	MODEL ADJUSTMENT	158
	7.3.2	RESULTS AND DISCUSSION	161
	7.4	PART SIZE DISTRIBUTION	168
	7.4.1	MODEL ADJUSTMENT	168
	7.4.2	PROCEEDING	170
	7.4.3	RESULTS AND DISCUSSION	172
8	SUM	IMARY OF FINDINGS	178
	8.1	COMPARISON OF TOTAL AM COST	187
	8.2	ADDITIONAL DISCUSSION	190
	8.2.1	AM SPARE PART STRATEGY ANALYSIS FOR CASE STUDY	190
	8.2.2	2 INFLUENCE OF CO2 EMISSIONS	193
	8.3	SPARE PARTS ON DEMAND – A SIMULATION BASED FRAMEWORK	195
	8.4	FACTORS FOR EVALUATION	198

8.5	ADJUSTMENT OF DISTRIBUTION OF SPARE PARTS PROCUREMENT	199
9 COI	NCLUSION	201
REFEREN	CES	201
APPEND	Х	220
CURRICU		258

LIST OF TABLES

Table 3-1: Assignment of attributes to part at "Part parameter request 1" assignment module 34
Table 3-2: Calculation of consumption and cost 65
Table 3-3: Changeable parameter
Table 4-1: Overview of experiments 71
Table 4-2: Overview of all simulation parameters
Table 4-3: Effects of the number of replications 81
Table 4-4: Spare part parameter set
Table 4-5: Extract of machine data of Eosint M 280 (400 Watt Laser) 84
Table 4-6: Logical combinations (first 7 of 81)
Table 4-7: Spare parts with sorted probability (first 9 of 81)
Table 4-8: Paired comparison 87
Table 4-9: Priority calculation
Table 4-10: Spare part types for simulation
Table 5-1: Results of upper limit search
Table 6-1: Results for building space increase 101
Table 6-2: Results of building speed variation 104
Table 6-3: Results of material price variation
Table 6-4: Results of machine purchase price variation 116
Table 6-5: Results of depreciation time variation
Table 6-6: Results of cool down time variation

Table 7-1: Results of two machines with fixed material assignment- Upper limit No-waiting/
Waiting
Table 7-2: Machine assignment and material changeover logic
Table 7-3: Two machines with flexible material assignment - Upper limit No waiting/ Waiting
Table 7-4: Three machines with fixed material - Upper limit No waiting/ Waiting 153
Table 7-5: Machine assignment and material changeover logic – three machines
Table 7-6: Three machines with flexible material assignment - Upper limit No waiting/ Waiting
Table 7-7: Selected variations of part size distributions 171
Table 7-8: Upper limit results of spare part size variation - No waiting and waiting
Table 7-9: Possibility of simultaneous production 175
Table 8-1: Discussion of base case simulation 179
Table 8-2: Discussion of AM strategy investigations 180
Table 8-3: Comparison of different strategies – Upper limit – No waiting
Table 8-4: Comparison of different strategies – Upper limit – Waiting
Table 8-5: Comparison of different strategies – Preheat and cool down – No waiting
Table 8-6: Comparison of different strategies – Preheat and cool down – Waiting
Table 8-7: Comparison of different part size setups - No waiting
Table 8-8: Comparison of different part size setups - Waiting
Table 8-9: Overview of different strategies - Upper limit search - No waiting
Table 8-10: Consumption profile of spare part set
Table 8-11: AM parts out using two, three or the base case strategy with flexible material 192
Table 8-12: Non-required part on stock 194
Table 9-1: Results of two machines with fixed material - Upper limit - No waiting
Table 9-2: Results of two machines with fixed material - Upper limit - Waiting

Table 9-3: Results of two machines with fixed material - Preheat and cool down - No waiting 233
Table 9-4: Results of two machines with fixed material - Preheat and cool down - Waiting 234
Table 9-5: Results of two machines with fixed material - Start volume - Waiting
Table 9-6: Results of two machines with fixed material - Elapse time - Waiting
Table 9-7: Results of two machines with flexible material - Upper limit - No waiting
Table 9-8: Results of two machines with flexible material - Upper limit - Waiting
Table 9-9: Results of two machines with flexible material - Preheat and cool down - No waiting
Table 9-10: Results of two machines with flexible material - Preheat and cool down - Waiting 238
Table 9-11: Results of two machines with flexible material - Start volume - Waiting
Table 9-12: Results of two machines with flexible material - Elapse time - Waiting
Table 9-13: Results of two machines with flexible material - Change over time - Waiting 240
Table 9-14: Results of two machines with flexible material - Change over time - No waiting 241
Table 9-15: Results of three machines with fixed material - Upper limit - No waiting
Table 9-16: Results of three machines with fixed material - Upper limit - Waiting
Table 9-17: Results of three machines with fixed material – Preheat and cool down - No waiting
Table 9-18: Results of three machines with fixed material – Preheat and cool down - Waiting. 244
Table 9-19: Results of three machines with fixed material – Start volume - Waiting
Table 9-20: Results of three machines with fixed material – Elapse time - Waiting
Table 9-21: Results of three machines with flexible material - Upper limit - No waiting
Table 9-22: Results of three machines with flexible material - Upper limit - Waiting
Table 9-23: Results of three machines with flexible material – Preheat and cool down - No
waiting
Table 9-24: Results of three machines with flexible material – Preheat and cool down - Waiting

Table 9-25: Results of three machines with flexible material – Start volume - Waiting
Table 9-26: Results of three machines with flexible material – Elapse time - Waiting
Table 9-27: Results of three machines with flexible material – Material changeover time -
Waiting
Table 9-28: Results of three machines with flexible material – Material changeover time – No
waiting
Table 9-29: Results of part size simulations - Upper limit - No waiting
Table 9-30: Results of part size simulations - Upper limit - Waiting
Table 9-31: Results of part size simulations - Upper limit summary - No waiting
Table 9-32: Results of part size simulations - Upper limit summary - Waiting

LIST OF FIGURES

Figure 2-1: Comparison of time distribution for various strategies of spare parts procurement
(Pérès & Noyes, 2006)
Figure 3-1: Process of AM vs. warehousing
Figure 3-2: Full view of the simulation model
Figure 3-3: Run setup
Figure 3-4: Creation of parts and routing
Figure 3-5: Creation of spare part request and attribute assignment
Figure 3-6: Request receptionist
Figure 3-7: Duplicate part requests and route to warehouse route
Figure 3-8: Rename entities
Figure 3-9: Warehouse route station, split up and path for Part request 1
Figure 3-10: Check if number of parts on stock is ok
Figure 3-11: Ordering new batch of parts
Figure 3-12: Check for penalty and adding it
Figure 3-13: Graphical display of Part 1 on stock and Part 1 Penalty (after simulation run)42
Figure 3-14: Process module - Retrieve part 1
Figure 3-15: Warehouse data update
Figure 3-16: Updating total warehouse parameter
Figure 3-17: Results of the warehousing route
Figure 3-18: Queuing logic and arrival in AM route
Figure 3-19: Check if AM machine is idle

Figure 3-20: Queuing logic	49
Figure 3-21: Logic for filling the building space	51
Figure 3-22: Countdown build volume	52
Figure 3-23: Production setup logic	53
Figure 3-24: Production time assignment	53
Figure 3-25: Part setup time	54
Figure 3-26: AM machine setup	55
Figure 3-27: Production logic	57
Figure 3-28: AM Process	58
Figure 3-29: Hold for finished parts in building space	58
Figure 3-30: Cool down process	59
Figure 3-31: Average batch building volume	60
Figure 3-32: Reset of variables and attributes	61
Figure 3-33: Signals for new production run and rework	63
Figure 3-34: Final calculations	64
Figure 3-35: Check for penalty	64
Figure 3-36: Calculation of consumption and cost	65
Figure 3-37: Sample results	67
Figure 4-1: Illustrative sample of warehouse data	82
Figure 4-2: Probability of spare part to be requested	86
Figure 5-1: Changes in replication parameters	93
Figure 5-2: Changes in create module	94
Figure 5-3: Verification of half width	94
Figure 5-4: Upper limit search	97
Figure 5-5: Correlation between machine utilization and queuing	99
Figure 6-1: Building space volume vs. AM and warehousing cost	101

Figure 6-2: Building speed and upper limit search
Figure 6-3: Building speed and upper limit search - details
Figure 6-4: Cost compared to building material price
Figure 6-5: Machine depreciation vs. purchase price
Figure 6-6: Years of depreciation vs. machine depreciation
Figure 6-7: Cool down time variation
Figure 6-8: Cool down time variation - detail
Figure 7-1: Adjusted AM rout arrival and queueing logic 131
Figure 7-2: Material assignment
Figure 7-3: Modification of queueing logic
Figure 7-4: Changes in building volume counter logic
Figure 7-5: Two machines with fixed material - Upper limit search - No waiting
Figure 7-6: Two machines with fixed material - Upper limit search - Waiting
Figure 7-7: Two machines with fixed material - Setup & cool down time - No waiting 137
Figure 7-8: Two machines with fixed material - Setup & cool down time – Waiting 138
Figure 7-9: Two machines with fixed material - Start volume - Waiting
Figure 7-10: Two machines with fixed material – Elapse time – Waiting
Figure 7-11: Adjusted AM route arrival and queueing logic
Figure 7-12: Check for idle machine
Figure 7-13: Machine states follow up by part attributes
Figure 7-14: Machine assignment and material changeover logic 143
Figure 7-15: Two machines with flexible material - Upper limit search - No waiting 147
Figure 7-16: Two machines with flexible material - Upper limit search - Waiting 148
Figure 7-17: Two machines with flexible material – Preheat and cool down – No waiting 149
Figure 7-18: Two machines with flexible material – Preheat and cool down – Waiting 149
Figure 7-19: Two machines with flexible material – Material change over time – Waiting 150

Figure 7-20: Two machines with flexible material – Material change over time – No waiting 150
Figure 7-21: Two machines with flexible material – Start volume – Waiting 151
Figure 7-22: Two machines with flexible material – Elapse time – Waiting
Figure 7-23: Main adjustment of the model 152
Figure 7-24: Three machines with fixed material - Upper limit search - No waiting 154
Figure 7-25: Three machines with fixed material - Upper limit search - Waiting
Figure 7-26: Three machines with fixed material – Preheat and cool down - No waiting 156
Figure 7-27: Three machines with fixed material – Preheat and cool down - Waiting 156
Figure 7-28: Three machines with fixed material – Start volume - Waiting 157
Figure 7-29: Three machines with fixed material – Elapse time – Waiting 157
Figure 7-30: Adjusted AM route arrival and queueing logic
Figure 7-31: Machine assignment and material changeover logic – three machines
Figure 7-32: Three machines with flexible material - Upper limit search - No waiting 162
Figure 7-33: Three machines with flexible material - Upper limit search - Waiting 163
Figure 7-34: Three machines with flexible material - Material change over time - Waiting 164
Figure 7-35: Three machines with flexible material - Start volume - No waiting
Figure 7-36: Three machines with flexible material - Preheat and cool down - No waiting 165
Figure 7-37: Three machines with flexible material – Preheat and cool down - Waiting 166
Figure 7-38: Three machines with flexible material - Start volume - Waiting 166
Figure 7-39: Three machines with flexible material - Elapse time - Waiting
Figure 7-40: Adjusted AM rout arrival and queueing logic 168
Figure 7-41: New part size assignment169
Figure 7-42: Check for allowed time to manufacture
Figure 7-43: Results of part size simulations - Upper limit – No waiting 172
Figure 7-44: Results of part size simulations - Upper limit – Waiting 172
Figure 8-1: Strategy comparison

Figure 8-2: Strategy comparison - detail	189
Figure 8-3: Spare parts on demand - a simulation based framework	197
Figure 8-4. Comparison of time distribution for various strategies of spare parts procurement	t
(Pérès & Noyes, 2006) – Waiting time added	200
Figure 9-1: Graphical display of connected Arena modules	222
Figure 9-2: Create module	223
Figure 9-3: Assign module	224
Figure 9-4: Process module and queue	225
Figure 9-5: Decide module	226
Figure 9-6: Separate module	226
Figure 9-7: Hold module	227
Figure 9-8: Signal module	228
Figure 9-9: Route and Station module	228
Figure 9-10: Dispose module	229
Figure 9-11: Data modules	229
Figure 9-12: Run setup	230

1 INTRODUCTION

1.1 ADDITIVE MANUFACTURING FOR SPARE PART SUPPLY

Additive manufacturing is a relatively new discipline with a wide range of research opportunities. This thesis explores the application of Additive Manufacturing (AM) in the context of Rapid Manufacturing (RM). It is of special interest which potentials are provided by AM technologies to influence spare part stocks in an industrial environment. This thought can be taken further to isolated environments, meaning that the spare part supply is not possible by a supplier in an optimal way. Examples for application can reach from using AM for the spare part supply on an air craft carrier, space or arctic missions and in ordinary workshops which need to store simple parts due to a geographical, temporary or logistical isolation. A practical example can be an automotive supplier. Nowadays they need to store the spare parts, and/ or special tools, to react fast to an uncertain demand over an undefined period of time. This strongly affects the supply strategy and leads to economical drawbacks. Producing spare parts on demand by using AM is a good option to avoid high inventory and the related drawbacks. In comparison to ordinary part manufacturing, where relatively long lead times are common, spare part production on demand has strong restrictions with respect to delivery time of the parts. If a faulty part needs to be replaced and delivery or the replacement takes too long, this might lead to significant production losses and therefore high penalties. Due to this, "spare parts on demand" needs to be a wellconsidered concept, especially with respect to the application and performance of AM.

AM is a new form of manufacturing technology, which could have the potential to replace several manufacturing technologies and produce parts directly. When the requirements for a cost efficient manufacturing process can be met, AM technology can be a viable option for an improved supply of spare parts in industrial environments. According to Holmström et al (2010) "Further research is needed to develop conceptually the development of AM in the spare parts supply chain. However, the greatest challenge for research is empirical research. Field research and case research is needed to describe actual solution designs considered by different OEMs¹, as well as collecting empirical evidence on the effects and challenges of introducing AM in the spare parts supply chain" (Holmström, Partanen, Tuomi, & Walter, 2010)

To date, it is not common to integrate AM into the spare part supply chain. This is due to the unawareness of potential users, the ongoing development of the technology, and missing field experience of application. To contribute to the field of AM, this work will gain knowledge about the impact of AM to the spare part supply chain. In particular, we propose a cost evaluation framework that enables managers to decide is using AM to make spare parts is cost effective. The most instrumental to the proposed decision framework is a simulation model that helps to systematically evaluate and verify the performance of AM in the spare part supply chain. The simulation allows the change of parameters in a given set of conditions and foresees the effects on the performance. The goal is to execute fundamental research by simulating with the key parameters building space volume, building speed, machine purchase price, material cost and several production strategies in order to execute sensitivity analysis. Once validated, this model will allow to make predictions from a logistic and strategic perspective of including AM into the spare part supply, and therefore support decision making based on the understanding of spare part supply system characteristics.

¹ Original equipment manufacturers

1.2 PROBLEM STATEMENT

Today not much is known about the performance of AM machines in the spare part supply chain. Several authors worked on the development of strategies for spare part selection, maintenance and warehousing strategies. These studies are highly specific, depending on the particular parts being studied and the associated companies. In a more general setting, it is not yet clear how AM contributes to the spare part supply chain. This study intends to fill this gap.

The limited literature on simulation models for AM (for example Holmström et al (2010)) only address the economic effects of implementing AM for spare part supply. They do not allow for direct changes of performance parameters of the AM machines. In our view, it is essential to have the ability to change system parameters or technology to verify system behavior in several setups and gain fundamental knowledge. Given the fact that a variety of AM systems exist, practical testing is nearly impossible, especially in regards to their effects on the supply chain. Thus, it is necessary to develop a simulation model that enables simulation of realistic spare part scenarios, and to evaluate and verify the performance of AM for improvement of spare part supply.

1.3 RESEARCH OBJECTIVES

The objective of this work is to emphasize the establishment of understanding to the potential impact of additive manufacturing on the spare part supply strategy. Simulation is the selected tool that allows to compare different setups and strategies of using AM for spare part supply. The simulation model itself is meant as a framework, which will verify and gain fundamental knowledge. That is an important approach for the decision-making processes and supports evaluation of different AM strategies or setups. Strategies and setups will include specific spare part parameters such as geometric dimensions, material, or time to delivery² and machine specific parameters are used to evaluate changes in the supply strategy and/ or in the AM technology. Through this model the total cost generated by using AM spare part supply can be compared directly to other supply chain strategies such as classic warehousing strategies. The model is intended to be general and capable of being adapted to different applications.

The first step for reaching the defined goal is to execute a literature review on existing models and a summary of the findings. The second step is to develop a simulation model using Arena. The simulation model for spare parts on demand will be able to simulate the AM process for a given set of spare parts, taking into account technical and economic factors. One of the results will also be a comparison between classic warehousing and the abilities of AM. This could mean to compare warehousing cost to the total part cost when using AM. The third step calculates relevant scenarios with different parameters and machine setups. Scenarios reach from evaluation of upcoming trends in AM (for example increasing building space) to simple spare part strategy changes and the effect on the total AM cost. Lastly, results are compared, analyzed and documented.

² Time until the spare part must to be available to avoid further negative consequences.

1.4 RESEARCH CONTRIBUTIONS

Integrating new technologies into industrial environments bears certain technical and economic risks. Therefore AM requires careful evaluation before it can be applied. For this reason, it is important that realistic scenarios can be simulated to ensure that targets can be reached. In general, this work is an extension to the work by Pérès and Noyes (2006) or Holmström et al (2010). Pérès and Noyes focus on the strategies for spare part selection on a qualitative level and Holmström et al on the simulation issue, in regards to specific make-or-buy decisions.

As contribution to the body of knowledge, a simulation model is applied, representing a framework, which will verify and gain fundamental knowledge about the characteristics of the AM spare part on-demand supply strategies. A rigorous and quantitative approach is important for decision-making processes and to support evaluation of different AM strategies or setups on an economic and technical basis. The model can be applied for flexible spare part sets and it is variable-based to allow for a quick change in the parameter set according to the topic of interest. These changes can be done for warehousing strategies (for example lead times, EOQ), spare parts (for example material, built volume, priority) and AM (for example building speed, build volume). The ability to change parameter values enables optimization of process parameters and sensitivity analysis.

A similar model enabling such a level of detail was not found during literature review.

Application for the proposed work can be found in every area where spare parts or warehousing take part. As mentioned before, examples for application of the established model can range from using AM for the spare part supply on an air craft carrier, space missions to an ordinary workshop which needs to store simple parts due to geographic, temporary or logistical isolation, or other strategic reasons, for example form postponement. When the technology has matured to reach a

wider group of interested users, the ability to simulate properly is a strong support for the decision process if it is an option to supply spare parts by AM.

1.5 OUTLINE

The dissertation gives an overview of the existing work and presents the proceeding and findings of this work. The following chapters are structured as follows:

Chapter 2 - is a literature review on existing works for simulating spare parts on demand by AM.

Chapter 3 - introduces the procedure of applying a simulation model and presents the developed simulation model in detail. Planned experiments and tasks are described.

Chapter 4 - describes the planned experiments.

Chapter 5, 6 & 7 – describe adjustments of the applied simulation models, proceeding, results and findings of the technical investigations and additive strategy investigations.

Chapter 8 – summarizes findings of chapter 5, 6, and 7, contains further conclusions and presents a process description for simulation of spare parts by AM, important factors for evaluation and an option to fit the spare part stock to AM.

Chapter 9 – presents an overview of the application of spare parts on demand by AM, taking the latest findings into consideration.

Appendix - introduces the reader to Arena by describing basic components of Arena and contains all results calculated during simulation.

2 LITERATURE REVIEW

Several publications focus on production by AM and point out that it can have benefits compared to other common manufacturing techniques, especially with small lot sizes. This literature review will not focus on that issue, except of the work by Brody and Pureswaran (2013) or Simkin and Wang (2014), which can be seen as the initiating reports for this work, and which can also be adjusted to the spare part issue. It is of interest which activities were done for the use of AM in the spare part supply chain.

Brody and Pureswaran (2013) published a report which describes the combined impact of 3D manufacturing, intelligent robotics and open source electronics. They analyzed the bills of materials down to the part, modeled the manufacturing and the distribution of manufacturing over the planet, and applied a software defined supply chain. The model allowed changes to the requirements, scale, location, cost, etc.

The result is the assumption that a "reconfigured global supply chain will emerge in the coming decade. It will radically change the nature of manufacturing in the electronic industry, shifting global trade flows and altering the competitive landscape for both enterprise and policy makers." (Brody & Pureswaran, 2013) They found that cost savings can reach an average of 23 %, the economies of scale are reduced by 90 % and the CO₂ "supply chain" footprint has the potential to be reduced.

This report was the most complete model found during the review. In fact, it is mind opening but does not allow a direct view on the spare part problem, since it focuses on the supply chain and the impact of new technologies on it. The further proceeding is adapted to the spare parts on

demand issue described previously. The proceeding and results of this work can be used as input for further studies in this field.

In 2014 Simkin and Wang presented a cost-benefit analyses for final produced parts. In general they analyze if "just because a part can be produced using AM does not necessarily mean that it should be" (Simkin & Wang, 2014). They apply a cost-benefit analysis for a specific part and simulate the effects of changes in the AM parameter setup on this specific case on a cost basis, which is similar to what is presented in this work. But again the main focus is on regular production and the related cost. Specific issues related to spare parts are not taken into consideration.

Not many researchers did research on the application on AM in the spare part supply, but several articles were found by two researchers in cooperation with other scientists.

Pérès and Noyes (2006) present an interesting article "Making spare parts on demand in situ and on demand - State of the art and guidelines for further developments" (Pérès & Noyes, 2006). They focus on isolated systems and how AM can influence the spare part supply situation. They describe several isolated situations and present a comparison of time distribution for various strategies of spare part procurement. The comparison of the strategies is qualitative and compares classical maintenance (spare parts on stock), classical maintenance (no spare parts on stock), and rapid spare part manufacturing. Basically, it has demonstrated that order-, waiting time, and reception in a classic supply system can be significantly reduced by application of AM. Also examples of testing AM technology for use in space missions or the concept of the mobile part hospital, used by military in geographically isolated situations, is presented. Based on their experience they propose several fields where research is valuable. To sum these points up, research is required to check for the applicability of AM in the spare part supply chain.

8

The basic assumptions of Pérès and Noyes (2006) are comparable to industrial situations, since time and cost aspects are the same for industry.

Holmström et al (2010) work on the concept of including AM into the spare part supply chain. They compare distributed and centralized AM to replace inventory holding and conventional distribution. They present an example of deployment of distributed AM in the aircraft spare parts supply chain, where significant reductions in holding cost with an improved service level were achieved. They conclude that centralized AM by specialized service providers will show the biggest benefits at the current state. However, this will change to decentralized AM when the technology matures to a better state. This means a movement of the AM technology closer to the point of use. Also this article recommends further research to find possible applications of AM and the setup in the supply chain.

Other work by Hasan and Rennie or Peng et al (2013) strongly refer to the work of Holmström and extend the issue to the effects of AM to the supply chain for specific cases. Peng et al (2013) apply the Supply Chain Operations Reference Model (SCOR) for the aircraft spare part supply chain, and they conclude that AM is contributing to improvements.

General research for common industrial situations is missing, especially how AM centers perform in a decentralized setup.

2.1 OPPORTUNITY FOR ISOLATED SYSTEMS AND REMOTE PRODUCTION CONTROL

Next to applied maintenance, warehousing and supply strategies in industry such as spare part analysis, outsourcing, postponement and relocating the decoupling point, AM also gives the option to work in isolated systems and remote controlled.

The supply and warhousing issue is more complicated when the facility or any other system is isolated. To illustrate this issue, more information and definitions about isolated systems and supply strategies follow.

Pérès and Noyes (2006) describe the following isolated systems:

Geographically isolated - When accessibility is difficult because of lack of communication (polar regions, high mountains, thick forest, etc.), the nature of the environment (air, sea, space, ...) or possible on-site risks (for example battle fields, epidemiological areas).

Logistically isolated - Whenever external conditions govern the supply operations (Pérès F., Grenouilleau, Housseini, & Martin, 2002).

Temporarily isolated - One example is the system that dependents on elements likely to disappear at the end of a given period of time (for example closure of production lines for profitability reasons).

Having an isolated system, with respect to spare parts, might result in having every part available as a spare part at any given time to maintain a continuous operation. For as long as the stock of spare parts allows such conditions this might be a solution. However, in practice this is not a realistic scenario, since it is an expensive solution. It gets even more difficult when the system becomes complex or big and consists of a large number of parts. It may also be impossible to provide such a stock, due to lack of room or economic reasons. Pérès et al (2002) question how to handle the problem of choosing the wrong spare parts or the wrong number of spare parts when having an isolated system, since both can lead to a serious impact on performance and budget. For example elements with a limited life time are easy to maintain (for example filters), but it gets more difficult when unexpected spares are needed.

In contribution to solve the problems of isolated systems a special option arose up during development of information technology and machines using CAD data for processing. Holmström et al (2010) comments that "the introduction of information technology has a potentially revolutionizing effect on the provision of spare parts" (Kennedy, Patterson, & Fredendall, 2002). Tay et al (2001) underline that AM-technologies can be used in a remote controlled way. Remote controled part preparation becomes possible because CAD or machine specific information like maximum use of building space, can be transfered through adapted networks. Also monitoring the process itself is possible, by installation of for example a camera. Merely the pre- and post-processing dependends on skilled operators until a specific technology is developed to cover these tasks as well. According to Tay et al (2001) especially the use of the internet can bypass logistical problems if the user/initiator and the physical hardware are separated. One of the aspects is the use for AM, where service providers can benefit in their low volume manufacturing by utilizing their AM-machines by pooling jobs. As a consequence, a remote access to manufacturing in geographically isolated areas becomes possible. In general, this principle is applicable for all AM-technologies. The link to temporary isolated systems is simple too, since CAD data is easy to store and can last as long as the data-storage is available. To mention another point, Holmström et al (2010) state that using information technology in combination with AM is a strong argument for using 3D design tools to produce seldom used spare parts to order with various manufacturing technologies such as CNC or AM. Also the logistical isolation is improved as long as the material for manufacturing is available, since new designs can be transferred "online".

2.2 MANUFACTURING USING AM TECHNOLOGIES

As stated previously, AM experienced new developments regarding new technologies and applications. Rapid Manufacturing is based on the same technology basis and has therefore also been developed further (Gebhardt, 2007). To use the AM technology in operative applications, a certain quality, which is equivalent to requirements for the specific element, is necessary at a competitive cost level. Smith P.G. (1999) discussed that product development projects typically balance four objectives to achieve the biggest benefit with applicable technologies. These can also be applied for the spare part issue:

- Performance objective The product should satisfy the features and performance levels of the product specification.
- 2. Cost objective Meet the cost target for the resulting production.
- 3. Expense objective Run the development project in a certain budget.
- 4. Schedule objective Run the project in a given time frame.

Pérès and Noyes (2006) take the thought of spare parts on demand even further, which means thinking about spare part manufacturing on request in a short time. Usually companies keep many required spare parts on stock to reach a maximum of availability of spares. As discussed before, the drawback of this strategy is the related cost and that it may not be possible to meet the required targets with this stock. The situation becomes more difficult at the point when a complex system can be defined as a geographically or temporarily isolated system. This combination of isolated and complex system can lead to a high stock volume, which will result in higher cost and, depending on the case, a lack of room or increased warehousing cost.

Zäh (2006) and several other authors state that AM can have a great impact on the spare part stocks. The simplicity is given by manufacturing highly complex geometries by pushing a button at the moment the item is available as a 3D-CAD model. Depending on the specific part and used

technology, it is possible to work cost efficiently with a lot size of one. Having the opportunity to manufacture complex parts with small lot sizes opens up the chance to reduce stock size to a minimum and replace several steps in the supply chain of spare parts (Pérès & Noyes, 2006). It might be sufficient to store a 3D-CAD file and reproducing the needed part on demand, which will change the storage of parts to a storage of data, which is more economic than storing parts physically over many years.

Pérès and Noyes (2006) show a good theoretical illustration using RM technologies to improve the maintenance level in temporary isolated situations. Figure 2-1 shows the comparison between "classical maintenance strategies with and without spare parts in stock and the strategy based on the rapid spare parts manufacturing concept", which can be an advantage in specific cases. Smith and Reinertsen (1998) addresses the topic of time compression and time saving opportunities.

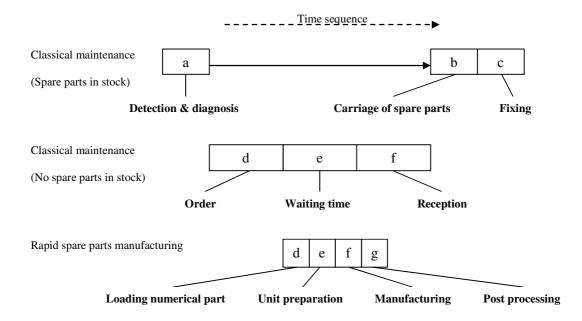


Figure 2-1: Comparison of time distribution for various strategies of spare parts procurement (Pérès & Noyes, 2006)

As can be seen, Figure 2-1 does not include time information. It is only a qualitative overview about the idea of the supply concepts, but it is important since it shows the lack of research at this point to show potentials. Pérès and Durand (2002) filled in that lack of information by calculating the required time to maintain a space station sub-system, but this is not valid for a typical industrial environment on earth. To reach more information on this topic, research is necessary in this area.

It must be stated that other manufacturing technologies exist. However, basically traditional manufacturing technologies such as CNC are a standard in manufacturing and will not be further discussed here, since information is widely available. The use of AM technologies is new because "Producing functional parts is the evolution of layer manufacturing." (Atzeni, Iuliano, Minetola, & Salmi, 2010). When AM machines are able to deliver sufficient part properties, "product performance through the synthesis of shapes, sizes, hierarchical structures, and material compositions, subject to the capabilities of AM technologies" (Gibson, Rosen, & Stucker, 2010) can be maximized.

2.2.1 ADVANTAGES AND POSSIBILITIES

When AM technology matures to the point that it can be easily used for manufacturing it will have advantages to traditional manufacturing. Especially with respect to isolated systems Pérès and Noyes (2006) list several strong reasons for the use of AM technologies in supply issues:

- "Due to their nature, these technologies are fast and can be adapted to the reactivity need inherent in the resumption of the operation of the system by replacing a faulty component.
- They are also self-sufficient in so far nearly no intermediary operation takes place between the digital file making and the part making.
- Once the manufacture is launched, no operator has to supervise the work in progress.
- They make it possible to achieve excellent identical parts because of the automated process.³
- In some cases they can be multi-purpose and can be used to work out parts made of various materials (plastics, metal, ceramics, ...)
- Most of them need only raw materials from which several articles will be made irrespectively of their functionality.
- Implementation of these technologies does usually not require bulky machines for which large floor room is necessary, but portable ones." (Pérès & Noyes, 2006)

Also Holmström et al (2010) contribute by mentioning that AM is an alternative to classical concepts to "reduce supply chain cost while at the same time improving service". They add the following arguments:

³ Precisely duplicating means having a reusable CAD-dataset to be used for manufacturing. (Gibson, Rosen, & Stucker, 2010)

- "No tooling is needed significantly reducing production ramp-up time and expense.
- Small production batches are feasible and economical.
- Possibility to quickly change design.⁴
- Allows products to be optimized for function (for example optimized cooling channels).
- Allows economical customized products (batch of one).
- Possibility to reduce waste.
- Potential for simpler supply chains, shorter lead times, lower inventories.
- Design customization." (Holmström, Partanen, Tuomi, & Walter, 2010)

Another advantage is that non-identical parts can be produced in one production run, as long as building space allows it (Hopkinson & Dickens, 2001), which further supports the ability of mass customization (Atzeni, Iuliano, Minetola, & Salmi, 2010). Dimitrov et al (2007) add that AM has the unique ability to produce highly complex parts quickly. Gibson et al (2010) state that CNC mainly differs in that it is primarily a subtractive rather than additive process, requiring a block of material that must be at least as big as the part which is to be made. This is a clear advantage of AM, since every shape can be formed out of a bag of powder.

Another interesting option for AM is the possibility of reverse engineering, which can also be used for remanufacturing. This is mentioned by Xing et al (2011), where used components are rebuild to a like-new condition. This addresses the field of reverse engineering, where used parts are acquired and available on demand to meet the needs of remanufacturing.

⁴ This becomes possible due to the use of CAD-datasets, and can support in-situ optimization or remote control. (Pérès & Noyes, 2006) It can be understood as electronic "spare parts". (Gibson, Rosen, & Stucker, 2010)

Reverse engineering is the term for the generation of 3D-data based on an existing part. To catch the geometry of the parts calipers and coordinate measurement devices are traditional methods for generating 3D-data, which can be substituted by modern technologies today. For example laser scanning based technology does not even require direct contact to the part. This can be important for fragile or sensitive parts⁵ (Zhang, Tsou, & Rosenberger, 2000). In general reverse engineering might be a solution in specific situations. Christensen and Bandyopadhyay (2000) present a general overview about the mainstream reverse systems.

Postponement is another important key-word for AM with future potential. The work of Yuen (2003) presents a framework to assist developers in choosing a good postponement strategy. The term postponement stands for a system where common platforms, components or modules are used, but the final assembly or customization does not occur until the final customer requirements are known. Van Hoek et al (1998) state that improvements in the area of postponement strategies have potential to improve distribution service quality and make companies more responsive to customers (and therefore the availability of spare parts). The point of postponement strategies is that risk and uncertainty costs can be reduced by the differentiation of goods.

2.2.2 LIMITATIONS AND CHALLENGES

During literature review it became obvious that several general challenges exist in regards to the implimentation of RM in an industrial environment. Pérès and Noyes (2006) found that previous analysis, performed by Alström, did not include the use of AM techniques. This means that there

⁵ An example for a traditional method: "The traditional method for object reconstruction in paleontology is two-step process beginning with forming latex molds from fossils or specimens, and followed by creating epoxy cast of the object." (Zhang, Tsou, & Rosenberger, 2000)

is a lack of knowledge about the performance of AM in an industrialized environment, especially when it comes to spare parts.

According to Holmström et al (2010) another challenge is the limited part range, allowing an application only in specific situations.

Based on Neef et al (2005) the weaknesses can be categorized in seven bullet-points:

Speed - Even the fastest RM-machines cannot meet the speed of traditional machines. The success of AM is strongly dependent on a reduction of manufacturing time. Only when the total production cycle is taken into consideration, AM can show its potential (from design to the delivered product).

Quality - Quality is not at the same level as the quality produced by traditional machines. Postprocessing might be required to reach the acceptable quality level. But AM is continuously improving this issue and results equal to traditional products will be reached.

Object size - The current state of the art allows only a limited object size for common AM machines. As a rule of thumb, an increased size of an object increases the manufacturing time, which affects the use of AM significantly and may lead to ineffectiveness. The effect inverts when the size decreases, which may lead to an advantage of AM. But this advantage can be limited by a minimal wall thickness, dependent on the used process. Dimitrov et al (2007) contribute that it is possible to manufacture parts that are bigger than the space available in the AM-machine, by splitting the part into several parts that are to be assembled later on. This may affect the assembly time and therefore enlarges the manufacturing time.

Cost - To buy and maintain an AM machine is often not economic for a company. But it is expected that an increasing market will decrease the overall cost.

Material drawbacks - The scope of materials used for AM has not yet reached the scope of traditional manufacturing, so there are no equivalents for every case (mechanical, thermal or electrical properties). However, AM offers also new possibilities such as mixing different materials in one piece, variable properties of photopolymers or upcoming possibilities in Nanotechnology. Material research and development is a continuous process.

Legal issues - Main issue in the context of legal issues or intellectual property is the copy potential of parts that are available. This might lead to discussions about protecting the rights of the supplier of a specific technology, since the economic impact can be significant. At the moment, only weak protection systems are in use.

Internal difficulties and general skepticism - In addition to the mentioned points, no company will reorganize its manufacturing until noticeable benefits are certain to be the result. Established technologies complicate the implementation of AM as well. A good chance for AM is expected where highly customized products in very low quantities are required (for example customized ear plugs).

Pérès and Noyes (2006) identify other interesting issues. It is stated that today even the strongest AM technology is not ready to fulfill all the requirements of spare parts manufacturing, but good progress was made in the past years. This fact raises the question about what technology improvements are required to make AM technology a realistic option for making spare parts on demand in an industrialized environment.

Wohlers (1995) reports the biggest upcoming changes and improvements in the ratio price/ performance, material property, accuracy, software ("interface and process") and "technology enhancements (different technologies)". He further states that the properties most desired by industry are a reduced time for manufacturing functioning objects, a reduced process chain from initial design to the finished product and based on that a speed-up development process. This might be true for classical production companies, but it is not clarified whether it is also valid for spare parts.

Ruffo et al (2007) see that "there is a lack of work on the implementation of AM as a mainstream manufacturing process" (Ruffo, Tuck, & Hague, 2007). Hull et al (1995) tell about the "bad experience" of possible users. These users experienced an insufficient quality of their products with an earlier state of the art technology. They recommend a regular update about the technology to keep possible users informed, since AM is in a continuous improvement process. Atzeni et al (2010) see a challenge in the redesign for AM applications, since traditional manufacturing processes can be different compared to AM processes.

To sum up, following drawbacks exist for the implementation of AM in an industrial environment:

AM process performance - Process properties and possible object size are limited.

Limited scope of materials - The scope of materials, constant part quality and the material price are an ongoing issue.

Design - Parts need to be designed or redesigned for AM.

Management, organization and implementation - It is still difficult to get over general skepticism in industry.

Cost - It is expensive to buy and maintain an AM machine which is able to hold an industrial standard.

2.3 FURTHER PROCEEDING

As mentioned several times during review, further research is required. Unfortunately, not many practical applications are known. For this reason simulation seems to be an appropriate tool to estimate the behavior of AM machines when they are placed in a decentralized supply chain. The software which will be used to execute the simulation is Arena. This software is fully hierarchical and allows the user to setup simulations by use of a simple graphical interface. A short introduction into Arena can be found in the appendix, which gives readers who are not familiar with the software an overview about its concept and functionality.

It should be stated here that simulation is strongly dependent on available data, which requires an intense data collection to have a representative model. Due to the fact of unavailable practical data the input data will have to be estimated. Selection of the right interfaces of the model can allow for reduced required input, focusing on performance data. Regardless, simulation seems an appropriate tool, since it allows to measure system performance, effects of various inputs, or improved system setups as well as detailed analysis of a system. All of this can be done without the physical system, and allows to run experiments without inflicting harm on an actual system.

3 SIMULATION OF SPARE PARTS ON DEMAND

In order to define the problem an extended literature review was executed to define an appropriate problem which would be able to contribute to ongoing research activities. Over the course of several discussions it became clear that a simulation model, showing the performance of an AM machine, would be of biggest interest. This is in accordance with other manufacturing simulation approaches, where a variety of cases is simulated to evaluate performance of manufacturing. Often the goal of these simulations is "to develop a simulated workshop for designers to conceptual design work while taking into account manufacturing process information" (Xu, Zhao, & Baines, 2000). Other problems were decided to be of minor interest for the scope of this work, so it was possible to set clear boundaries for the research problem. The system and concept of the simulation will be discussed in the following chapters.

Kelton et. al (2010) present several aspects which are typical and important for a simulation study. They sum things up as a multi-step procedure to support the development of simulation studies. The steps of the procedure are to (1) understand the system, (2) be clear about goals, (3) formulate the model representation, (4) translate into modeling software, (5) verify the simulation model, (6) validate the model, (7) design the experiments, (8) run the experiments, (9) analyze the results, (10) get inside the results, (11) document what is done.

The proceeding is applied for the development of the simulation model.

3.1 UNDERSTANDING THE SYSTEM

Two points of interest were found in regards to spare parts on demand. One is to select the correct spare parts and the other is to test if the system will work in an acceptable range. Since the main interest of this work is to evaluate the performance of an AM machine, simulation was found promising in gaining results without having a real system to perform tests. To do so, the AM process with all of its parameters was analyzed to get a full picture of what happens when the AM machine is set in a spare part supply chain. It is important to mention that the model aims to be on a generic level and based on this allows to make predictions of future development. The further work will assume that the process of spare part selection was executed previously to deliver input for the simulation model.

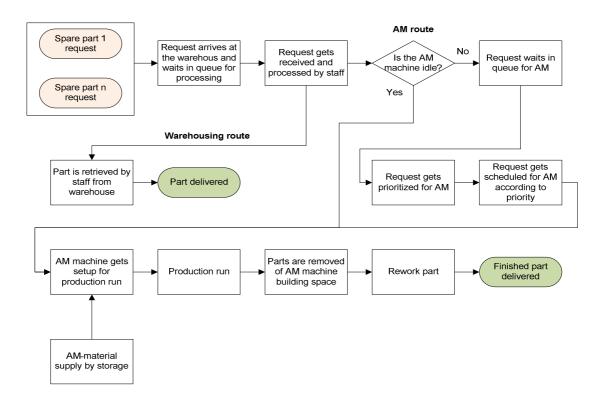


Figure 3-1: Process of AM vs. warehousing

In the following paragraphs the simulation model will be mapped out and explained in detail to help the understanding of the process. This will also define the scope of the simulation, which ranges from the arrival of a spare part request all the way to the final delivery of the requested item. Since the simulation model aims to compare the AM results with classical warehousing, so both will be included in the simulation. Accurate details will be included when the model is translated to Arena.

Spare part request - The process starts when a spare part is requested, which can be understood as order of a spare part. The request for the part can be based on various reasons. It can be based on a maintenance strategy or a random request for a part. For this work it will be assumed that it is possible for every requested part to be manufactured by AM. Furthermore it is assumed that all pre-work to allow AM has already been done. This means that engineering was done and the CAD data is available to run the AM process. In consequence all part information like material, geometric parameters, time to manufacture, priority or cost of unavailability are available.

Request waits in queue for processing - The request will arrive and has to wait until a member of staff can receive it. This time is based on the availability of the staff, following opening times or shifts. This is an important factor when spare parts must be available in a relatively narrow time window.

Request gets received and processed - When the staff is ready to receive the request it will be processed further, which contains a processing time for the request. At this point the process is split up. One route follows the warehousing route, the other one will follow the AM route. To enable the comparison between AM and warehousing parts both processes run in parallel. The warehouse route will be explained first.

Part retrieved by staff from warehouse - The staff picks the part from the warehouse and delivers the part directly. This often results in a relatively short processing time. The related cost and warehouse data are updated and available immediately when the part is delivered and leaves the system. A blink on Figure 3-1 allows to see that the process of warehousing follows a simpler process than AM. Since a wider scope of the model is assumed not to be beneficial for the results, the model is not more detailed for the warehousing route.

Check if AM machine is idle - The first step in the AM route is to check if the AM machine is idle. When the AM machine is idle the production can start immediately. If the machine is not idle the part has to wait in queue until the AM machine is idle.

Request waits in queue - When direct spare part supply by AM is the target, the AM process has longer processing times than warehousing, therefore queuing of the requests becomes a relevant issue and prioritization is necessary to have the right part available on time. The required lead time of parts can reach from several weeks, having to be available as soon as possible, or somewhere in-between. The time in queue is an important factor for the overall system performance.

Request gets prioritized for AM - The basic prioritization should already be predefined in the priority of the part when it enters the system. Prioritization in this case is a loop process, updating the priorities before each production run. It may happen that parts have to wait for several production runs due to their lower priority or that parts need to be produced immediately. This means that the prioritization needs to follow a logic that always updates the priority, setting up the most important parts for the next production run.

Request gets scheduled for production - Based on the latest priorities the production run is planned. This means that the building space is planned to be filled with parts until the volume is filled up. The batch is then ready for production.

AM machine setup for production run - Before a production run starts, the AM machine needs to be prepared by staff who will take the necessary actions such as for example preheating and assuring conditioning of the machine to fulfill the production run without failure.

AM material supply - The AM material is a consumable for the AM process. Material must be available during the whole process, in order to have a successful production run. Therefore storage of the material is important to keep the process running.

Production run - The production runs automatically and no further activities are needed during production. The production itself is dependent on the performance parameters of the AM machine. The best example for a performance parameter is the building speed, which has a strong influence on the production time. The production will run until the batched parts are finished.

Removal of parts from building space - The parts are removed by staff from the building space. Depending on the setup of the machine that might influence the proceeding. for example fixed building space compared to exchangeable building space. The removal of parts also includes maintenance actions such as cleaning the machine.

Rework of part - After production of the part it is possible that a part may need rework in order to reach the final quality. Parts which need rework will need some extra time before they are delivered, while parts that do not need rework, only cleaning, can be delivered directly. Cleaning is assumed to be a standard rework activity.

Both the AM and the warehousing solution, have benefits and draw backs. While AM is promising in reducing warehousing cost, problems might occur when spare parts are not available on time due to the AM process time. On the other hand warehousing generates higher cost for parts which are used seldom, but parts are available immediately up on request. The simulation model is able to compare both, and makes it possible to compare both solutions on an economical basis and to find boundaries for a useful application of AM in the spare part supply chain, and to evaluate the impact of parameter changes.

3.2 ESTABLISHING CLEAR GOALS

Having defined the targets for the simulation model, we now discuss which method will produce realistic results to meet the targets.

- A simulation model is to be developed, representing reality as close as possible. The model should be verified to have trust in the results and variations in the performance parameter. However, a validation will not be possible, due to a missing real system.
- 2. A realistic base case is to be set up. This means integrating a spare part request, staff and AM performance parameters, warehousing cost, and other assumptions on a realistic level. If real information is available, it is used. Examples for assumptions are spare part requests or warehousing costs. Defined parameters are available for the AM machines or materials.
- 3. Communicate the base case and set up alternative scenarios for further evaluation and execute experiments manipulating the parameters of interest. At the current state the machine parameters building space, building speed and material cost are of major interest, such as several production strategies.

A variety of actions have been considered in achieving the above scope. The overall goal is to make the effect of changes in the performance parameter set visible. Simulation will support decisions in the development of AM machines, especially focusing on the application of AM in the spare part supply chain.

3.3 FORMULATION OF MODEL REPRESENTATION

The model follows the described process. It seems most effective to follow the requests through the process and see what the effect is on the system and how fast parts can be delivered, which is important for spare parts.

The request generation can be assumed to be an easy task, since it follows probabilistic distributions which can be formulated easily. The arrival in the system and waiting for processing also does not need a lot of attention.

The process gets more complicated when parts are already in production and queuing occurs. The parts in the queue will need special attention with respect to prioritization. The model allows to bring the parts in an appropriate order for the next production run. The rules for prioritization will be described in detail in Chapter 3.4. Prioritization is essential for having the parts in time as often as possible. The prioritization should include the allowed time for manufacturing, processing time, time in queue, priority of the part, and the resulting place in the queue for the next production run. When the prioritization is clarified the rest of the process is a straight forward calculation of the results of interest.

For the calculation of the results and processing times the model needs a carful setup so that all important factors can be taken into account. A detailed description of this will be included in Section 3.4.

It is of major interest to have a flexible model that allows manipulating the arriving part requests and to exchange the AM machine type.

Since the model should result in a comparison of AM and warehousing in the spare part supply, the warehouse should be represented on a level of detail which allows an acceptable insight. It is decided that the stock values of a stock represent the basis to calculate the warehousing cost. It must be assured that changes in the stock are tracked. It is further assumed that the generated warehousing costs are directly related to the individual part and no further calculations are required. Also, the relevant warehouse data will be explained in Section 3.4.

The time frame for the model cannot be set without a given set of requested spare parts. Spare parts can be stocked for many years without being used once. Depending on the case, a spare part type can also have a daily turnover. Predictions of usage are not possible for every case. A practical solution to solve this issue is to stress the system with a spare part set and focus on the volume of the parts. To illustrate, the AM machine is able to supply spare parts with an average of 24 hours when the average requested build volume is 7000 cm³. With respect to the building cycles which can easily extent to over 8 hours, and bearing in mind that staff may work according in shifts or on fixed opening times, it is proposed to simulate over the course of one year. In this year planned and unplanned requests should occur with different states of priority. When real data is available, the request simulation and the time frame can be adjusted accordingly.

When real data becomes available, several information is of interest. It starts with the basic spare part information. For each part a description, unique ID, number on stock, material, value per part, usage statistics, associated storage cost, priority, geometric information, EOQ and the accepted time to delivery should be known. To gather this data it is likely that different sources will be used. The warehousing data is probably accessible in form of historical in-house data, observations, or other kinds of log books or lists. What will most likely not be included in the warehouse data is the priority and accepted time to delivery of each part. When warehousing, parts are typically available immediately and it is not necessary to define these attributes. The assignment of priorities and accepted time to deliver each part should be done as a group between the model developer and representatives of the organization interested in the topic. It might require an extensive work load and discussions to define the attributes for each part properly. Schedules for staff can be collected and included in the simulation model.

AM machine data is provided by suppliers of AM machines and is available. Websites or direct communication with the supplier is sufficient to find proper information.

Further details and proceedings were setup during the work and are described in the further text.

3.4 TRANSLATION TO MODELING SOFTWARE

After describing the model it needs to be translated to the modeling software. The used software is Arena, what allows a good graphical display of the model. This chapter describes in detail the setup and abilities of the model. Figure 3-2 shows the finished base model after a simulation run.

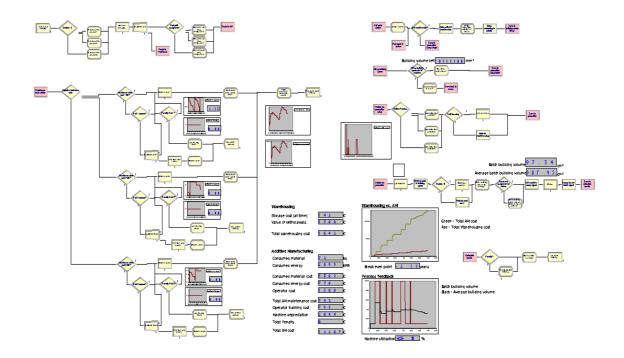


Figure 3-2: Full view of the simulation model

At this point the setup of the base model is explained in detail to keep a better overview about the different modules and sections of the model. After the general description of the simulation model the extensions to the full model will be described in later chapters.

This will include the issues selected spare part set, run times, replications of simulation runs and further model adjustments to meet the specific scenarios. During experiments several parameters or settings might be changed due to required adjustments. Changes of are documented when they are executed.

The model begins with at the run setup where initial model parameters are set. Figure 3-3 shows the used parameters in the run setup dialogue box. To reduce the standard deviation of the results, the model will run 150 times for each scenario. The model will have a warm up period of 720 hours (one month). This allows to start observing the system when it is in a steady state. The total run time for each replication will be 1440 hours (simulation over 2 month). Based on this, the replication length represents one month. The basic model assumes a 24/7 schedule, since the machine must produce whenever it is needed to meet the spare part requirements. The used base time unit is in hours through the whole model.

Replication Parameters Array Sizes Arena Visual Designer Number of Replications: Initialize Between Replications [150 Istatistics Start Date and Time: Sonntag 5. Oktober 2014 17:08:22 Warm-up Period: Time Units: 720 Hours Replication Length: 1440 Hours Hours	Run Speed	Run Con	trol	Reports	Project Parameters
Number of Heplications: 150 Start Date and Time: Sonntag , 5. Oktober 2014 17:08:22 Warm-up Period: Time Units: 720 Hours Replication Length: Time Units: 1440 Hours Hours Hours Hours Hours Hours Hours Hours	Replication Par	ameters	Ала	ay Sizes	Arena Visual Designer
Start Date and Time: Sonntag , 5. Oktober 2014 17:08:22 Warm-up Period: Time Units: 720 Hours Replication Length: Time Units: 1440 Hours	Number of Repl	ications:		Initialize Be	tween Replications
Sonntag , 5. Oktober 2014 17:08:22 Warm-up Period: Time Units: 720 Hours Replication Length: Time Units: 1440 Hours Hours Per Day: 24 Base Time Units: Hours	150	150 V Statistics V System			s 👽 System
Sonntag , 5. Oktober 2014 17:08:22 Warm-up Period: Time Units: 720 Hours Replication Length: Time Units: 1440 Hours Hours Per Day: 24 Base Time Units: Hours	Start Date and	Time			
Warm-up Period: Time Units: 720 Hours Replication Length: Time Units: 1440 Hours Hours Per Day: 24 Base Time Units: Hours			per 20	114 17:08:22	
720 Hours Replication Length: Time Units: 1440 Hours Hours Per Day: 24 Base Time Units: Hours	10				
Replication Length: Time Units: 1440 Hours Ver Day: 24 Base Time Units: Hours Ver Day:					•
Hours Per Day: 24 Hours Vinits: Hours Vinits:		ath:			•
Hours Per Day: 24 Base Time Units: Hours					
24 Base Time Units: Hours	Hours Per Dav				
Hours					
	Base Time Units	s:			
Terminating Condition:	Hours		•		
······································	Terminating Cor	ndition:			
OK Abbrechen Übernehmen Hilfe	_				

Figure 3-3: Run setup

3.4.1 CREATION OF PARTS AND ROUTING

Figure 3-4 shows the first section of the model where spare part requests are created, parameters assigned, parts are duplicated, routed to the warehouse and the AM machine for further processing.

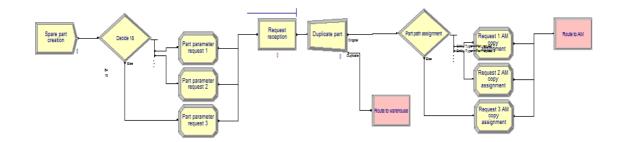


Figure 3-4: Creation of parts and routing

The model starts with a create module which generates all spare part requests. The time between arrivals is set to a uniform distribution with a minimum of 0.25 hrs and a maximum of 45 hrs. According to Kelton et al (2010) a uniform distribution should be used when only little is known about the present situation and provides a "worst case" setting. If more information should become available, it is possible to change this setting accordingly. The number of generated entities per arrival is one.

After an entity is created, it enters a decide module. The decide module is set to N-way by chance, which routes the arriving entities to the following assign modules, based on a percentage chance. The assign module assigns part specific attributes to each part request. The appendix holds an overview about all attributes and variables used in the model. Specifically, the following attributes are assigned in the "Part parameter request" module:

Name	Description	Unit
Building volume	Product of building height, width and length of the part.	mm ³
Building depth	Describes the building depth of the part.	mm
Building width	Describes the building width of the part.	mm
Bulding height	Describes the building height of the part.	mm
EOQ Part 1	Economic order quantity of part 1.	pcs
Material type	Material type assignment by use of integer number.	
Operator cost	Estimated cost of required operator for this part.	€/ pcs
Part value Part 1	Purchase price of part 1.	€/ pcs
Penalty	Receives the penalty value of each part for further calculation.	€/ pcs
Penalty Part 1	Penalty when part 1 is not delivered in time.	€/ pcs
Priority	Pre-assigned priority of part as production order basis.	
Reorder point part 1	Reorder point of part 1.	pcs

Table 3-1: Assignment of attributes to part at "Part parameter request 1" assignment module

Spare part creation 0	Decide 18 Else 44		Part parameter request 1 Part parameter request 2
Name: Spare part creation Time Between Arrivals Type: Exp	Entity Type: Entity 1 ression: Units:		Part parameter request 3
		Help	Assign ? X
Decide Name: Decide 18 Percentages: 64 18 <end list="" of=""></end>		Type: Vieway by Chance Vieway by Chance	Assignments: Attribute, Penalty Part 1, 1000 Attribute, Reorder point Part 1, 7 Attribute, Reorder point Part 1, 7 Attribute, Part value Part 1, 50 Attribute, Part value Part 1, 50 Attribute, Building height, 20 Attribute, Building height, 20 Attribute, Building volume, Building heigi Attribute, Building volume, Building heigi Attribute, Time to manufacture, 60 Attribute, Deerator cost, 70 KEnd of 190
	OK	Cancel Help	OK Cancel Help

Figure 3-5: Creation of spare part request and attribute assignment

Attributes marked with a number (for example "Part 1") are valid for the specific part only and are used to allow a precise routing and treatment of the part throughout the model. Attributes which do not have the numbering are general and assigned to each spare part request regardless of the type of spare part. For example, in the second (and further) assign module "Part parameter request 2" "Penalty Part 1" is called "Penalty Part 2", while Priority is again named priority.

A process module in the setting "Seize Delay Release" is the next step for each entity. The process module is called "Request reception" and simulates what its name states. The reception seizes a Reception Staff who will need an average of 0.1 hours to process the request. For this model it is assumed that one receptionist is available 24 hours each day. It could be an option to use more receptionists or to use a shift plan by applying a schedule. Also, the time for processing can be changed and adjusted to the individual case.

	Process	8 ×
Request	Name:	Туре:
reception	Request reception	▼ Standard ▼
0	Logic	
	Action:	Priority:
	Seize Delay Release	✓ Medium(2) ✓
	Resources:	
	Resource, Reception Staff, 1	Add
	<end list="" of=""></end>	Edit
		Delete
	Delay Type: Units:	Allocation:
	Triangular 🔹 Hours	▼ Value Added ▼
	Minimum: Value (Most Likely):	Maximum:
	0.05 0.1	0.15
	Report Statistics	
	ОК	Cancel Help

Figure 3-6: Request receptionist

Ouplicate part Original	Separate P Separate Name: Type: Duplicate part Duplicate Original Percent Cost to Duplicates (0-100): # of Duplicates: 100 % 1
Route to warehouse	OK Cancel Help OK Cancel Help Route Image: Concel Image: Concel </td

Figure 3-7: Duplicate part requests and route to warehouse route

When the entity is registered at the reception, it continues its way through the model and is duplicated. The duplicate is directly send to the warehouse route where it is processed, while the original part is routed in the direction of the AM process.

Before the part is allowed to enter the AM route another assignment must be done. To do this, a decide module is used in combination with assign modules to make the correct assignments.

The decide module splits the arriving entities based on the entity type. "Part request 1" follows path one, "Part request 2" follows path two and so on. This way, each entity is directed to the correct assign module. Each entity type is now renamed in the assign module with addition "AM". Example: "Part request 1" is renamed "Part request 1 AM". The entities can then be routed to the AM path by use of a route module.

To duplicate the original part is important to have the original named parts and the renamed parts separately in the model, which is essential to treat both independently and reach full flexibility of the model. It is also essential to analyze both independently in the results later on. It is possible to look into for example processing times or other statistics in detail of "Part request 1" and "Part request 1 AM" in detail which allows to compare both directly.

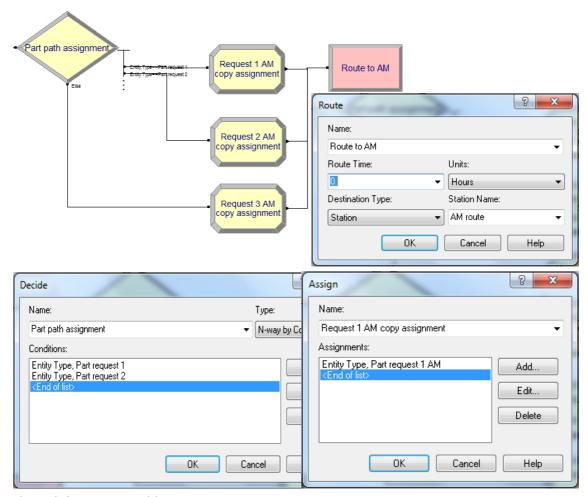


Figure 3-8: Rename entities

3.4.2 WAREHOUSE ROUTE

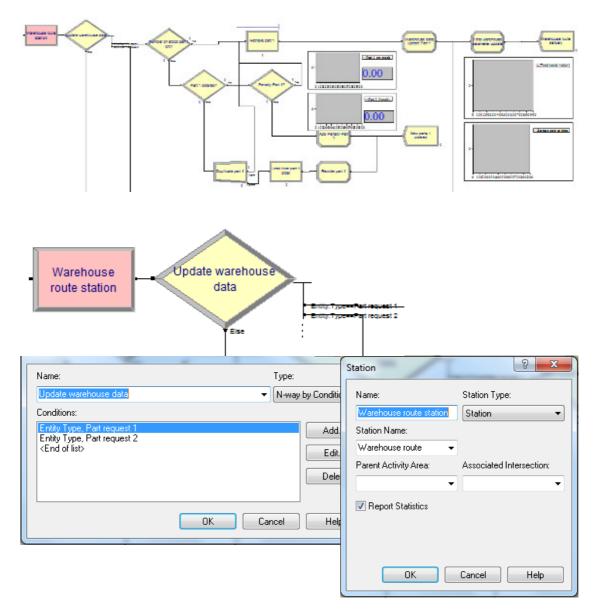


Figure 3-9: Warehouse route station, split up and path for Part request 1

First the warehouse route is described. The entities are sent from the route module and arrive at the "Warehouse route station", which is called "Warehouse route". The spare part requests are now in the ware house simulation part of the model. After the station module the spare part requests are split up according to their entity type in a decide module called "Update warehouse

data" to update the warehouse data on an individual basis. Part request 1 follows path one, Part request 2 follows path two and so on. This way of dividing the paths allows to keep track of every spare part and stock individually.

In this description only the path of Part request 1 is followed. All other paths are equal in the setup, except that they are set up as an independent path for another part request. A decide module occurs first on the individual path. It is checked if the Number on stock of Part 1 is bigger than the reorder point. If this is true the part request can continue on its way, otherwise new parts must be ordered.

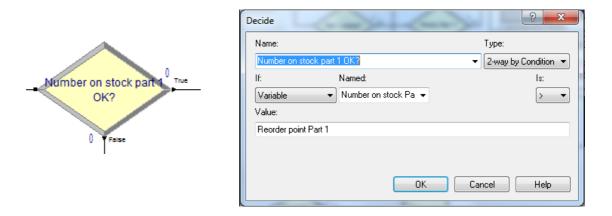


Figure 3-10: Check if number of parts on stock is ok

Next it must be checked if an order is already placed. Therefore the process module "Lead time part 1 order" is used in combination with a decide module. The process module uses the logic action Delay applying a uniform distribution with a minimum of 7.5 hours and a maximum of 36 hours. This time represents the reorder lead time of a specific part type. The type of distribution and values can be adjusted in every intended way to fit the purpose. When there is no entity in the process the WIP is set equal to 0, while it is 1 when the process is active. The WIP is used to control the way of the part requests.

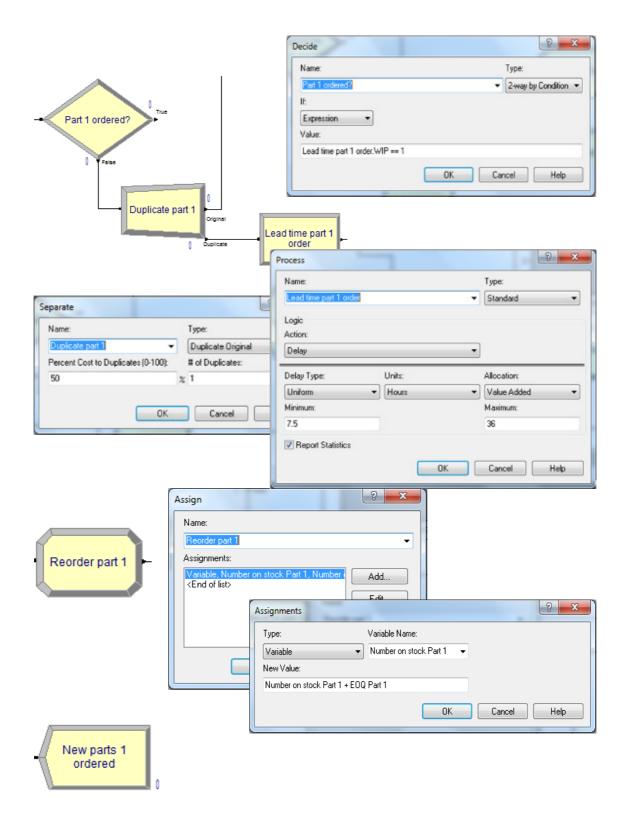


Figure 3-11: Ordering new batch of parts

The decide module "Part 1 ordered" checks if the process of "Lead time part 1 order" is active or not. When it is active the part request is seen as true and follows this path. Otherwise the part request follows the false path and enters the process module, where it simulates the lead time until the new batch arrives. After the lead time is over, the part request enters an assign module, where the number of parts on stock is updated. The updated number on stock adds up the current number on stock and the EOQ. (Both, reorder lead time and EOQ can later be used to optimize the spare part stock.) After the assignment, the request is disposed in the dispose module "New parts 1 ordered". In order to keep the running request active, a separate module is used to make a copy of the part request. The original part request returns to the normal path, while the copy enters the process module to delay the part order. This means the duplicate is just used to initiate the order. The original part is then treated as every other part following this path and enters the process module "Retrieve part 1". The retrieve process module will be described later.

The true path of the decide module "Part 1 ordered" leads to a decide module called "Penalty Part 1". The decide module checks if the number of part 1 on stock is bigger than 0. If the number on stock is bigger than 0 the part request is send to the process module "Retrieve part 1". If the number on stock is equal to 0, it is not possible to deliver the part and a penalty is charged. To charge the penalty an assign module is used. The new variable "Part 1 Penalty" is defined at this position. If a penalty is charged, related to part one, it is added to "Part 1 Penalty", which represents the total penalty of part one during the simulation run. When the new value of "Part 1 Penalty" is assigned the part request is disposed at the dispose module "New parts 1 ordered", which was also used for the reorder logic.

Penalty Part 1?	
Decide Name: Penalty Part 1? If: Named: Variable Number on stock Pa ▼ Value:	Assignments Type: Variable Name: Variable Part 1 Penalty New Value: Part 1 Penalty Part 1 OK Cancel
0 OK	Cancel Help

Figure 3-12: Check for penalty and adding it

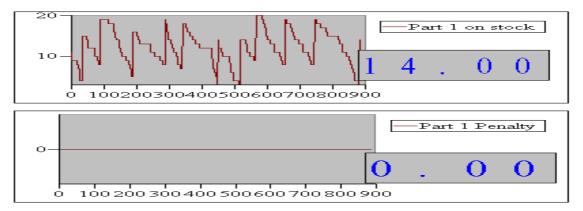


Figure 3-13: Graphical display of Part 1 on stock and Part 1 Penalty (after simulation run)

At this point it might be interesting to introduce to the two graphs in Figure 3-13. One tracks the variable "Number on stock Part 1", the other one "Part 1 Penalty". The displays are mainly used for debugging and an overview of the stock behavior. Both graphs are used to minimize the parts on stock in the later proceeding, for each spare part type individually. A general policy for the

stock will be one of each part type will be on stock, EOQ is set to zero and the reorder lead time follows the previously mentioned distribution. A penalty will not be accepted for any part type. If a penalty occurs during simulation, the number of stored parts and EOQ are increased for the specific item until no penalty is created. No changes on the reorder lead time are intended.

The process module "Retrieve part 1" simulates the picking of the parts from the warehouse. A resource called Picker Staff is used to execute this action. In this model 1 picker is used to get all requested parts from the warehouse (Part 1, 2, and 3). The number of pickers might be extended and/ or schedule based. Also the processing time can be adjusted.

	Process	3	₽ ×
	Name:		Туре:
Retrieve part 1	Retrieve part 1		Standard 👻
	Logic		
0	Action:		Priority:
	Seize Delay Release	•	Medium(2) 🔹
	Resources:		
	Resource, Picker Staff, 1 <end list="" of=""></end>		Add
			Edit
			Delete
	Delay Type:	Units:	Allocation:
	Triangular 🔹	Hours 🔹	Value Added 🛛 👻
	Minimum:	Value (Most Likely):	Maximum:
	.15	0.2	0.25
	Report Statistics		
		ОК	Cancel Help

Figure 3-14: Process module - Retrieve part 1

After retrieving part 1 from the warehouse and serving the spare part request the warehouse data must be updated. An assign module is used to do so. Three new variables are defined. "Value withdrawals Part 1consumed parts", "Stock value of Part 1" and "Number on stock part 1". The

related calculations can be seen in Figure 3-15. What should be noted is that the initial values of each defined variable is 0 as an internal standard setting of Arena. This is important because the initial value of "Number on stock part 1" is intended to be set to a specific value. This is done in the variable module of the basic process panel. For part 1 it is set to 11 to have a start value (could also be 0 and every other integer number).

U	pdate Par			Ass Va Va		ithdrawals P alue Part 1,	² art 1, Value w Number on sti	Add	
Ту	/pe:		Variable Name:						
	Value withdrawals			Part 1	-			lp	
Ne	ew Value:								
V	alue withdra	awals Part 1 + Part	value Part 1						
	Assignme	nts					2	? ×]
	Туре:		Variable Name	:					
	Variable	1	 Stock value F 	Part 1	-				
	New Val								
		on stock Part 1 * F	art value Part 1					2	x
	A	ssignments		_	law i			(B)	
U		Туре:	Varia	able Na	me:				
Variable Number on stock Part 1									
	New Value:								
	Number on stock Part 1 - 1								
					0	ĸ	Cancel	He	lp
23	Material cost			Real	System		1 rows	Tablel Value -	
24	Number of bat	tch		Real	System		1 rows	Initial Values	8
25	Number on sto	ock Part 1		Real	System		1 rows		
26	Number on stock Part 2 Real System 1 rows 11					1 mws			

Figure 3-15: Warehouse data update

After the warehouse data update of each individual part, the total warehouse parameters are updated. This happens in the assign module "Total warehouse parameter update". Four new variables are defined: "Total stock value" - adds up the total stock value of each spare part type.

"Part value consumed" - Adds up the total value of parts taken from stock

"Storage cost at time" - Takes the total stock value and calculates the storage cost by multiplying the total stock value with the storage cost. "Storage cost" is also a new defined variable. The storage cost are set as a fixed percentage value which assumes that for every part on stock the same percentage of cost is generated based on the part value (set to 13 % in this example), covering all cost.

"Total warehousing cost" - Is the sum of the total withdrawal value and the storage cost at time.

	Assign		8 ×		
Total warehouse	Name:				
parameter update	Total warehouse p	arameter update	-		
	Assignments:				
	Variable, Total stock value, Stock value Pa Variable, Part value withdrawals, Value with Variable, Storage cost at time, Total stock v Variable, Total warehousing cost, Part value Kend of list				
Assignments	? ×	Assignments	8 23		
Type: Variable Name:		Туре:	Variable Name:		
Variable Total stock value	•	Variable 🔹	Part value withdrawals 🔹		
New Value:		New Value:			
Stock value Part 1 + Stock value Part 2 + Stock value Pa	rt 3	Value withdrawals Part 1+Valu	ue withdrawals Part 2+Value with		
OK	Cancel Help		OK Cancel Help		
Assignments	8 2	Assignments	? 🗙		
Type: Variable Name:		Туре:	Variable Name:		
Variable Storage cost at time	•	Variable 🔻	Total warehousing cost 🔹		
New Value: New Value:					
Total stock value*Storage cost		Part value withdrawals+Storag	ge cost at time		
ОК	Cancel Help		OK Cancel Help		

Figure 3-16: Updating total warehouse parameter

After that the spare part request is disposed in a dispose module called "Warehouse route delivery".

To have an overview of the results of the warehousing route, graphical displays and output fields help. Therefore the relevant displays with sample results are shown in Figure 3-17.

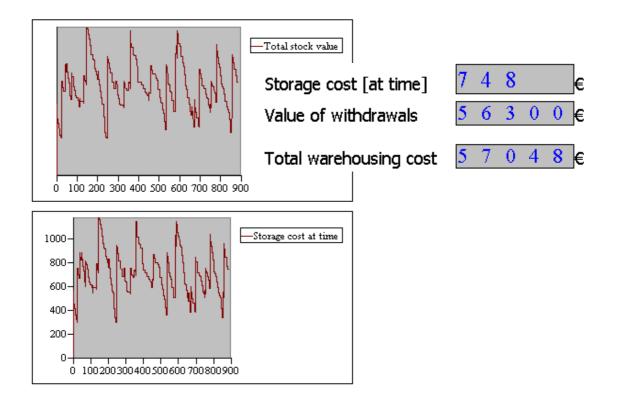


Figure 3-17: Results of the warehousing route

3.4.3 AM ROUTE ARRIVAL AND QUEUEING

As stated earlier the original spare part requests are routed to an AM route, which models the whole AM process from preparation, over the process itself and rework activities.

The AM route starts with a station, "AM route station", followed by an assign module, "Assign arrival". The AM route station follows its function and receives the spare part request. Route and station modules are used often in the following, so they will not be explained in detail, since functionality should be clear.

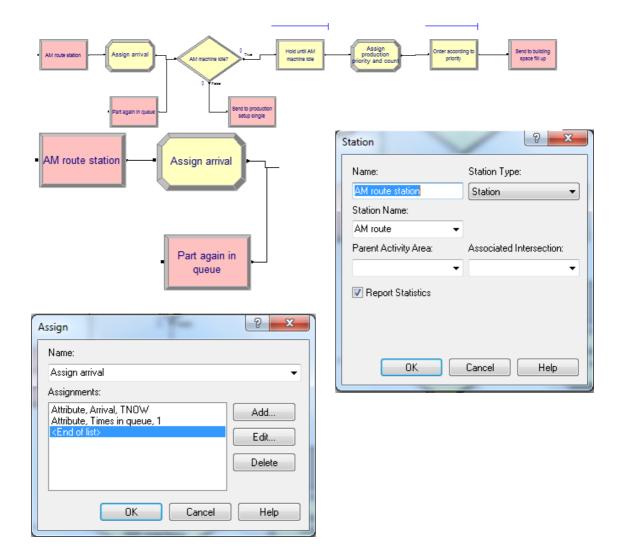


Figure 3-18: Queuing logic and arrival in AM route

Next the part request enters an assign module, which assigns the arrival time and how often the part entered the queue of the AM processing. "Times in queue" is set to 1 initially because the part request arrives for the first time in the queue. This value will be used and updated through further simulation. Another station module is added to the arrival section. Parts which were not allowed to enter the production process for a production run will arrive at "Part again in queue" and enter the queue for the next production run again.

"AM machine idle?" is a decide module which is used to check if the AM machine is idle and can be used for processing. If the machine is idle the part request will be routed to "Station for production setup" directly and production will be initiated for one part only. Details about production setup will follow later. When the AM machine is not idle, further steps are required due to the fact that queuing will occur, which can have significant impact on the delivery time of the finished parts.

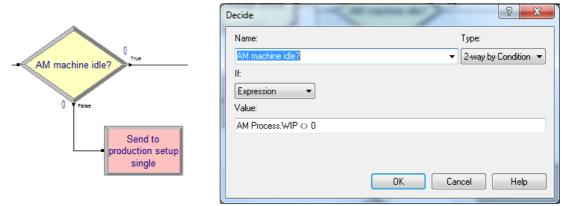


Figure 3-19: Check if AM machine is idle

Modeling the queue follows a specific logic. Arrived part requests need to be prioritized. This is done with a hold module, an assign module and another hold module. The logic uses the fact that logical operations in Arena can happen without that simulation time passes. Details will follow when the production section of the model is explained. After the AM process has finished, parts leave the AM machine and enter a first signal module which sends the signal "1" to the entire model. This will be explained in depth at a later point. To get back to the hold module, when the signal "1" is generated the hold module will release all parts in queue and forward them to the next module. The same idea is used for the second hold module, which uses the second signal 2, which is generated a process later than the first hold module.

Hold until AM production priority and count	Order according Send to building space fill up
Hold ? X Your Your Your Your Your Your Your Your	Hold Name: Type: Order according to priority Wait for Signal Wait for Value: Limit: 2 I
Queue Type: Queue Queue Name: Hold until AM machine idle.Qu Assign	Queue Type: Queue Queue Name: Order according to priority.Que ▼ OK Cancel Help
Assign production priority and count Assignments: Variable, Parts in queue, Parts in queue+1 Attribute, Production priority, Priority*Times i <end list="" of=""> Edit Assignments</end>	? ×
Type: Variable Name: Variable Parts in queue New Value: Assignments	▼ 2 ×
Parts in queue+1 Type: Attribute New Value: Priority*Times in queue/(Time to	Attribute Name: Production priority o manufacture/(TNOW-Arrival)) OK Cancel Help
7 Order according to priority.Queue Highest Attribu	ite Value Production priority 🔲 🔽

Figure 3-20: Queuing logic

With this in mind the queue logic should be coherent. The hold module "Hold until AM machine idle" holds all parts in queue until the signal 1 appears. Then all parts enter the assign module "Assign production priority and count". Two things happen in the assign module. "Parts in queue" are counted and the priority for the individual part is defined. "Parts in queue" is used to draw a graph so it is possible to study parts in queue at a specific time. Every queue is followed by Arena automatically, so further queuing statistics are available in the result section.

The priority setting follows a specific rule, which is defined as:

$$Production \ priority = \frac{Piroity * Times \ in \ queue * Time \ in \ system}{Time \ to \ manufacture}$$
(1)

Def.:		
Priority		Can be every number. In this model 1 (low), 2
		(medium) and 3 (high) is used.
Times in queue		Counts how often the part entered the queue.
Time in system	hr	Describes how much time the part spent in the system.
Time to manufacture	hr	Describes the time the part will need for processing.

The formula assigns a production priority to each part request every time before it enters the "Order according to priority" queue. Each time the part request enters the "Hold until AM machine idle" queue, "Times in queue" and "Time in system" will be increased, which results in a higher production priority for the next production batch.

When the part requests leave the assign module they enter the "Order according to priority" hold module with the according queue. The queue is set to "Highest attribute value first" and uses the attribute "Production priority". As result the part request with the highest production priority will be first in queue and therefore first for processing. The hold module releases the parts from the queue when the signal 2 is sent by the signal module "Ready for new batch signal" which is also located in the production section of the model. All parts are then sent to a logic which fills up the production space.

3.4.4 BUILDING VOLUME COUNTER

Filling up the building volume is modeled by use of a counter. The part requests arrives at a decide module which checks the free volume of the building space. The variable "building volume left" is used for this check. If the building volume left is bigger than the required building volume, the part request is sent the true path for further processing. If the building space left is not enough, the part request will be redirected to the queue logic and the "Times in queue" variable is increased by 1.

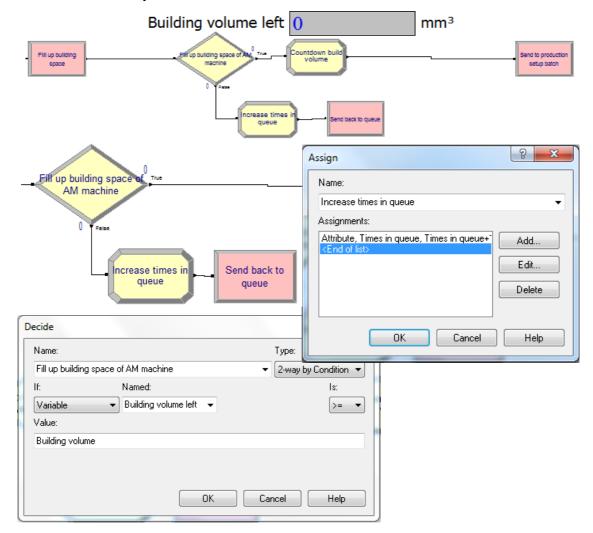


Figure 3-21: Logic for filling the building space

Following the further processing leads again to an assign module. "Countdown build volume" subtracts the "Building volume" of each part passing the module from the "Building volume left", whose initial value equals the available building volume of the building space. The variable "Part Counter" counts the current number of parts in the build volume. Both, "Building volume left" and "Part counter" are reset to the after each production run.

Then the part request is sent to the production planning logic.

Countdown build volume	Assign Name: Countdown build volume	* 8 8
	Assignments: Variable, Building volume left, Building volur Variable, Part Counter, Part Counter + 1 <end list="" of=""></end>	Add
Assignments		2 ×
Type: Variable New Value:	Variable Name: ▼ Building volume left ▼	
Building volume left-	t-Building volume	
Assign	iments	8 ×
New	e: Variable Name: iable Part Counter Value: t Counter + 1	
	ОК	Cancel Help

Figure 3-22: Countdown build volume

3.4.5 PRODUCTION SETUP

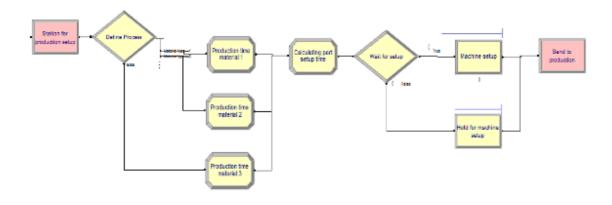


Figure 3-23: Production setup logic

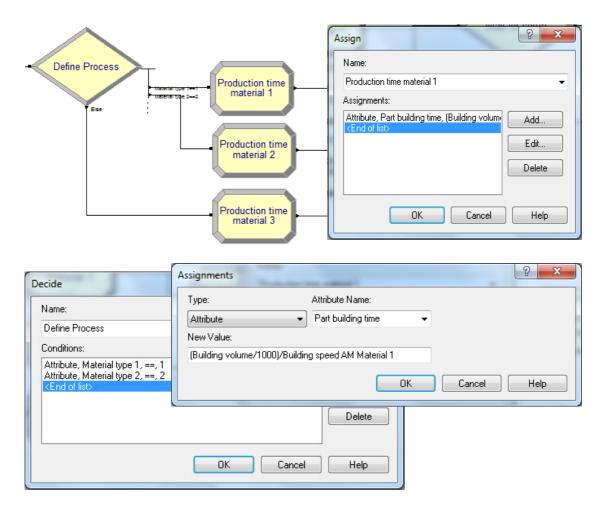


Figure 3-24: Production time assignment

The production setup logic calculates the production time of based on the material type, the specific setup time of a part and the general machine setup time.

"Define Process" is a decide module which splits the part requests according to the material required for the part. When the part requests are split up, they enter assign modules which are used to assign the production time of the part according to the material. After the assignment all parts follow the same path again and enter the machine setup logic.

Calculating part setup time	Assign Name: Calculating part setup time Assignments: Attribute, Part setup, TRIA(0.08,0.16,0.24) Variable, Total part setup. KEnd of list>	
Assignments	8 ×	
Attribute 👻	Attribute Name: Part setup	
New Value: TRIA(0.08,0.16,0.24)		
Assignments	8	x
Туре:	Variable Name:	
Variable	✓ Total part setup	
New Value:		
Total part setup +	+ Part setup	
	OK Cancel Help	

Figure 3-25: Part setup time

The machine setup logic starts with an assign module which assigns the setup time for the individual part to the individual part. The attribute is called "Part setup" and represents activities like importing the model and setting up the production parameters for the specific part. The basic setup follows a triangular distribution with min. 5, mean 10 and max. 15 minutes setup time per part. "Total part setup" sums up the setup time for all parts in one production run and will be reset to zero when the production run is finished.

Wait for setup	Hold Name: Type: Hold for machine setup ✓ Scan for Condition Condition: Machine setup.WIP == 0 Queue Type: Queue Queue Name: Hold for machine setup.Queue Hold for machine setup.Queue ✓ Y Y2
Name: Wait for setup	OK Cancel Help Process
lf: Expression ▼ Value:	Machine setup
Machine setup.WIP==0	Seize Delay Release Medium(2) Resources: Resource, Machine specialist, 1 <end list="" of=""> Edit</end>
OK Can	
	Expression: TRIA(3.5.4.5)+Total part setup+(1/(200*200))*Building space width*Building space Report Statistics
	OK Cancel Help

Figure 3-26: AM machine setup

Next a decide module checks if machine setup is already in progress or not. If the machine setup is not active, the first part request will enter the setup module and activate it. For processing, the resource "Machine specialist" is seized, which can be changed in number and/or according to a schedule. The standard "Machine setup" setting is according to Figure 3-26. Activities like powder bed setup or calibration are assumed to be standard activities which follow a triangular distribution using min. 3.5, mean 4 and max. 4.5 minutes. The total part setup time is added to represent the full setup time. Additionally preheat and atmosphere preparation time is added. The preheat time is set as a linear function of the total substrate area (width and depth of the building space volume). It is assumed that it takes 1 hour to heat up a 200 x 200 mm area. The actual preheat time is then scaled up or down depending on the actual build substrate area. Time for atmosphere preparation is added in the same way. It is assumed that it takes 1 hour to prepare a building space atmosphere of 200 x 200 x 200 mm. Based on this input the actual time is scaled up or down depending space volume. For example a 300 x 300 x 300 mm building space volume will need 2.25 hr for preheat and 3.375 hr to create the building space atmosphere.

Each following part request in the batch will be sent to a hold module, "Hold for machine setup". "Hold for machine setup" is used to queue the spare part requests and to pretend a batch. When the machine setup becomes inactive, the AM process can start and the hold module releases all parts in queue to be processed by AM. Then the requests are sent simultaneously to the production logic. (This can also be done by a module, but by using this module specific part information gets lost.)

3.4.6 AM PROCESS SIMULATION

The production logic simulates the production of the parts, post processing as well as calculates specific results and resets specific variables.

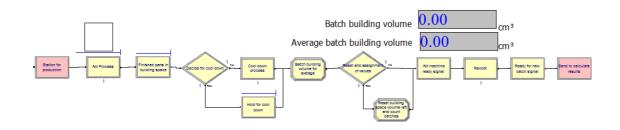


Figure 3-27: Production logic

First the part request enters the AM Process module. Here the actual simulation of the AM process is processed. The resource "AM Machine" is used for doing this. Like every resource the number of the machines can be changed or it can work according to a schedule. As delay time "Part building time" is used, which was calculated in the production setup logic. Each part is simulated to be produced individually, which needs to be corrected, since a production run is executed batch wise. (For simulation of multi material cases a special sorting logic will be integrated to the model in the setup section to arrange arriving part request according to their materials.)

To correct the model for a batch production, the hold module "Finished parts in building space" is applied. The module queues the produced parts until there are no parts in queue in the AM Process queue and the process is not active. All parts are released simultaneously when this condition is true and no part related information is lost.

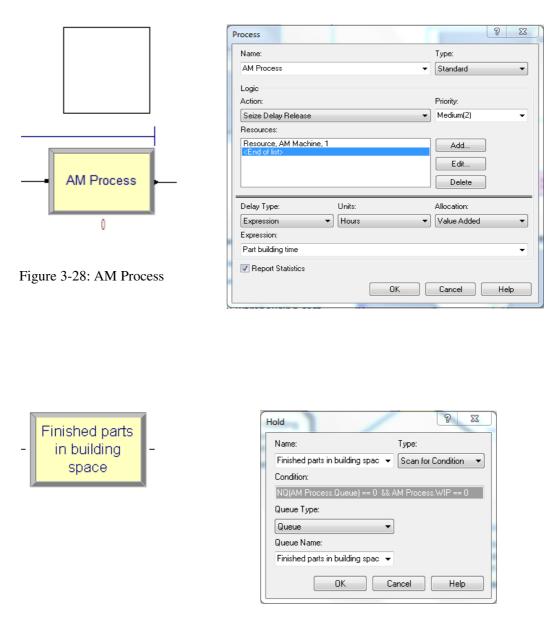


Figure 3-29: Hold for finished parts in building space

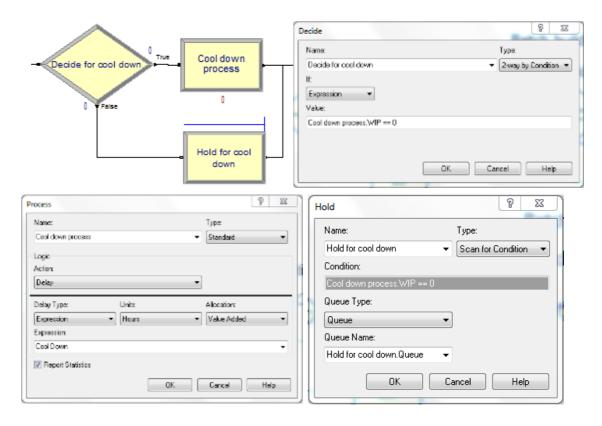


Figure 3-30: Cool down process

The cool down time after a production run needs to be considered as well. It is simulated by use of a decide module, process and hold module. The decide module scans for the condition of the cool down process. If the cool down process is idle, the entity will follow the process path, otherwise the entities will enter the queue of the hold module until the cool down process has ended. The time of cooling down is defined in the variable "Cool down". When the cool down process ends the hold module releases all parts in queue and processing continues.

For the model, the average building volume per batch is of interest. Therefore the variable "Batch building volume" is used. It sums up the building volumes of all parts of a batch. This is used later to calculate the average building volume.

Batch building volume for average	Assignments:	tch building volume, Batch buil	? X	
Assignments Type: Variable New Value: Batch buildir	▼) ng volume+Building	Variable Name: Batch building volume g volume OK	Cancel	R X

Figure 3-31: Average batch building volume

Next is a decide module, "Reset and assignment of values". The module forwards each part to the next module until the number of "Finished parts in building space.Queue" is 0. This means that only the last part is send to the assign module "Reset building space volume left and count batches".

\wedge	Decide	8 22
Reset and assignment ™	Name:	Туре:
- of values	Reset and assignment of values	▼ 2-way by Condition ▼
	If: Expression	
0 False	Value:	
	NQ(Finished parts in building space.Queue) > 0	
space volume left and count		
batches	ŪK	Cancel Help

Module type	Assign		
Name	Request building space volume left and count batches		
Туре	Variable		
Variable name	Building volume left		
New value	Building space depth*Building space height*Building space width		
Туре	Variable		
Variable name	Number of batch		
New value	Number of batch + 1		
Туре	Attribute		
Variable name	Assigned batch building volume		
New value	Batch building volume		
Туре	Variable		
Variable name	Batch building volume		
New value	0		
Туре	Variable		
Variable name	Building volume per batch		
New value	Assigned batch building volume		
Туре	Variable		
Variable name	Average building volume		
New value	Average building volume*(Number of batch -1)/ Number of batch +		
	Building volume per batch/ Number of batch		
Туре	Variable		
Variable name	Part counter		
New value	0		
Туре	Variable		
Variable name	Total part setup		
New value	0		

Figure 3-32: Reset of variables and attributes

The assign module fulfills several functions. First, it resets the variable building volume left back to the initial value before the next parts are allowed to enter the process. This is essential for filling up the building space again.

All other attributes and variables in this assign module are used to calculate the average batch volume. The number of batches is updated by adding 1 each time a part passes the assign module. "Assigned batch building volume" is an attribute, directly assigned to the part. By doing this the "Batch building volume" is stored in an independent variable and is not lost when the "Batch building volume" is set back to its initial value of 0, which happens in the next assignment. Since "Assigned batch building volume" is an attribute and directly related to a part, it needs to be transformed back to an independent variable which is available in the whole model. This is done by the variable "Building volume per batch" which takes the value of "Assigned batch building volume". Next, the "Average building volume" is calculated.

After the reset and the calculation of the average building volume, the part meets a combination of signal modules and a process module. The first signal module "AM machine ready signal" sends the signal 1. As described earlier in this text the signal allows the waiting part requests on the module "Hold until AM machine idle" (queue logic) to move further along in the model, meaning that the parts get sorted in the following queue according to their priority when the signal 1 is set.

The process module "Rework" simulates the rework activities, by seizing a resource for these activities. The time for processing follows specific values in this example, but this can be adjusted to each individual case. In the base setup a triangular distribution is selected with min. 5, mean 60 and max. 120 minutes.

When the first part leaves the "Rework" process module it enters the signal module "Ready for new batch signal". This module sends the signal 2 into the model. This signal causes the hold module "Order according to priority" (see queuing logic) to release all parts for further processing.

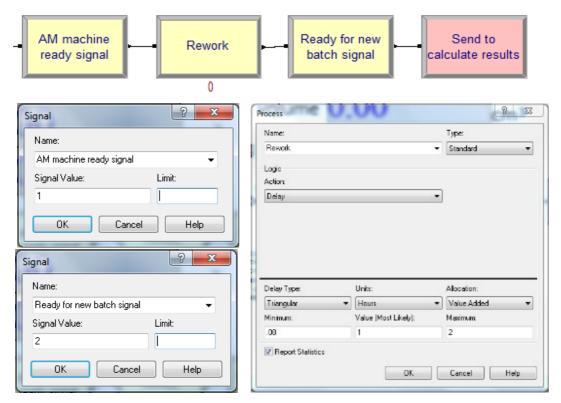


Figure 3-33: Signals for new production run and rework

3.4.7 OVERVIEW OF RESULTS

After the production logic final calculations are executed according to the points of interest.

For final calculations it is checked if the parts meet the delivery requirements. This is done by the decide module "Penalty?", which calculates the time from the initial spare part request until the finished part leaves the system and checks if the allowed "Time to manufacture" is exceeded. If the allowed time to manufacture is exceeded a penalty must be paid. The assign module sums up all penalties in the variable "Total penalty".

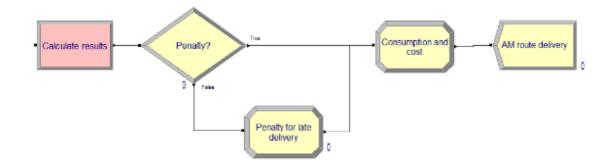


Figure 3-34: Final calculations

Penalty?	Assign Name: Penalty for late delivery Assignments: Variable, Total penalty, Total penalty + Pen Cend of list> Assignments	? X Add Edit ? X
Decide Name: Penalty? If: Name	Type: Variable Name: Variable Total penalty New Value: Total penalty OK Cancel	Help
	to manufacture	

Figure 3-35: Check for penalty

The last module of the model is the assign module "Consumption and cost". Final calculations are executed in this assign module. The calculations are listed in Figure 3-36. After this assign module the spare part leaves the model by the use of a dispose module.

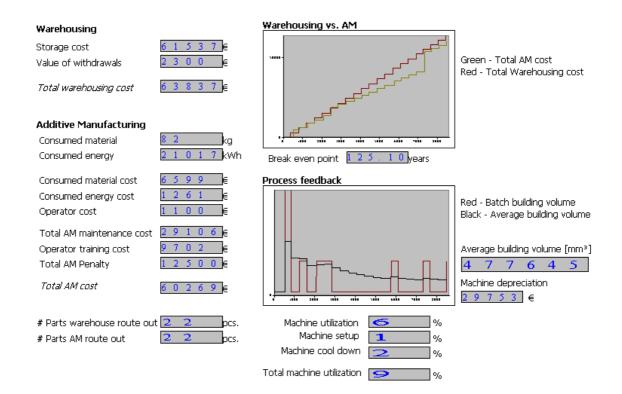


Figure 3-36: Calculation of consumption and cost

Module type	Assign			
Name	Consumption and cost			
Туре	Variable			
Variable name	Material consumption			
New value	Material consumption + Building volume			
Туре	Variable			
Variable name	Total operator cost			
New value	Total operator cost + Operator cost			
Туре	Variable			
Variable name	Consumed material cost			
New value	((Material consumption/1000)*7.85/1000)*Material cost			
Туре	Variable			
Variable name	Consumed energy cost			
New value	(Material consumption/1000)*Energy consumption*Energy cost			
Туре	Variable			
Variable name	Total maintenance cost			
New value	(AM maintenance cost/(365*24))*TNOW			
Туре	Variable			
Variable name	Operator training cost			
New value	(Operator training price/(365*24))*TNOW			
Туре	Variable			
Variable name	Machine depreciation			
New value	((Machine purchase price/Years of depreciation)/(365*24))*TNOW			
Туре	Variable			
Variable name	Total AM cost			
New value	Consumed material cost+Consumed energy cost+Total operator cost+Total			
	maintenance cost+Operator training cost+Machine depreciation+Total			
	penalty			
Туре	Variable			
Variable name	Break even			
New value	Machine purchase price/(((Total warehousing cost-Total AM			
	cost)/TNOW)*365*24)			
Туре	Variable			
Variable name	Machine utilization			
New value	(AM Process.VATime / (TNOW+0.001))*100			
Туре	Variable			
Variable name	Consumed material			
New value	(Material consumption/1000)*7.85/1000			

Туре	Variable
Variable name	Consumed energy
New value	(Material consumption/1000)*Energy consumption
Туре	Variable
Variable name	AM parts out
New value	AM parts out+1
Туре	Variable
Variable name	Machine setup tracking
New value	(Machine setup.VATime/TNOW)*100
Туре	Variable
Variable name	Machine cool down tracking
New value	(Cool down process.VATime/ TNOW)*100
Туре	Variable
Variable name	Total utilization
New value	Machine utilization+Machine setup tracking+Machine cool down tracking

Once the simulation model has been run, results can be displayed. In the model window several displays are arranged to allow a quick overview about several results. Figure 3-37 shows the results of a simulation run using the parameters shown in Table 3-3. All the parameters shown in the table can be changed, and results can be recalculated. This enables the user to compare different scenarios.

Figure 3-37: Sample results

Table 3-3:	Changeable	parameter
------------	------------	-----------

Refer-	Туре	Variablen	Unit	Value	Description
ence					
AM	Variable	AM	€/yr	30000	Cost which is generated by required
Proces		maintenance			maintenance actions for AM.
S		cost			
AM	Variable	Building	mm	250	Describes the building space depth of the
Proces		space depth			RM machine.
S					
AM	Variable	Building	mm	325	Describes the building space height of the
Proces		space height			RM machine.
S					
AM	Variable	Building	mm³	203125	Describes the building space volume of the
Proces		space volume		00	RM machine.
S					
AM	Variable	Building	mm	250	Describes the building space width of the
Proces		space width			RM machine.
S					
AM	Variable	Building	cm³/	22	Describes the building speed of the RM
Proces		speed AM	h		machine using material 1.
S		Material 1			
AM	Variable	Building	cm³/	23	Describes the building speed of the RM
Proces		speed AM	h		machine using material 2.
S		Material 2			

Refer-	Туре	Variablen	Unit	Value	Description
ence		D '11'	21		
AM	Variable	Building	cm ³ /	24	Describes the building speed of the RM
Proces		speed AM	h		machine using material 3.
s AM	Variable	Material 3	kW	2	Energy concumption on everyon
Proces	v al lable	Energy consumption	h/c	Z	Energy consumption on average production. (20 % efficiency)
s		consumption	m ³		production. (20 % enterency)
AM	Variable	Energy cost	€/k	0,06	Energy price valid for production.
Proces	, arreste		Wh	0,00	
s					
AM	Variable	Machine	€	460000	Machine price when purchased
Proces		purchase			
S		price			
AM	Variable	Material cost	€/kg	80	Price of AM-material for production.
Proces					
S				10000	
AM	Variable	Operator	€/ yr	10000	Price of operator training
Proces		training price			
s AM	Variable	Years of	Vr	15	Planned depreciation time for AM
Proces	v al lable	depreciation	yr	15	machine.
s		depreciation			machine.
AM	Variable	Cool down	h	8	Required time to cool down the building
Proces	(unuono	coor do wh		Ũ	space.
s					SF
Global	Resource	Receptionist	Pcs	1	Number of staff at the reception.
Global	Resource	AM Machine	Pcs	1	Number of AM machines in operation.
Global	Resource	Picker Staff	Pcs	1	Number of staff picking parts.
Global	Resource	Machine	Pcs	1	Number of staff specialized in AM.
D	A 11	specialist		20/20/	
Part	Attribute	Building	mm	30/20/	Describes the building depth of the part. (Part $1/Part 2/Part 2$)
Dout	Attribute	depth Dwilding		30 100/	(Part 1/ Part 2/ Part 3)
Part	Auribule	Building width	mm	90/30	Describes the building width of the part. (Part 1/ Part 2/ Part 3)
Part	Attribute	Bulding	mm	20/10/	Describes the building height of the part.
I alt	minoute	height		30	(Part 1/ Part 2/ Part 3)
Part	Attribute	EOQ Part 1	Pcs	11	Economic order quantity of part 1.
Part	Attribute	EOQ Part 2	Pcs	15	Economic order quantity of part 2.
Part	Attribute	EOQ Part 3	Pcs	12	Economic order quantity of part 3.
Part	Attribute	Material type		1/1/1	Material type assignment by use of integer.
		1			(Part 1/ Part 2/ Part 3)
Part	Attribute	Operator cost	€	70/ 60/	Estimated cost of required operator in
				50	total. (Part 1/ Part 2/ Part 3)
Part	Attribute	Part value	€	50	Purchase price of part 1. (Example value –
		Part 1			realistic values in later sections)
Part	Attribute	Part value	€	50	Purchase price of part 2. (Example value –
		Part 2			realistic values in later sections)

Refer-	Туре	Variablen	Unit	Value	Description
ence					
Part	Attribute	Part value Part 3	€	50	Purchase price of part 3. (Example value – realistic values in later sections)
Part	Attribute	Penalty Part 1	€	1000	Penalty when part 1 is not delivered in time.
Part	Attribute	Penalty Part 2	€	2000	Penalty when part 2 is not delivered in time.
Part	Attribute	Penalty Part 3	€	4000	Penalty when part 3 is not delivered in time.
Part	Attribute	Priority		1/1/1	Pre-assigned priority of part as production order basis. (Part 1/ Part 2/ Part 3)
Part	Attribute	Reorder point part 1	Pcs	8	Reorder point of part 1.
Part	Attribute	Reorder point part 2	Pcs	4	Reorder point of part 2.
Part	Attribute	Reorder point part 3	Pcs	5	Reorder point of part 3.
Wareh ouse	Variable	Lead time	h	7.5/36	Uniform distribution - valid for all parts
Part	Attribute	Time to manufacture	h	48/ 72/ 192	Allowed time to deliver a part. Exceeding this time leads to a penalty. (Part 1/ Part 2/ Part 3)
Ware- house	Variable	Number on stock Part 1	Pcs	8	Initiating number of part 1 on stock.
Ware- house	Variable	Number on stock Part 2	Pcs	3	Initiating number of part 2 on stock.
Ware- house	Variable	Number on stock Part 3	Pcs	3	Initiating number of part 3 on stock.
Ware- house	Variable	Storage cost	%	0,225	Storage cost in %.

For further calculations the Process Analyzer (PAN) and OptQuest are used. PAN is an Arena built-in tool which allows a variation of variables by setting up different scenarios. By running the scenarios, results are calculated and shown in a tabular form. For optimization of specific values OptQuest will be used, which is an Arena built in tool for optimization.

3.5 VERIFICATION OF THE SIMULATION MODEL

Kelton et al define the process of verification as a "...process of ensuring that the Arena model behaves in the way it was intended according to the modeling assumptions made." (Kelton, Sadowski, & Swets, 2010) Kelton et al also describe an easy verification method. The method proposes to send one entity into the process and follow its way through the simulation in a slow mode. In the presented model this was done with every entity type for each relevant parameter setting. Debugging and verification were executed continuously during development either for single parts or the complete model, since changes happened regularly throughout development. For debugging several displays, animations, extreme tests experiments with different discrete distribution times, long run tests and results were used to check the model for internal failures. The verification process assured that the model works in the intended way.

3.6 VALIDATION OF THE SIMULATION MODEL

The process of validation is described by Kelton et al as "... the process of ensuring that the model behaves the same as the real system" (Kelton, Sadowski, & Swets, 2010) In general the validation of a simulation model is assumed to be a difficult task. A good way of validation is to compare the results with those of a real system. This is important, since a model can never achieve absolute validity. Furthermore the subjective focus of involved people may affect several factors.

The presented model is likely to be problematic in that regard since data of a real system is not known or available at the current status. A validation of results is therefore not possible. To validate the model experts in simulation and AM consulted the validation of the model.

4 SIMULATION EXPERIMENTS

According to the previously described goals of the study, the simulation model is used to see how

technical changes in the AM process affect the performance of the overall cost as well as

logistical attributes of the spare parts (lead time in particular). In particular, technical changes

considered in our simulation model are listed in Table 4-1.

No. Experiment	Unit	Description				
Base case						
Base case setup	cm ³	Reference case for a one machine setup				
Technical investigations						
Building space volume	cm ³	Variation of the building space for part generation.				
Building speed	cm³∕h	Variation of building speed applied for part generation.				
Material price	€/ kg	Variation of price of 1 kg AM raw material.				
Machine purchase price	€	Variation of purchase price of the machine.				
Cool down time	hrs	Variation of the applied cool down time.				
Additive strategy investig	ations					
Two machines		Basic setups:				
		• Fixed vs. flexible material assignment				
		• Waiting vs. direct production				
Three machines		Variables of interest:				
		Mean arrival time				
		• Sum of setup and cool down time				
		• Elapse time (waiting only)				
		• Production start volume (waiting only)				
		Material changeover time				
		(flexible material assignment only)				
Part size distribution		Several distributions of part sizes are investigated. For				
		example 100 % small parts or 100 % big parts and other				
		important mixtures.				

Table 4-1: Overview of experiments

Building space volume - A current trend in AM is increasing the building space volume of AM machines, which allows to build bigger parts during a production run. This might be an interesting topic when the time for production is not linked to a penalty, since the production run can be completed in the required time. The effect of an increased building space volume with respect to spare parts is not yet clear. In general, however, it is assumed that the increased building volume increases also the processing time, thus longer delivery times for spare parts. That might be a sensitive issue when penalties must be paid if a part is not delivered on time.

Building speed - Increasing the building speed is a main issue in AM. Increased building speeds will lead to faster processing and the effect on spare part supply should be positive.

Material cost - Material cost is also widely discussed in the literature. It is commonly agreed that the material price is a key factor and limits the application of AM in industry. The price an industrial company would be willing to pay will be investigated with respect to spare part supply.

Machine purchase price - In the literature it is often described that the purchasing price of an AM machine is too high to make it an interesting option for industrial application. It will be interesting to see how high or low the purchasing price has to be in order for the AM be an economically competitive option.

Cool down time - AM machines need a cool down time after production. Since this time can be several hours, the impact of the cool down time is also of interest for evaluation.

Two machines - It is reasonable that the application of two machines in parallel will improve the total system performance. We particularly investigate how the system will react given the following conditions due to the existence of two parallel machines. :

First set of conditions - In a two machine setup, a fixed material type can be produced by one machine only. This results in a total of two possible materials for production. This setup can run

in two modes. The first mode will start the production process for each spare part request immediately after the spare part request arrives. The second mode is a waiting mode in which the system will wait until a certain amount of elapsed time or a certain amount of building space volume is filled for a production run.

Second set of conditions – In this two machine setup, both machines can produce with two kinds of materials. When the material setting is different than the designated material for the next production run, a material changeover time must be considered to simulate the exchange of production material. Also this setup will run in the waiting and no waiting mode.

Three machines - The conditions and modes of the model are similar to the two machine investigations except that three machines will be able to apply three materials.

Part size distribution - Part size is an attribute which is assumed to have a significant impact on production times. The spare part set has a specific distribution of part sizes. The total system is adjusted to these specific part sizes. A change in the distribution of the part sizes is assumed to have an effect on the system behavior, which we investigate through our simulation model.

4.1 PARAMETER OVERVIEW

Next we lay out in detail the various settings for technical parameters, which may all vary in our simulation runs.

Туре	Variable	Reference	Description	Formula
Variable	AM maintenance cost	AM Process	Cost which is generated by required maintenance actions for AM.	
Attribute	Arrival	Part	Contains the arrival time of each part request.	TNOW
Variable	Break even	Calculatio n	Calculates the breakeven point for AM.	Machine purchase price/(((Total warehousing cost-Total AM cost)/TNOW)*365*24)
Attribute	Building depth	Part	Describes the building depth of the part.	
Variable	Building space depth	AM Process	Describes the building space depth of the RM machine.	
Variable	Building space height	AM Process	Describes the building space height of the RM machine.	
Variable	Building space volume	AM Process	Describes the building space volume of the RM machine.	Building space depth*Building space height*Building space width
Variable	Building space width	AM Process	Describes the building space width of the RM machine.	
Variable	Building speed AM Material 1	AM Process	Describes the building speed of the RM machine using material 1.	
Variable	Building speed AM Material 2	AM Process	Describes the building speed of the RM machine using material 2.	
Variable	Building speed AM Material 3	AM Process	Describes the building speed of the RM machine using material 3.	
Attribute	Building volume	Part	Describes the building volume of the part.	Building height * Building width*Building depth
Variable	Building volume left	AM Process	Calculates the remaining building space to set up production plan.	Building volume left- Building volume
Attribute	Building width	Part	Describes the building width of the part.	

Table 4-2: Overview of all simulation parameters

Туре	Variable	Reference	Description	Formula
Attribute	Bulding height	Part	Describes the building height of the part.	
Variable	Batch building volume	AM Process	Adds the part building volumes up to a batch volume.	Batch building volume + Building volume
Variable	Number of batch	AM Process	Counts the number of part batches produced.	Number of batch + 1
Attribute	Assigned batch building volume	AM Process	Assigns the batch building volume to the last part to have a fixed value for later calculation.	Batch building volume
Variable	Building volume per batch	AM Process	Works together with "Assigned batch for building volume" and separates the batch volume logically from the continuously changing "Batch building volume". This value can be used for calculations.	Assigned batch building volume
Variable	Average building volume	AM Process	Calculates the average building volume based on a previously known average.	Average building volume*(Number of batch - 1)/ Number of batch + Building volume per batch/ Number of batch
Variable	Consumed energy cost	AM Process	Calculates the consumed energy cost.	(Material consumption/1000)*Energy consumption*Energy cost
Variable	Consumed material cost	AM Process	Calculates the consumed material cost.	((Material consumption/1000)*7.85/100 0)*Material cost
Variable	Cool down	AM Process	Required time to cool down the building space.	
Variable	Energy consumption	AM Process	Energy consumption on average production.	
Variable	Energy cost	AM Process	Energy price valid for production.	
Attribute	EOQ Part 1	Part	Economic order quantity of part 1.	
Attribute	EOQ Part 2	Part	Economic order quantity of part 2.	
Attribute	EOQ Part 3	Part	Economic order quantity of part 3.	
Variable	Machine depreciation	AM Process	Calculated machine depreciation at the current point in time.	((Machine purchase price/Years of depreciation)/(365*24))*TN OW

Туре	Variable	Reference	Description	Formula
Variable	Machine purchase price	AM Process	Machine price when purchased.	
Variable	Machine utilization	AM Process	Calculated average machine utilization over time.	(AM Process.VATime / (TNOW+0.001))*100
Variable	Material consumption	AM Process	Calculates material consumption by adding the build volume of each produced part.	Material consumption + Building volume
Variable	Material cost	AM Process	Price of AM-material for production.	
Attribute	Material type	Part	Material type assignment by use of integer.	
Variable	Number on stock Part 1	Warehouse	Initiating number of part 1 on stock.	
Variable	Number on stock Part 2	Warehouse	Initiating number of part 2 on stock.	
Variable	Number on stock Part 3	Warehouse	Initiating number of part 3 on stock.	
Attribute	Operator cost	Part	Estimated cost of required operator.	
Variable	Operator training cost	AM Process	Calculates operator training cost at the current point in time.	(Operator training price/(365*24))*TNOW
Variable	Operator training price	AM Process	Price of operator training	
Variable	Part 1 Penalty	Warehouse	Calculated cumulated penalty of part 1.	Part 1 Penalty + Penalty Part 1
Variable	Part 2 Penalty	Warehouse	Calculated cumulated penalty of part 2.	Part 1 Penalty + Penalty Part 1
Variable	Part 3 Penalty	Warehouse	Calculated cumulated penalty of part 3.	Part 1 Penalty + Penalty Part 1
Attribute	Part building time	Part	Time that is needed to build a part with respect to part volume and building speed.	(Building volume/1000)/Building speed AM Material 1
Variable	Part value withdrawals	Warehouse	Value of parts taken from warehouse.	Value consumed Part 1+Value consumed Part 2+Value consumed Part 3
Attribute	Part value Part 1	Part	Purchase price of part 1.	
Attribute	Part value Part 2	Part	Purchase price of part 2.	
Attribute	Part value Part 3	Part	Purchase price of part 3.	

Туре	Variable	Reference	Description	Formula
Variable	Parts in queue	AM Process	Counts the parts in queue	Parts in queue+1
Attribute		Part	Receives the penalty value of each part.	
Attribute	Penalty Part 1	Part	Penalty when part 1 is not delivered in time.	
Attribute	Penalty Part 2	Part	Penalty when part 2 is not delivered in time.	
Attribute	Penalty Part 3	Part	Penalty when part 3 is not delivered in time.	
Attribute	Priority	Part	Pre-assigned priority of part as production order basis.	
Attribute	Production priority	Part	Priority which is used for production order, dependent on several attributes.	Priority*Times in queue/(Time to manufacture/(TNOW- Arrival))
Attribute	Reorder point part 1	Part	Reorder point of part 1.	
Attribute	Reorder point part 2	Part	Reorder point of part 2.	
Attribute		Part	Reorder point of part 3.	
Variable	Stock value Part 1	Warehouse	Represents the stock value of part 1 in the warehouse.	Number on stock Part 1 * Part value Part 1
Variable	Stock value Part 2	Warehouse	Represents the stock value of part 2 in the warehouse.	Number on stock Part 2 * Part value Part 2
Variable	Stock value Part 3	Warehouse	Represents the stock value of part 3 in the warehouse.	Number on stock Part 3 * Part value Part 3
Variable	Storage cost	Warehouse	Storage cost in %.	
Variable	Storage cost at time	Warehouse	Calculates storage cost at the current time.	Total stock value*Storage cost
Attribute	Time to manufacture	Part	Allowed time to deliver a part. Exceeding this time leads to a penalty.	
Attribute	queue	Part	Number of times a part entered the queue. This influences the production priority.	Times in queue+1
Variable	Total AM cost	AM Process	Sums up all cost related to AM.	Consumed material cost+ Consumed energy cost + Total operator cost + Total maintenance cost + Operator training cost + Machine depreciation + Total penalty

Туре	Variable	Reference	Description	Formula
Variable	Total	AM	Calculates total	(AM maintenance
	maintenance	Process	maintenance cost at the	cost/(365*24))*TNOW
	cost		current point in time.	
Variable	Total	AM	Calculates total operator	Total operator cost +
	operator	Process	cost at the current point	Operator cost
	cost		in time.	
Variable	Total	AM	Calculates total penalty	Total penalty + Penalty
	penalty	Process	cost at the current point	
			in time.	
Variable	Total stock	Warehouse	Calculates total stock	Stock value Part 1 + Stock
	value		value at the current point	value Part 2 + Stock value
			in time.	Part 3
Variable	Total	Warehouse	Calculates total	Part value consumed +
	warehousing		warehousing cost at the	Storage cost
	cost		current point in time.	
Variable	Value	Warehouse	Calculates the value of	Value consumed Part 1 + Part
	withdrawals		consumed part 1 at the	value Part 1
	Part 1		current point in time.	
Variable	Value	Warehouse	Calculates the value of	Value consumed Part 1 + Part
	withdrawals		consumed part 2 at the	value Part 1
	Part 2		current point in time.	
Variable	Value	Warehouse	Calculates the value of	Value consumed Part 1 + Part
	withdrawals		consumed part 3 at the	value Part 1
	Part 3		current point in time.	
Variable	Years of	AM	Planned depreciation time	
	depreciation	Process	for AM machine.	

4.2 NUMBER OF REPLICATIONS

The number of replications is important to ensure a robust evaluation from discrete event simulation, and we estimated the number of replication in our simulations with the framework proposed by Kelton et. al (2010). It follows a t-distribution based on the half width.

$$h = t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}} \tag{2}$$

h Half width

- $t_{n-1,1-\alpha/2}$ t-distribution critical value
- s Standard deviation
- n Number of replications

The error of the average is calculated by dividing h by the average.

Equation (2) is then solved for s to calculate the standard deviation. The parameter n and $t_{n-1,1-\alpha/2}$ are known. Arena's output after a simulation run is the average and h, dependent on n. Based on this s is calculated according to equation (3).

$$s = \frac{h * \sqrt{n}}{t_{n-1,1-\alpha/2}}$$
 (3)

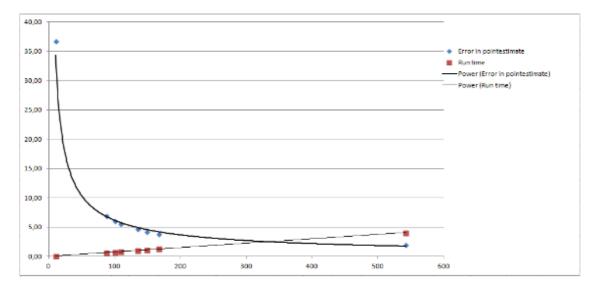
After solving the equation for n, it is possible to estimate the required replications to reach a satisfactory confidence interval.

$$n = t_{n-1,1-\alpha/2}^2 \frac{s^2}{h^2} \tag{4}$$

A difficulty occurs when using equation (4) is to calculate the new n. The standard deviation is not known, because the new s is dependent on the new n. To solve this, it is assumed that s is equal for the scenarios with the old and new n. The failure will be significantly reduced with an increasing number of replications.

Table 4-3 shows how the number of replications influences the quality of the results. Particularly, the table is created according to the following proceeding:

- set the initial number of replications (n_{Basis})
- run the simulation model
- fill in the values of average, half width, n and set the t-value for the confidence interval
- the new n for the next simulation run is calculated and set as n_{Basis} for the next run


For demonstration purposes n is set to a low value of 10 in the first run. The number of estimation steps can be reduced when the initial n is set to a more appropriate value directly.

For this dissertation, an error in the point estimate of less than 5 % is the target. Table 4-3 shows the results for the model basic setup, described in the proposal. The "average" value is the total AM cost described in the model (point estimate).

It was decided to use 150 replications for a simulation run. More than 122 replications would be sufficient in order for the error to be below the target of 5%. On the other hand, the time estimate shows that the simulation time is short and a conservative number of 150 replications is acceptable and reduces h down to ~4.28 %. For every model modification, it will be checked if n is still in the range of a maximum error of 5 %. If possible, the number of replications will be reduced to safe calculation time, but the maximum error of 5 % will never be exceeded.

Table 4-3: Effects of the number of replications

			Estimate												
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Average	€	47354	42275	42453	41563	42315	41830	42245	42067	42231	42013	42148	42041	42127	42057
Half width	€	17435	845	2939	1606	2579	1789	2354	1969	2195	2047	2142	2076	2125	2093
n _{basis}		10	542	87	167	100	149	109	135	118	127	121	125	122	124
t _{n-1,1-α/2} [95 %]		2,262	2,262	2,262	2,262	2,262	2,262	2,262	2,262	2,262	2,262	2,262	2,262	2,262	2,262
StdDev _{Basis}	€	24374	8699	12118	9173	11403	9657	10864	10113	10540	10197	10418	10263	10377	10304
Error in pointestimate	%	36,82	2,00	6,92	3,86	6,10	4,28	5,57	4,68	5,20	4,87	5,08	4,94	5,04	4,98
Next estimate		_													
Half width	€	2368	2114	2123	2078	2116	2092	2112	2103	2112	2101	2107	2102	2106	2103
Target of error in poinest.	%	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
Number of replications		542	87	167	100	149	109	135	118	127	121	125	122	124	123
Run time of current series															
Run time	S	5	244	39	75	45	67	49	61	53	57	54	56	55	56
Run time	min	0,1	4,1	0,7	1,3	0,8	1,1	0,8	1,0	0,9	1,0	0,9	0,9	0,9	0,9

4.3 SELECTED SPARE PART SET

Another issue of the work is to define a set of spare parts used for simulation. We did not find any useful set of spare parts used in the literature, thus decided to design such a set in the current dissertation. The goal is to ensure the set of spare parts represents the average mix of a typical warehouse. A big plant, located in Neuss (Germany), agreed to provide warehouse data of one operational area out of three operational areas. The warehouse data contains ~ 2600 different kinds of spare parts and the related information for each spare part type.

The data was analyzed in several steps. First, each of the 2600 parts was evaluated to see if it may be possible to be manufactured by AM. If so, the part was marked and selected for further analysis. Evaluation was based on the available listed description of the part, material and part size. Figure 4-1 illustrates the data we were provided pertaining to several spare parts.

Inte	n	Platz	Material	Materialkurztext	Gesamtbestar	Gesamtwert	Anlagenzuorc	Verbrauch	VeblBestand	Wert Vebrauc
x		019A	74089604	Zellenblech 102x225x5 mm M-N-ELB-1689	5	54,93	2223000	0	Keine Verbrau	0
x		020B	74089987	Kolbenring 85 x 77,6 x 6 x 3 Pos. 244	6	27,61	2480000	0	Keine Verbrau	0
x		019F	74089697	KUGELGELENK AM40 G 3/8" X G 1/4"	1	12,31	2370000	0	Keine Verbrau	0

Figure 4-1: Illustrative sample of warehouse data

It was found that among the 2600 parts, 630 can be manufactured by AM. Next, an ABC analysis was executed on the value of the parts. The results are displayed in Table 4-4. Low value parts with an average value of 50 \in represent 75 %, middle value parts (average 200 \in) represent 20 % and high value parts (average 1000 \in) 5 % of the stock.

Value [€]				lowed time nanufactur [hr]		Penalty [€]			Volume [% of machine`s building volume]		
low	50	75%	low	48	5%	low	2500	75%	low	0,005	75%
mid	200	20%	mid	72	20%	mid	5000	20%	mid	0,05	20%
high	1000	5%	high	192	75%	high	10000	5%	high	0,15	5%

Table 4-4: Spare part parameter set

In the next step boundaries were set during discussions with experts of the plant, based on operational observations. If AM can be applied for a part, the allowed time to manufacture is set to low (48 h) for 5 %, middle (72 h) for 20 % and high (192 h) for 75 % of the parts. Allowed time to manufacture describes the maximum allowed time in which a spare part must be produced and delivered. If it is not possible to deliver the spare part, a penalty will be charged. Penalty is therefore an indicator of the system performance.

Also the values for the different penalties were set. Observations and analysis of operation allowed to estimate operational losses on a monetary basis. It was agreed to use $2,500 \notin$ as low, $5,000 \notin$ as mid and $10,000 \notin$ as high average penalty for simulation. The fact of penalties makes preventive maintenance scenarios an interesting field for future research since it will allow for scheduling part production runs, which can certainly improve the AM situation. The presented model is not set up to simulate preventive maintenance strategies upfront the AM performance simulation. The spare part requests are created randomly, which also represents a typical behavior for spare parts with low turnover rates. Furthermore, if regular intervals for part replacements are planned, parts can be ordered on time and do not need to be stocked. This can also be true if parts simply need to be reworked.

The building volume values are estimated by the available machine data and the allowed time to manufacture. In our estimation, the machine Eosint M 280 (400 Watt Laser) was used. For example, the allowed time to manufacture (mid - 72 hr) multiplied with the average building speed of the machine (23 cm³/hr) results in a product, representing the maximum build volume of the part (1380 cm³), which is ~ 6.7 % of the total building volume of the machine. To have a time buffer, the value is reduced to a more practical value, 5 % in this example. The distribution (75 %, 20 %, 5 %) was set.

e	Part size max. length [mm]	250
chine a	Part size max. width [mm]	250
mac	Part size max. height [mm]	325
AM	Average building speed [cm ³ /hr]	23
A	Building volume [cm ³]	20312,5

Table 4-5: Extract of machine data of Eosint M 280 (400 Watt Laser)

The values used in these tables can be different since they are based on the available warehouse data and the related operational observations.

With the set values in Table 4-4 it is possible to list all possible combinations of low, mid, and high values. To illustrate, Table 4-6 outlines the first 7 of 81 possible combinations. Based on these combinations, further assumptions are possible. For each combination the probability can be assigned and calculated. This is done by multiplying each individual probability.

For example for part 1: 0.75 * 0.05 * 0.75 * 0.75 = 0.02109

		Lo	gic		Probability						
Part No.	Value	Allowed time to manufacture	Penalty	Volume	Value	Allowed time to manufacture	Penalty	Volume	Total Probability = 1		
1	low	low	low	low	0.75	0.05	0.75	0.75	0.02109		
2	low	low	low	mid	0.75	0.05	0.75	0.20	0.00562		
3	low	low	low	high	0.75	0.05	0.75	0.05	0.00141		
4	low	low	mid	low	0.75	0.05	0.20	0.75	0.00563		
5	low	low	mid	mid	0.75	0.05	0.20	0.20	0.00150		
6	low	low	mid	high	0.75	0.05	0.20	0.05	0.00038		
7	low	low	high	low	0.75	0.05	0.05	0.75	0.00141		

Table 4-6: Logical combinations (first 7 of 81)

When this is done for each part, the table can be sorted by the individual values of the total probability. The individual probability value represents the probability that this specific part will be requested and must be delivered. When the probabilities are sorted and cumulated, they can be displayed. It becomes obvious that the first 30 part types represent 95 % of all requests. The other 51 types represent only 5 % of all requests. Even if 95 % of the system utilization can be displayed by 30 kinds of spare parts, it was decided to keep all 81 kinds of spare parts in the model. This is because these parts will block storage space, whether they are being used or not, and therefore contribute to inventory cost. It is our belief that these low probability part types might significantly impact the spare part simulation, and therefore represent a real world situation where rare failures occur.

	Logic				Probability				Calculations		
Part No. sorted	Value	Allowed time to manu- facture	Penalty	Volume	Value	Allowed time to manu- facture	Penalt y	Volume	Total Probability = 1	Probability cumulated	
1	low	high	low	low	0.75	0.75	0.75	0.75	0.31641	0.316406	
2	low	mid	low	low	0.75	0.20	0.75	0.75	0.08438	0.400781	
3	low	high	low	mid	0.75	0.75	0.75	0.20	0.08438	0.485156	
4	low	high	mid	low	0.75	0.75	0.20	0.75	0.08438	0.569531	
5	mid	high	low	low	0.20	0.75	0.75	0.75	0.08438	0.653906	
6	low	mid	low	mid	0.75	0.20	0.75	0.20	0.02250	0.676406	
7	low	mid	mid	low	0.75	0.20	0.20	0.75	0.02250	0.698906	

Table 4-7: Spare parts with sorted probability (first 9 of 81)

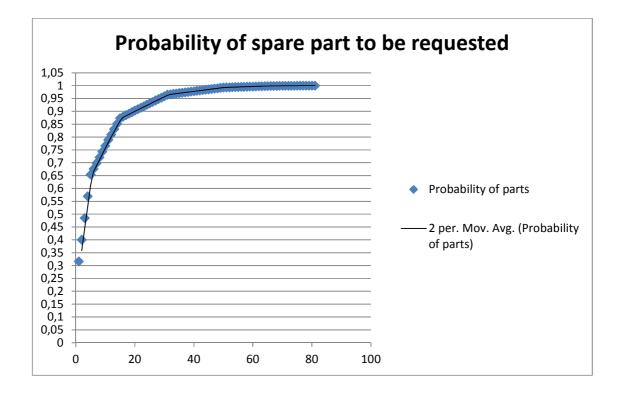


Figure 4-2: Probability of spare part to be requested

Next a priority is assigned to each kind of part by use of a pairwise importance matrix and comparison thereafter. In the pairwise importance matrix, each attribute is compared with all other attributes, stating which attribute should be prioritized or if the importance of two is equal. For the resulting three cases, the following values are used:

- Attribute is less important than the other attribute: 1
- Attribute is equal to the other attribute: 2
- Attribute is more important the other attribute: 3

For example:

Value is less important than Penalty $\rightarrow 1$ or Volume is more important than Penalty $\rightarrow 3$)

When all combinations are evaluated, the values of the each column are summed up, which represents the weight of the attribute in the relevant column. The weight can be normalized and used for further calculations. Table 4-8 shows the set preferences including the weight and normalized weight of each attribute.

m 11	4 0	D 1	•
Table	4 - 8	Paired	comparison
1 aore		I un cu	companioon

	Value	Allowed time to manufacture	Penalty	Volume	Weight	Normalized weigth
Value		1	1	1	3	0.125
Allowed time to deliver	3		3	3	9	0.375
Penalty	3	1		1	5	0.208333
Volume	3	1	3		7	0.291667
				Total 24		1

For each attribute a basic priority can be assigned. For value, penalty and volume, it is assumed that a low value in the logic part has a basic priority of 1. Consequently, mid has a value of 2 and high a value of 3. While for example a low penalty does not need a high priority, it is the opposite for the allowed time to manufacture. Here, low represents a high time pressure and therefore a high priority. The setting is - low equals 3, mid equals 2, high equals 1. When the values are assigned, the weighted priority can be calculated by multiplying the basic priority of each attribute with the normalized weight of the attribute. For example for part type 1:

1 * 0.125 + 3 * 0.375 + 1 * 0.208333 + 1 * 0.291667 = 1.7500

Then the actual priority is assigned accordingly:

Priority = 1	1 <=	weighted priority <	1.66667
Priority = 2	1.66667 <=	weighted priority <	2.333337
Priority = 3	2.333337<=	weighted priority <	3

Table 4-9: Priority calculation

	Logic				Priority						
No.	Value	Allowed time to manufacture	Penalty	Volume	Value	Allowed time to manufacture	Penalty	Volume	Weighted priority	Priority	
1	low	low	low	low	1	3	1	1	1.7500	2	
2	low	low	low	mid	1	3	1	2	2.0417	2	
3	low	low	low	high	1	3	1	3	2.3333	2	
4	low	low	mid	low	1	3	2	1	1.9583	2	
5	low	low	mid	mid	1	3	2	2	2.2500	2	
6	low	low	mid	high	1	3	2	3	2.5417	3	
7	low	low	high	low	1	3	3	1	2.1667	2	
8	low	low	high	mid	1	3	3	2	2.4583	3	
9	low	low	high	high	1	3	3	3	2.7500	3	

In the last step the table must be cleared of combinations which are not possible. This means that combinations where a high volume and a mid or low allowed time to manufacture occur, are deleted from the spare part set. It will never be possible to produce a high volume part in mid or low "Allowed time to manufacture". The same is also true for mid volume parts and low "Allowed time to manufacture". After clearing the table, 81-27 = 54 spare part types remain. The probabilities must then be corrected (Total probability must sum up to 1) since the eliminated parts are no longer part of the spare part set.

Table 4-10 was prepared in accordance with the previously described proceeding and lists the 54 spare part types, relevant for simulation, and sorted by probability. Only results are presented.

			Lo	gic		Prio	rity	0	alculations	
Sorted	No.	Value	Allowed time to deliver	Penalty	Volume	Weighted priority	Priority	Corrected Total Probability = 1	Production time [hr]	Corrected Probability cumulated
1	19	low	high	low	low	1,0000	1	0,323689	4	0,323689
2	10	low	mid	low	low	1,3750	1	0,086317	4	0,410006
3	20	low	high	low	mid	1,2917	1	0,086317	44	0,496324
4	22	low	high	mid	low	1,2083	1	0,086317	4	0,582641
5	46	mid	high	low	low	1,1250	1	0,086317	4	0,668958
6	11	low	mid	low	mid	1,6667	1	0,023018	44	0,691976
7	13	low	mid	mid	low	1,5833	1	0,023018	4	0,714994
8	37	mid	mid	low	low	1,5000	1	0,023018	4	0,738012
9	47	mid	high	low	mid	1,4167	1	0,023018	44	0,761029
10	49	mid	high	mid	low	1,3333	1	0,023018	4	0,784047
11	23	low	high	mid	mid	1,5000	1	0,023018	44	0,807065
12	1	low	low	low	low	1,7500	2	0,021579	4	0,828645
13	21	low	high	low	high	1,5833	1	0,021579	132	0,850224
14	25	low	high	high	low	1,4167	1	0,021579	4	0,871803
15	73	high	high	low	low	1,2500	1	0,021579	4	0,893382
16	14	low	mid	mid	mid	1,8750	2	0,006138	44	0,899520
17	38	mid	mid	low	mid	1,7917	2	0,006138	44	0,905659
18	40	mid	mid	mid	low	1,7083	2	0,006138	4	0,911797
19	50	mid	high	mid	mid	1,6250	1	0,006138	44	0,917935
20	4	low	low	mid	low	1,9583	2	0,005754	4	0,923689
21	16	low	mid	high	low	1,7917	2	0,005754	4	0,929444
22	28	mid	low	low	low	1,8750	2	0,005754	4	0,935198
23	48	mid	high	low	high	1,7083	2	0,005754	132	0,940953
24	52	mid	high	high	low	1,5417	1	0,005754	4	0,946707
25	64	high	mid	low	low	1,6250	1	0,005754	4	0,952462
26	74	high	high	low	mid	1,5417	1	0,005754	44	0,958216
27	76	high	high	mid	low	1,4583	1	0,005754	4	0,963971
28	24	low	high	mid	high	1,7917	2	0,005754	132	0,969725
29	26	low	high	high	mid	1,7083	2	0,005754	44	0,975480
30	41	mid	mid	mid	mid	2,0000	2	0,001637	44	0,977116
31	17	low	mid	high	mid	2,0833	2	0,001535	44	0,978651
32	31	mid	low	mid	low	2,0833	2	0,001535	4	0,980185
33	43	mid	mid	high	low	1,9167	2	0,001535	4	0,981720
34	51	mid	high	mid	high	1,9167	2	0,001535	132	0,983254
35	53	mid	high	high	mid	1,8333	2	0,001535	44	0,984789
36	65	high	mid	low	mid	1,9167	2	0,001535	44	0,986324

Table 4-10: Spare part types for simulation

Г

			Lo	gic		Prio	rity	C	Calculations	
Sorted	No.	Value	Allowed time to deliver	Penalty	Volume	Weighted priority	Priority	Corrected Total Probability = 1	Production time [hr]	Corrected Probability cumulated
37	67	high	mid	mid	low	1,8333	2	0,001535	4	0,987858
38	77	high	high	mid	mid	1,7500	2	0,001535	44	0,989393
39	7	low	low	high	low	2,1667	2	0,001439	4	0,990831
40	55	high	low	low	low	2,0000	2	0,001439	4	0,992270
41	75	high	high	low	high	1,8333	2	0,001439	132	0,993708
42	79	high	high	high	low	1,6667	1	0,001439	4	0,995147
43	27	low	high	high	high	2,0000	2	0,001439	132	0,996586
44	44	mid	mid	high	mid	2,2083	2	0,000409	44	0,996995
45	68	high	mid	mid	mid	2,1250	2	0,000409	44	0,997404
46	34	mid	low	high	low	2,2917	2	0,000384	4	0,997788
47	54	mid	high	high	high	2,1250	2	0,000384	132	0,998171
48	58	high	low	mid	low	2,2083	2	0,000384	4	0,998555
49	70	high	mid	high	low	2,0417	2	0,000384	4	0,998939
50	78	high	high	mid	high	2,0417	2	0,000384	132	0,999322
51	80	high	high	high	mid	1,9583	2	0,000384	44	0,999706
52	71	high	mid	high	mid	2,3333	2	0,000102	44	0,999808
53	61	high	low	high	low	2,4167	3	0,000096	4	0,999904
54	81	high	high	high	high	2,2500	2	0,000096	132	1,000000

5 BASE CASE SIMULATION

The base case is a reference case for all further extensions of the model. It is important to evaluate the impact and therefore the significance of changes in the parameter set. The base case enables the direct comparison with respect to changes in the parameter set.

5.1 MODEL ADJUSTMENT

The simulation experiments require changes in the basic model described in the previous sections. Recall that Section 4.3 mentions that no individual parts are used, while in fact the simulation uses a set of spare parts with certain characteristics. This is important for the calculation of storage cost. While the base case model calculates the storage cost by summing up the product of the number of parts on stock times price times storage cost, the same is not possible for a general spare part set. For example:

The total spare part set consists of approximately 630 parts and represents a stock value of 285,000 €. The general spare part set includes 54 parts representing only a fraction of the actual stock value.

The model is corrected to compensate this effect. Compensation is done by using the known stock value, used as average⁶, and breaking it down to an hourly basis. The time related storage cost can then again be calculated by multiplying it with the parameter "storage cost" [%].

⁶ Due to the high stock value variations are assumed to be marginal.

Calculation:

$$\frac{Actual \ stock \ value \ * \ Storage \ cost \ [\%] \ * \ Current \ run \ time \ of \ the \ model}{12 \ months \ * \ 30 \ days \ * \ 24 \ hours} \tag{5}$$

For example after a one year run time of the simulation model the result for the storage cost at this time is calculated:

$$\frac{285,000 \notin *15 \% *8,760 h}{12 months *30 days *24 hours} *5 = 42,583 \notin$$

The simulation model will always update the storage cost at time according to the present run time.

All items in the selected spare part stock were optimized to the specific EOQ, reorder point and lead time for each spare part type. The target was to have a minimum stock level without creating penalties.

The second adjustment to the base case model is the removal of the depreciation out of the total cost of AM. In the basic model an existing warehouse is assumed where the depreciation time has ended. In this case, depreciation cost of AM are a significant cost factor and should be included in the total AM cost. Since the main focus of this work is comparing the performance of AM to warehousing, depreciation is not considered as a cost factor included in the total cost, neither for the warehouse nor for the AM machine. Further more information about building cost for warehouses was not available, so taking the depreciation of the AM machine into account would only produce misleading results. However, the depreciation of the AM machine will be a result which can be used if further data becomes available.

Lastly, the general spare part set is included in the model and the replication length was adjusted to 8640 hours, representing 1 year of operation.

The create module was set to create entities according to a Poisson distribution with a mean of 100 hrs as a basic setting. The mean of the distribution represents the mean arrival time of the spare part requests. The mean arrival time is used to stress or relax the system, which allows identifying an "upper limit" at which the system is working stable with maximum utilization, without creating no or minor penalties. For example when the mean inter-arrival time decreases, more part requests will enter the system and the system's stress is increased. When the mean inter-arrival time increases, less part requests will enter the system and the system and the system will be more relaxed. The effect of these changes is displayed best by "AM parts out". This variable describes the number of parts which left the system after they were produced by the AM machine. As long as the system is in a stable state, "AM parts out" is equal to the delivered parts of the warehouse route. The upper limit is defined as the point where cost of the AM option equals that the warehousing option.

Run Speed	Run Contr	ol Reports	Project Parameters
Replication Par	rameters	Array Sizes	Arena Visual Designer
Number of Rep	lications:	Initialize B	etween Replications
60		V Statisti	cs 🛛 🗹 System
Start Date and	Time:		
Mittwoch	, 24. Dezemb	er 2014 14:03:11	1
Warm-up Perio	d:	Time Units:	
0		Hours	•
Replication Ler	ngth:	Time Units:	
8640		Hours	•
Hours Per Day			
24			
Base Time Unit	s:		
Hours	-	•]	
Terminating Co	ndition:		
1			

Figure 5-1: Changes in replication parameters

Create	Ridge.	8 22	
Name: Spare part creation	•	Entity Type: Entity 1 🔹	Poisson distribution
Time Between Arrivals Type: Expression	Expression: POIS(Mean arriv	Units: Hours	using mean arrival time
Entities per Arrival: 1	Max Arrivals: Infinite	First Creation:	
_	ОК С	Cancel Help	

Figure 5-2: Changes in create module

To reach an acceptable half width of less than five percent, 60 replications are used. The half width is checked for every simulation setup and was never bigger than the accepted 5 % (typically around 3 %).

Output	Average	Half Width	Minimum Average	Maximum Average
Total AM cost statistic	73493.78	1.918,33	59415.21	91953.46
Total warehousing cost statistic	74190.58	510,59	69176.27	81680.14

Figure 5-3: Verification of half width

5.2 PROCEEDING


First of all, an upper limit search is executed to define a limit for the system performance in the base case. An upper limit search stresses the system until the system exits the stable state. This provides a first impression of how the system reacts to changes. The limit search is executed using two independent simulation runs. First a rough and then a detailed limit search. Each scenario (one row is one scenario) will run 60 times to create the accepted half width.

5.3 RESULTS AND FINDINGS

Table 5-1: Results of upper limit search

Upper limit search - rough Controls Responses	Controls	Responses																		
Unit	-	ŧ	kg	kWh	¥	ŧ	•	101	ŧ	و	*	*	*	%	mm ³	€ at time	hours	Parts	Parts	Parts
													Machine Total					Average		
	Arrival	Total warehousing Consumed Consur	Consumed	ned	Consumed bed material	Consumed	Operator 1	Consumed Operator maintenance AM	-	Total N AM s	Machine Machine setup productic	5	cool down	machine Average utilization building	Average building	Machine	Average time in	Average number Parts in time in of parts queue	Parts in queue	AM parts
Simulation run		cost	material			energy cost cost	cost	cost	alty	cost				time		depreciation queue		in queue total	total	out
Search Upper limit 1.1	1500	55436	19	4878	1532	293	300	25745	0	36452	1	1	1	3	406462	26318	'	0	0	9
Search Upper limit 1.2	1300	57840	23	5759	1808	346	350	26797	0	38233	1	2	1	3	411321	27393	Ļ	0	0	7
Search Upper limit 1.3	1100	57530	25	6452	2026	387	400	26453	0	38083	1	2	1	4	403176	27040	L,	0	0	8
Search Upper limit 1.4	900	60435	30	7768	2439	466	500	27823	0	40503	1	2	1	4	388359	28441	L,	0	0	10
Search Upper limit 1.5	200	63163	40	10087	3167	605	648	28791	0	42809	1	3	1	5	388576	29431	Ļ	0	0	13
Search Upper limit 1.6	500	64315	57	14449	4537	867	895	29067	0	45055	2	4	2	7	403665	29713	L,	0	0	18
Search Upper limit 1.7	300	65845	90	23015	7227	1381	1457	29018	0	48755	3	9	3	12	395036	29663	Ļ	0	0	29
Search Upper limit 1.8	100	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	30061	50	0	5	87
Search Upper limit 1.9	₽	173511	1377	350726	110128	21044	22846	28119	28119 1518458	1709967	1	97	1	100	386299	28743	706	167	1832	457

Upper limit search - detail		Controls Responses																		
Unit	it h	ų	kg	kWh			•	ų	•	و *	9		%	8	mm ³ €	€ at time	hours	Parts P	Parts	Parts
		Total			ę			Total AM	Total	-	je.		eine	-	Average		A 1	Average N number o	ts in	
Simulation run	Arrival (mean)	warehousing Consumed Consumed cost material energy	Consumed material		material (cost	Consumed Oper energy cost	Operator cost	Operator maintenance cost cost	AM Penalty	AM S cost ti	setup pi time ti	production time	down time	utilization I time	volume d	Machine depreciation	time in queue	of parts queu in queue total	<u>م</u>	AM parts out
Search Upper limit 2.1	170	69198	161	40997	12873	2460	2554	29265	0	56908	5	11	5	21	401331	29916	I,	0	0	51
Search Upper limit 2.2	160	69671	173	44147	13862	2649	2710	29278	125	58383	5	12	5	22	407170	29929	5	0	1	54
Search Upper limit 2.3	150	70144	183	46714	14668	2803	2892	29338	292	59772	9	12	5	23	403962	29990	6	0	2	58
Search Upper limit 2.4	140	70574	199	50773	15943	3046	3097	29324	875	62060	9	13	9	25	409695	29976	16	0	3	62
Search Upper limit 2.5	130	71180	214	54606	17146	3276	3329	29311	1083	63917	9	15	9	27	410052	29962	27	0	3	67
Search Upper limit 2.6	120	72104	230	58528	18378	3512	3612	29364	1417	66070	7	16	7	29	404922	30017	37	0	3	72
Search Upper limit 2.7	110	72746	246	62791	19716	3767	3933	29351	2167	68717	8	17	7	32	399037	30003	44	0	4	79
Search Upper limit 2.8	100	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	30061	50	0	5	87
Search Upper limit 2.9	90	75118	304	77492	24332	4650	4802	29390	5208	78178	6	21	6	39	403511	30043	<mark>5</mark> 3	0	7	96
Search Upper limit 2.10	80	77316	341	86957	27304	5217	5395	29421	0002	84145	10	23	10	43	402876	30075	45	0	10	108
Search Upper limit 2.11	70	78155	380	96782	30390	5807	6154	29441	9292	90898	11	26	11	48	393467	30096	37	0	16	123
Search Upper limit 2.12	60	81932	440	112059	35187	6724	7191	29435	16417	104765	13	30	13	56	389576	30090	32	0	33	144
Search Upper limit 2.13	50	84622	523	133259	41843	7996	8622	29466	35542	133290	15	35	15	65	386618	30121	34	0	58	172
Search Upper limit 2.14	40	77606	654	166689	52340	10001	10723	29461	86667	199013	17	44	17	78	388515	30116	39	0	105	214
Search Upper limit 2.15	30	77999 0	845	215214	67577	12913	14288	29456	221958	356010	17	57	17	91	376724	30110	45	1	207	286
Search Upper limit 2.16	20	118255	1251	318657	100058	19119	20451	29032	29032 1040792	1219129	7	85	7	66	390566	29677	139	7	420	409
Search Upper limit 2.17	10	173511	1377	350726	110128	21044	22846	28119	28119 1518458 1709967	1709967	1	67	1	100	386299	28743	206	167	1832	457

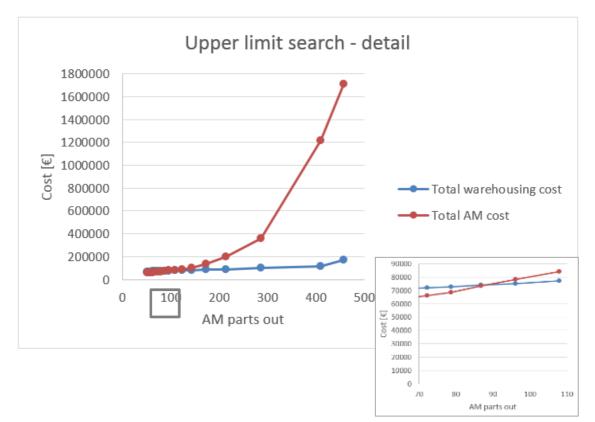


Figure 5-4: Upper limit search

We now compare further setups (a setup means a set of several scenarios) of the technical investigations against the base case. Also, the base cases of technical extensions can be compared against the given base case with a defined upper limit.

Figure 5-4 summarizes the detailed results of the upper limit search of the base case. The rough overview of upper limit search shows significant cost increase at an output of more than 100 parts, representing an upper limit of 90 hrs. This section was analyzed in detail. The cost of AM and warehousing are equal at an output between 90 and 100 parts, representing an upper limit between 90 and 100 hours. 100 hours mean inter-arrival time is therefore the selected standard upper limit for entity creation, since penalties increase strongly at a higher utilization. It must be mentioned that the upper limit correlates strongly with the total machine utilization. An increased total machine utilization of approximately 39 % leads to a strong increase in the total penalty. Consequently the system is no longer interesting for spare part supply on demand if the total AM machine utilization is above an accepted level of penalties, what is equivalent to an insufficient performance of the AM setup.

The upper limit search of the base case showed an important effect. When the machine utilization exceeds a certain level, in the current setup 39 %, the system is not able to provide a proper service level with respect to penalties. Observations of the running simulation model lead to the conclusion that the more parts are placed in a production run, the more time the production run will take. This increases the machine utilization, the chance that a new part request must wait in queue for the next production run, and therefore the chance for a higher penalty. Figure 5-5 illustrates this correlation.

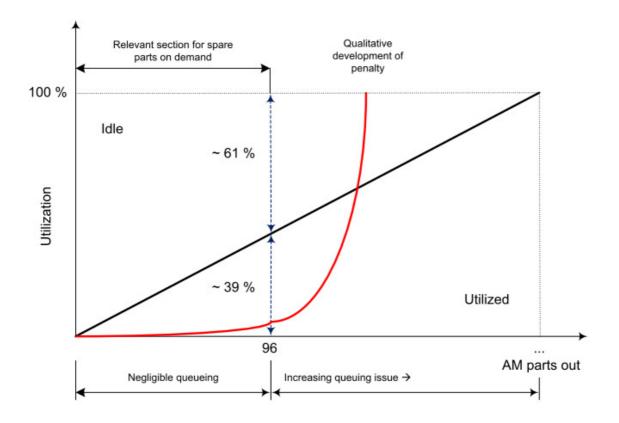


Figure 5-5: Correlation between machine utilization and queuing

6 TECHNICAL INVESTIGATIONS

Technical investigations are conducted mainly for two reasons. First, it can be used as a verification of the simulation model. When results of the planned experiments are predictable even without simulation, these predicted results can help to verify the efficiency and correctness of the simulation model. It is important to have a valid model before performing more complex experiments as discussed in chapter 7. Second, the technical investigations can provide some insights on effects of various parameters on the system. Typically a hypothesis regarding results for a specific setup can be generated through these investigations. The planned experiments allow us to see the actual effect of changes on the complete system and will allow for further conclusions with respect to the relevant hypothesis.

6.1 BUILDING SPACE VOLUME

The effect of an increased building space volume with respect to spare parts is not yet clarified. The following hypothesis is investigated for clarification:

• Increased building space volume increases the processing time and delivery time.

The calculations regarding the building space volume use the same simulation model which is used for the base case. To execute the simulation the first scenario of the setup is set to a minimum building space volume which can take only the biggest spare part. For the following scenarios the building space volume is increased stepwise to see if any effects in the responses occur. Effects on the results will be discussed.

7
4
\bigcirc
Ē.
\mathbf{v}
OISSI
\square
5
ISCL
\mathbf{S}
$\overline{}$
Ц
\sim
E
Ζ.
1
4
TS
Ē
- 1
RESUI
1
5
Щ
$\overline{\mathbf{z}}$
щ
_
<u> </u>
<u> </u>
÷ •

Table 6-1: Results for building space increase

	Controls	s				Responses																	
Unit	4	cm ³	- mm		um	het.	kg	ЧМЯ	ŧ	ę	3	÷	ŧ	6	% %	%	%		mm³ €.	€ at time ho	hours Pa	Parts Pa	Parts Parts
		Building	Suilding	Building	Building	Building Building Building Total uses			Consumed Consumed	Concurred		Total AM			Machine Machine		Machine Total	Total Average	M	0 anita	A	Average Parts	arts
Simulation Arrival space	Arrival	space	space	space	space	housing	Consumed	Consumed Consumed material	material	energy	Operator	e e	Total AM	Total AM	4	9		utilization building depre-	uilding de	epre-	time in of parts queue	parts qu	
un	(mean)	(mean) volume depth		height	width	cost	material	energy	cost	cost	cost	cost	Penalty cost		time tir	time	time tir	time	volume ciation		queue in	in queue total	tal out
Scenario 1	100	3049	145	145	145	74115	274	58969	21881	4181	4332	29409	2833	72439	5	18	8	32 4	402003	30063	48	0	5
Scenario 2	100	5256	145	250	145	74155	275	20002	21981	4200	4332	29409	2875	72599	5	19	8	32 4	403846	30062	49	0	5
Scenario 3	100	14000	200	350	200	74136	275	28669	21960	4196	4333	29406	3375	73071	7	19	8	34	403423	30059	50	0	5
Scenario 4	100	40500	300	450	300	74107	275	69989	21976	4199	4333	29402	4208	73919	12	19	8	38	403747	30055	52	0	5
Scenario 5	100	88000	400	550	400	74015	274	69919	21955	4195	4321	29391	16375	86033	19	19	8	46	404408	30044	52	0	9
Scenario 6	100	162500	500	650	500	74095	274	69889	21945	4193	4317	29398	30750	100402	31	19	80	57	404830	30051	46	0	10

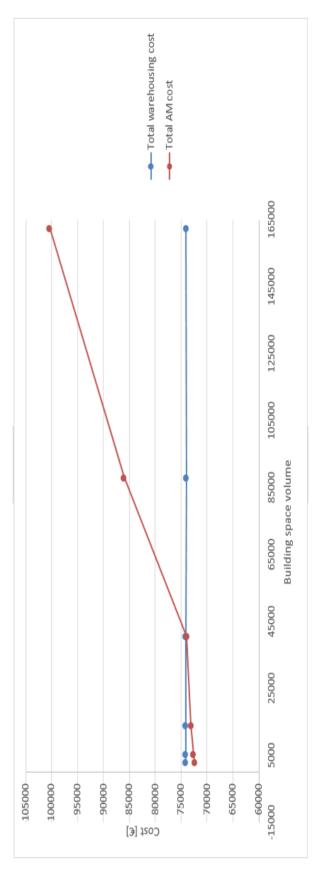


Figure 6-1: Building space volume vs. AM and warehousing cost

The first experiments show the influence of the building space. It can be confirmed that an increase in the building volume increases also the processing time, and thus enlarges the delivery time for spare parts. Table 6-1 shows the effect of the building space volume to the machine setup time. The machine setup takes longer when the building space volume increases, which leads to a penalty increase. Additionally, a bigger building space allows for bigger parts. Naturally, bigger parts will take more time to be produced, but producing more or bigger parts in the same building space volume is restricted by the total machine utilization.

The above simulated result suggests that compared to the base case no changes occur in the total warehousing cost. The effect of changes in the AM cost can be explained by the machine utilization, especially the machine setup. When the machine is utilized more than 38 %, a sufficient service level cannot be reached. At a service level of 38 %, only a small number of parts (5 of 87) need to wait in queue and at no point in time was there more than one part produced in the building space. After this limit, queuing occurs and the total processing time increases due to multi part production, which results in longer queue, and creates an unstable system. Therefore, the total machine utilization is an appropriate generic measure to evaluate the effect of changes in the system.

To improve the system performance in a spare part environment the machine setup time should be minimized to allow for higher building space volumes (due to preheating and atmosphere creation). Under the given set of conditions it can be concluded that it is preferable to adjust the building space volume to the maximum part size, instead of generating unused building space volume with the related drawbacks (for example more material must be heated, more unused powder must be scrapped, a bigger machine is necessary, etc.).

6.2 BUILDING SPEED

The following hypotheses are investigated with respect to building speed:

• Increased building speed will lead to faster processing, which has a positive impact on the spare part supply.

The calculations regarding the building speed use the same simulation model, which is used for the base case.

For execution of experiments the mean arrival and building speed are the parameter of variation. Mean arrival is changed from 10 to 150 hr with an increment of 10 hr while the building speed is varied between 10 cm³/ hr and 100 cm³/ hr with an increment of 10 cm³/ hr. This results in 150 combinations which allow to analyze the building speed with respect to the upper limit of the system.

7
4
0
Ē.
$\boldsymbol{\sigma}$
$\boldsymbol{\Omega}$
\Box
5
\mathbf{U}
\mathbf{S}
DISCUSSIO
g
Ц
7
5
٩,
TS
ř.
F.
RESUL'
\Box
5
Ш
ET]
М.
6.2.1
\mathbb{Q}

Table 6-2: Results of building speed variation

I

	Controls	slo	Responses																		
Unit	hours	hours cm ³ /h	e k	s S	kWh	ų	÷	÷	e	ų	÷	%		*	%	mm³	E at time hours		Parts P	Parts	Parts
Simulation run	Mean arrival	Building speed	Total •arehousing cost		Consumed	Consumed material cost	Consumed energy cost	Operator cost	Total AM maintenance cost	Total AM Penalty	Total SM cost	Machine A setup p time t	Machine production time	Machine cool down time	Total machine utilization time	Average building volume	Machine depre- ciation	Average time in queue	Average number of parts in queue t	Parts in p queue p total o	AM parts out
Building speed 1.1	150		20303	179	45539	14318	2736	2875	23255	25833	84769	S	27	S	37	396457	23305	8	0	S	58
Building speed 1.2	140	10	70792	193	49140	15430	2948	3086	29248	30292	90754	9	29	9	40	338088	23838	92	0	7	62
Building speed 1.3	130		71307	204	51894	16295	3114	3318	29280	32542	94309	9	30	6	42	390930	29931	92	0	8	66
Building speed 1.4	120	10	71906	218	55543	17441	3333	3590	29220	35875	99199	7	33	6	46	386824	29870	73	0	13	72
Building speed 1.5	110		72947	238	60621	19035	3637	3911	29283	41208	106836	7	35	7	49	387651	29934	63	0	21	78
Building speed 1.6	100		73873	262	66718	20349	4003	4294	29329	54458	122810	8	8	7	54	388607	23381	99	0	27	86
Building speed 1.7	90		75299	298	75864	23821	4552	4773	29298	74625	146836	8	44	8	60	397405	29949	80	0	35	95
Building speed 1.8	8	10	76477	325	82923	26038	4975	5358	29328	90500	165376	6	48	8	66	387004	23380	85	0	44	107
Building speed 1.9	02		78841	372	94663	29724	5680	6095	29358	130625	211268	б	ß	б	73	388358	30010	94	-	8	122
Building speed 1.10	8	10	81166	436	111033	34864	6662	7051	29193	215250	302751	σ	85	00	82	333399	29841	107	-	92	141
Building speed 1.11	50		84946	504	128460	40336	7708	8348	29190	328292	423604	8	75	7	90	385497	29839	143	2	132	167
Building speed 1.12	40	10	90141	573	145338	45843	8760	9587	28285	523458	625362	50	8	4	97	384145	28913	251	9	191	192
Building speed 1.13	30		33346	579	147470	46305	8848	9568	26289	605042	704815	2	96	2	100	391138	26873	627	24	262	191
Building speed 1.14	20		118253	586	149271	46871	8956	3814	26125	645667	746141	-	8	-	100	385282	26705	1104	8	500	196
Building speed 1.15	þ		174518	578	147331	46262	8840	9581	25616	650292	749128	-	38	1	100	389212	26185	1420	297	1346	192
Building speed 2.1	150		70117	188	48004	15073	2880	2893	29333	10375	70332	9	14	S	25	414957	29985	¢	0	Θ.	58
Building speed 2.2	140	0 20	70661	139	50663	15308	3040	3095	29319	11042	72176	9	ξ	9	27	409017	29970	53	0	m	62
Building speed 2.3	β		71209	215	54686	12171	3281	3330	29321	12208	75086	9	16	9	29	410516	29973	40	0	e	67
Building speed 2.4	120		71961	228	58057	18230	3483	3606	29329	13333	77758	2	17	~	31	402420	23381	48	0	4	72
Building speed 2.5	110		72920	251	63922	20072	3835	3933	29331	15958	82906	00	ξ	~	34	406252	29983	ß	0	4	79
Buildingspeed 2.6	100		73970	271	69157	21715	4149	4331	23376	17167	86530	0	20	0	37	399057	30025	58	0	S	87
Building speed 2.7	96		75306	305	77875	24453	4673	4736	23405	21500	94629	σ	23	n	4	406053	30059	52	0	00	36
Building speed 2.8	80		77102	337	65763	26530	5146	5391	29415	23000	33666	9	25	9	45	397781	30069	44	0	Ħ	108
Building speed 2.9	02		73081	384	37818	30715	5869	6/76	29438	31042	113052	Ħ	28	Ŧ	۵ĩ	336878	30092	39	0	21	124
Building speed 2.10	60		61804	430	111622	35043	6697	7170	23456	43067	T3067	9	32	9	58	308819	30111	35	0	40	144
Building speed 2.11	50	20	85133	527	191284	42159	8056	8624	23471	66583	166717	ψ	39	≭	89	369203	30126	ŧ	0	8	172
Building speed 2.12	4		5067	652	166103	52756	3366	107/24	29474	135625	247770	9	8	ä	80	387304	30129	8	-	116	214
Building speed 2.13	30		33483	870	221589	66673	13294	14177	29373	352167	488375	ψ2	85	×	93		30026	8	0	8	284
Building speed 2.14	20		718460	1190	303273	S5228	18136	12672	28609	1156125	1327266	4	55	4	100	388515	23245	205	p,	417	391
Buildingspeed 2.15	10		173771	1243	310635	59423	18336	20516	27839	1376456	1552515	-	97	-	100	388929	28458	783	₽	1851	410
Building speed 3.1	150		70205	184	46823	14702	2809	2836	23316	0.000	59435	9	<i>в</i> ,	n	20	404138	23367		0	0	58
Building speed 3.2	140		70774	196	49875	15861	2992	3103	29337 0.,000	0.,000	60872	9	10	9	2	401906	29989	1	0	0	62
Building speed 3.3	130		71306	209	53197	16704	3192	3340	29365	0.000	62390	ø	0	ω	53	398013	30018	60	0	0	67
Building speed 3.4	120		71936	230	50606	10402	3516	3613	29372	0.000	64695	7	t	7	25	405348	30025	5	0	1	72
Building speed 3.5	110	30	72633	248	62782	19713	3767	3931	29362	\$	66602	00	12	~	27	339403	30014	4	0	0	P2
Building speed 3.6	001		73927	275	70110	22023	4210	630	29410	375	70162	8	2	8	BE	404367	30063	20	0	4	87
Building speed 3.7	96	30		301	76606	21055	4536	4805	2941	<u>8</u>	73379	0	₽	n	55	336524	30064	29	0	4	8
Building speed 3.8	8		76954	338	86115	27040	5167	5403	23438	T54 2	78409	P	17	ß	37	337867	30092	35	0	9	108

	Controls	×	Reconced											_							
Unit	it hours	hours cm ³ /h	3	kg	kWh					9	8	%		8	%	mm³	E at time hours		Parts Pa	Parts P	Parts
Simulation run	Mean arrival	Building	Building Warehousing Consumed speed cost material	Consumed material	Consum Consumed material energy cost	ed	Consumed energy cost	Operator n	Total AM Tota Operator maintenance AM cost cost Pen	- E	Total S AM cost ti	Machine N setup p time ti	Machine production time	Machine sool time	Total machine utilization time	Average building volume	Machine depre- ciation	Average 1 time in 0 queue i	Average number P: of parts qu in queue to	Parts in A queue p total o	AM parts out
Building speed 3.9	72		18639	389	39033	31096	5942	6173	29454	3167	85649	12	đ	Ħ	42	401019	30108	37	0	5	123
Building speed 3.10	99	00	82173	443	112982	35476	6779	7193	29463	7667	96339	4	22	φ	49	392602	30117	8	0	έ	144
Building speed 3.11	20	00 30		524	133379	41881	8003	8630	29497	10083	107926	9	26	ħ	57	386295	30152	25	0	34	173
Building speed 3.12	40	0 30	90798	658	167728	52667	10064	10770	29490	21667	134487	61	32	18	20	389450	30145	26	0	76	215
Building speed 3.13	R	0 30	93281	876	223057	70040	13383	14371	29501	81583	218713	22	43	21	98	388101	30157	8	-	171	287
Building speed 3.14	20	0 30	118475	1297	330396	103744	19824	21350	29455	433292	617483	17	64	17	38	386942	30110	44	2	415	427
Building speed 3.15	¥	0 30	173396	1878	478510	150252	28711	31223	28501	2055232	2303479	2	96	2	100	385059	29135	463	87	14.78	624
Building speed 4.1	150	0 40	70205	184	46331	14755	2819	2838	29339	0.,000	59591	9	7	5	18	405309	23331 ,		0	0	28
Building speed 4.2	140	0 40		196	50025	15708	3002	3103	23328	29328 0.,000	60316	9	7	9	£	402348	23380 /-	-	0	0	62
Building speed 4.3	130	0 40	71410	210	53453	16784	3207	3342	23353	23353 0.,000	62470	9	00	9	20	333608	30005	1	0	0	67
Building speed 4.4	120	0 40			57895	18179	3474	3618	29371	29371 0.,000	64433	7	8	7	22	399921	30024 ,		0	0	72
Building speed 4.5	110	0 40	72950	250	63617	19976	3817	3943	29392	29392 0.,000	66924	8	9	7	24	403541	30045		0	0	79
Building speed 4.6	100	0 40	73919	276	70344	22088	4221	4338	29432	29432 0.,000	63883	00	₽	8	27	405398	30086	4	0	-	87
Building speed 4.7	8	0 40			76536	24032	4592	4807	29405	0.,000	72637	σ	Ŧ	σ	53	398016	30058	00	0	m	36
Building speed 4.8	8		76796	339	86248	27082	5175	5410	29460	0.,000	76947	₽	\$2	₽	R	398349	30115	4	0	4	108
Building speed 4.9	7	0 40	78749	379	96626	30341	5738	6182	29449	458	82043	4	4	4	37	390638	30103	22	0	Θ	124
Building speed 4.10	99	0 40	81395	447	114001	35796	6840	7200	29470	1292	90421	4	17	5	44	395873	30125	27	0	σ	144
Building speed 4.11	3	0 40	86106	542	138003	43333	8280	8645	29474	2667	102223	β	2	φ	52	399083	30129	ß	0	φ	173
Building speed 4.12	4	0 40	91296	660	168264	52835	10096	10787	29514	8458	121527	20	24	β	8	389893	30169	4	0	20	216
Building speed 4.13	30	0 40	33865	867	220990	69391	13259	14368	29520	22292	158670	25	32	24	81	384468	30176	φ	0	134	287
Building speed 4.14	20	0 40	117325	1298	330575	103801	19835	21468	29505	140583	325026	25	48	24	36	385052	30160	25	1	395	429
Building speed 4.15	÷		174092	2416	615536	193297	36936	39998	28905	2400708	2709479	4	9	4	100	385379	29547	167	8	876	800
Building speed 5.1	150	0 50	70205	185	47024	14766	2821	2899	29341	29341 0.,000	59608	9	5	5	16	405309	29993	-	0	0	58
Building speed 5.2	140				50028	15709	3002	3103	29332	0.,000	60324	9	9	9	φ	402948	23384	1	0	0	62
Building speed 5.3	130			210	53453	16784	3207	3342	29349	23349 0.,000	62465	9	Θ	9	£	399608	30001	1	0	0	67
Building speed 5.4	120	0 50	72146	228	58076	18236	3485	3618	23366	23366 0.,000	64433	2	2	~	20	401158	30018 .	1	0	•	72
Building speed 5.5	10			250	63585	19966	3815	3944	29392	0.,000	66915	œ	2	~	22	403036	30046 .	1	0	•	79
Building speed 5.6	100		74098	275	70132	22021	4208	4339	29418	0.,000	69793	00	00	00	25	403988	30072 ,	1	0	0	87
Building speed 5. 7	6		75275	301	76687	24080	4601	4811	29435	29435 0.,000	72738	6	6	6	27	398596	30089	-	0	0	36
Building speed 5.8	80		76516	344	87709	27541	5263	5406	29441	23441 0.,000	77464	₽	₽	₽	ਕ	405653	30095	S	0	0	108
Building speed 5.9	70	0 50	78557	383	97537	30627	5852	6178	29449	0.,000	81922	12	Ħ	Ħ	35	394596	30104	₽	0	4	124
Building speed 5.10	60		81653	440	112103	35200	6726	7209	29477	0.,000	88438	4	φ	Ω	40	388529	30132	17	0	9	144
Building speed 5.11	ß	0 50	85759	523	133374	41879	8002	8648	29502	667	98532	4	Ę	φ	48	385614	30158	8	0	÷	173
Building speed 5.12	4		90631	629	167783	52684	10067	10778	29501	2500	115363	8	₽	8	ß	389141	30156	9	0	8	216
Building speed 5.13	8		99632	834	227851	71545	13671	14373	29522	10375	149327	28	28	23	77	396271	30178	β	0	đ	287
Building speed 5. 14	20	20			331561	104110	19894	21589	29525		242918	53	R	8	ß	383963		φ	-	382	432
Building speed 5.15	7 2		173215	2547	648991	203783	38939	42399	29435	1238708	1623077	4	26	4	8	382776	30090	54	S	8	848

n ¹ /h h ¹ /h h ² /h ² /h h ²		2	Controls	Bennnee			ſ															
Image: bold with the part of t		Unit hour	s cm ³ /h	9	kg											%	mm³	E at time h				Parts
0 0	Simulation run	Mea arriv		Total Marehousing cost	Consumed material	med	ed			Total AM maintenance sost	Total AM Penalty	ost	lachine h stup p ne ti	Aachine roduction me	ine	Total machine utilization time	Average building volume		ge 1		c	AM parts out
0 0	Building speed 6.1						14767	2822	2900	23346	0.000	53616	9	IJ	ы	16	405309			0	0	ß
0 0	Building speed 6.2						15741	3008	3104	29340	0.,000	60973	9	50 D	9	17	404343	29992 ,		0	0	62
0 0	Building speed 6.3						16795	3209	3343	29354	0.000	62485	9	S	9	18	399774	30006,	1	0	0	67
10 10 100 1000 10000 <td>Building speed 6.4</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>18236</td> <td>3485</td> <td>3618</td> <td>29363</td> <td>0.,000</td> <td>64430</td> <td>~</td> <td>9</td> <td>~</td> <td>đ</td> <td>401044</td> <td>30016 ,</td> <td> </td> <td>0</td> <td>0</td> <td>72</td>	Building speed 6.4			-			18236	3485	3618	29363	0.,000	64430	~	9	~	đ	401044	30016 ,		0	0	72
100 000 74400 2000 45500 6550	Building speed 6.5						19966	3815	3944	29389	0.,000	66910	00	9	~	21	403036	30042 ,		0	0	79
0 0	Building speed 6.6	-					22089	4221	4341	29425	0.,000	63884	00	2	8	23	405103	30078 ,	1	0	0	87
10 0	Building speed 6.7						24203	4625	4816	29438	0.,000	72893	0	~	σ	26	400119	30092 ,		0	0	8
1 1	Building speed 6.8						26889	5138	5412	29441	0.,000	76693	₽	00	₽	29	395623	30095 ,		0	0	108
90 90<	Building speed 6.9						31335	5388	6180	29459	0.000	82781	12	₽	Ħ	8	403618		n	0	0	124
1 0	Building speed 6.10						35926	6865	7205	29475	0.000	83235	4	Ħ	ф	38	396913		₽	0	S	144
40 60 9969 650 2700	Building speed 6.11						42070	8039	8645	29497	0.,000	38083	17	β	9	46	387439	30152	β	0	σ	173
30 60 900160 3253 5553 5	Building speed 6.12						52503	10032	10796	29518		113646	21	92	8	57	387252	30173	Ę	0	8	216
10 0 10000 10200 20000<	Building speed 6.13						70655	13501	14403	29538		142442	26	22	26	74	390581	30195	12	0	86	288
1 0 114.32 2.056 653.41 2.056 23940 0.000 559.25 0.000 559.25 0.000 559.26	Building speed 6.14						105722	20202	21581	29534		217883	32	33	31	35	330005		ħ	+	369	432
150 7000 560 4700 7500 5	Building speed 6.15						205150	33201	42768	29495		916194	8	63	17	99	381970	30150	33	e	848	855
No. No. <td>Building speed 7.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14767</td> <td>2822</td> <td>2900</td> <td>29343</td> <td>0.,000</td> <td>59612</td> <td>9</td> <td>4</td> <td>5</td> <td>15</td> <td>405309</td> <td>29995</td> <td></td> <td>0</td> <td>0</td> <td>58</td>	Building speed 7.1						14767	2822	2900	29343	0.,000	59612	9	4	5	15	405309	29995		0	0	58
130 710 7440 230 3345 23550 0.000 64500 7 7 7 7 700 <td>Building speed 7.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15773</td> <td>3014</td> <td>3105</td> <td>29348</td> <td>0.,000</td> <td>61022</td> <td>9</td> <td>4</td> <td>9</td> <td>16</td> <td>404478</td> <td>30000</td> <td>1</td> <td>0</td> <td>0</td> <td>62</td>	Building speed 7.2						15773	3014	3105	29348	0.,000	61022	9	4	9	16	404478	30000	1	0	0	62
10 7246 226 6403 471 23256 0.000 6403 7	Building speed 7.3						16795	3209	3343	29352	0.,000	62482	9	4	6	17	399774	30004		0	0	67
10 70 7356 250 65366 3644 2306 100 70 4006 70 4006 7006 <td>Building speed 7.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>18246</td> <td>3487</td> <td>3619</td> <td>23368</td> <td>0.,000</td> <td>64509</td> <td>~</td> <td>IJ</td> <td>~</td> <td>19</td> <td>401168</td> <td>30020</td> <td>1</td> <td>0</td> <td>0</td> <td>72</td>	Building speed 7.4						18246	3487	3619	23368	0.,000	64509	~	IJ	~	19	401168	30020	1	0	0	72
100 710 7410 7704 22033 4231 23421 0.000 73044 5 73044 5 73044 5 7405 7400 7406 7401 7006 73044 9 77 2 40510 7006 70 7 4051 7006 7 9 7 7 9 7 7 9 7 7 9 7 9 7 9 7 9 7 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 <	Building speed 7.5	_					19966	3815	3944	23386	0.,000	66306	00	U U	7	20	403036	30039 ,	1	0	-	79
90 70 75416 2044 71436 24331 6463 4616 23446 0.000 75044 5 <	Building speed 7.6						22089	4221	4341	29422	0,000	63881	80	9	8	22	405103	30076 ,	1	0	0	87
80 70 76551 337 86170 27057 5170 5170 76363 37742 30068 0 0 0 23 37742 30068 0 0 0 10 70 78649 361 42657 5173 7300 82033 37742 30058 0	Building speed 7.7						24331	4649	4816	29436	0.,000	73044	σ	9	ŋ	25	402218	30090	1	0	0	8
70 70 76643 3644 97860 30744 5673 5195 5105 517 5105 517 5105 517 5105 517 5117 5117 5117 5117 5117 5117 5126 5123 5126 5123 5126 5123 5126 5123 5126 512 512 5126 512 512 512 512 512 512 512 512 512 512	Building speed 7.8						27057	5170	5415	29444	0.,000	76901	10	7	10	28	397842	30098		0	0	108
60 70 81404 450 14548 35968 6873 7.203 25470 0.00 85344 14 70 71	Building speed 7.9						30734	5873	6182	29463	0.,000	82073	42	8	Ħ	31	395833	30118 ,	1	0	0	124
50 70 86571 533 13565 42657 8761 8771 8	Building speed 7.10	_					35968	6873	7209	29470	0.,000	89344	4	10	13	37	397182	30125	9	0	e	144
40 70 30347 655 63337 53172 70160 7032 7325 71 7325 71 71 707 71 7071 71 70 7017 71 7017 71 701 701 7014 701 7014 701 7	Building speed 7.11						42657	8151	8641	29495		38818	4	Ħ	9	44	393220		÷	0	00	173
30 70 100446 678 223617 71246 13417 24535 7250 13660 27 13 367561 30122 11 0 100 10 100 1031 333193 106503 20352 25637 19417 27758 5763 337 9417 20724 33 28 333193 33614 10 86 150 80 70255 1536 67023 2756 57635 5753 27935 5763 2374 10 16 1 3555 244 2005 2755 26 3753 5763 2753 5763 2355 244 2003 256 27 29 3016 10 355 130 80 71023 5356 5733 343 2335 0.00 5455 7 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Building speed 7.12						53172	10160	10790	29521		113525	5	4	2	55	392517	30177	4	0	¢	216
20 70 11301 335193 105503 21553 25537 15411 20724 33 28 33514 30164 13 1 355 10 70 77334 2536 651847 207820 25756 57736 657683 25 55 16 30 3056 23 7 42840 25756 65783 3016 20782 16 36 36 26 36 305 2933 20 23 5 14 40478 3006 24 0 <t< td=""><td>Building speed 7.13</td><td></td><td></td><td></td><td></td><td></td><td>70216</td><td>13417</td><td>14417</td><td>29535</td><td></td><td>138680</td><td>27</td><td>ξ</td><td>28</td><td>7</td><td>387881</td><td>30192</td><td>₽</td><td></td><td>8</td><td>588</td></t<>	Building speed 7.13						70216	13417	14417	29535		138680	27	ξ	28	7	387881	30192	₽		8	588
10 70 77334 2536 651647 207820 337745 8277565 257 25 25 30152 2324 2200 23974 2000 2900 23926 24 22900 239756 24 2304 2000 59000 55 21 446530 23055 2304 2304 2304 2304 2304 23056 244 23966 24 2490 66 76 14 405730 23068 23066 244 23046 23043 23956 2000 64900 66 76 76 76 776 70000 7676 76 76 76 76 76 76 76 776 70000 7676 77 70000 77000 76000 76000 76000 76000 76000 76000 76000 76000 76000 76000 76000 76000 76000 76000	Building speed 7.14						106503	20352	Z1563	29537		207224	R	88	8	99	333243	30134	p	-	<u> </u>	431
150 100 70205 185 47027 14767 2822 2900 29548 0.0 5669 6 3 5 4702 23333 0.0 0 <td>Building speed 7.15</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>207820</td> <td>39711</td> <td>42840</td> <td>29500</td> <td></td> <td>627663</td> <td>8</td> <td>ß</td> <td>21</td> <td>88</td> <td>386289</td> <td>30156</td> <td>24</td> <td>2</td> <td>845</td> <td>857</td>	Building speed 7.15	+					207820	39711	42840	29500		627663	8	ß	21	88	386289	30156	24	2	845	857
140 80 7073 197 50.265 57.73 3016 3035 0.0045 6 4 6 7 44478 30008 0	Building speed 8.1						14767	2822	2300	29341	0.,000	59609	9	e	S	14	405309	29993 ,	1	0	0	8
130 80 7410 210 5348 6736 3335 0.00 62490 6 4 6 7 39074 3008 0	Building speed 8.2						15783	3016	3106	23355	0.000	61045	9	4	9	5	404478	30008	1	0	0	62
120 80 7246 228 5821 8278 0.00 6453 7 4 7 8 40734 3023 0 </td <td>Building speed 8.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>16796</td> <td>3209</td> <td>3343</td> <td>23356</td> <td>0.,000</td> <td>62490</td> <td>9</td> <td>4</td> <td>9</td> <td>17</td> <td>399774</td> <td>30008</td> <td>-</td> <td>0</td> <td>0</td> <td>67</td>	Building speed 8.3						16796	3209	3343	23356	0.,000	62490	9	4	9	17	399774	30008	-	0	0	67
110 80 7385 2356 3356 3354 2334 0.00 66903 66 5 7 20 40305 3037 0 0 0 0 0 110 80 73105 100 80 7410 2334 0.000 66903 66 5 7 20 40305 3007 0 0 0 0 100 80 73042 80 5 80 40103 30075 10 0 10 <th< td=""><td>Building speed 8.4</td><td></td><td></td><td></td><td></td><td></td><td>18278</td><td>3493</td><td>3620</td><td>29376</td><td>0.,000</td><td>64559</td><td>7</td><td>4</td><td>7</td><td>18</td><td>401794</td><td>30029</td><td></td><td>0</td><td>0</td><td>72</td></th<>	Building speed 8.4						18278	3493	3620	29376	0.,000	64559	7	4	7	18	401794	30029		0	0	72
100 80 74101 276 70345 22033 4221 4341 23421 0.00 6873 8 5 8 22 405103 30075 0	Building speed 8.5						19966	3815	3944	29384	0.,000	66303	8	S	7	20	403036	30037		0	0	79
90 80 75476 304 77486 24331 4649 4616 23435 0.00 73042 9 6 9 24 402218 30063 0	Building speed 8.6						22089	4221	4341	29421	0.,000	63879	8	5	8	22	405103	30075		0	0	87
80 80 76378 341 86777 27248 5.207 5446 0.000 77122 10 6 10 27 400632 3000 0<	Building speed 8.7						24331	4649	4816	29435	0.,000	73042	σ	9	ŋ	24	402218	30089,	1	0	0	36
70 80 78605 386 98401 30838 5304 6185 23462 0.000 82269 12 7 12 31 377538 3016 0 <th< td=""><td>Building speed 8.8</td><td></td><td></td><td></td><td></td><td></td><td>27248</td><td>5207</td><td>5416</td><td>29446</td><td>0.,000</td><td>77132</td><td>₽</td><td>9</td><td>₽</td><td>27</td><td>400692</td><td>30100</td><td>1</td><td>0</td><td>0</td><td>108</td></th<>	Building speed 8.8						27248	5207	5416	29446	0.,000	77132	₽	9	₽	27	400692	30100	1	0	0	108
60 80 81433 452 115070 36132 6304 7206 23472[0.000 88538 14 8 13 36 339140 30127 4 0 2	Building speed 8.9	_					30898	5904	6185	29462	0,000	82269	4	2	42	31	397698		1	0	0	124
	Building speed 8.10	+					36132	6304	7206	29472	0.,000	89538	4	0	5	36	399140		4	┛	2	144

	Controls		Responses									╞									
Unit	hours	n³/h		kg	kWh			•		е Э	%	%		8	%	mm ³	E at time hours	hours	Parts F	Parts	Parts
Simulation run	Mean Buildin arrival speed	ē	Total warehousing cost material		Consum Consumed material energy cost	2		Dperator n cost c	Total AM maintenance cost	Total AM Penalty	Total setu AM cost time	e Nine	Machine production time	Machine cool down time	Total machine utilization time	Average building volume	Machine / depre- ciation	Average time in queue	Average number of parts in queue	Parts in queue total	AM parts out
Building speed 8.11	50	80	85326	536	136652	42309	8133	8641	29504	29504 0.,000	33088	17	10	16	43	395507	30160	80	0	9	173
Building speed 8.12	40	80	91638	658	167693	52655	10062	10802	29504 0.,000	0.,000	112858	21	12	20	53	388037	30160	12	0	ε	216
Building speed 8.13	30	80	100329	838	228895	71873	13734	14417	29542	625	140038	27	17	26	70	396851	30198	10	0	58	288
Building speed 8.14	20	80	118322	1300	331118	103971	19867	21571	29542	11208	196006	35	24	34	33	383779	30198	12	0	341	431
Building speed 8.15	10	80	173411	2589	659689	207142	39581	42823	29510	184792	513685	25	48	25	38	385230	30166	20	2	841	856
Building speed 9.1	150	90	70205	185	47027	14767	2822	2900	29339	29339 0.,000	59607	9	3	5	14	405309	29991	-	0	0	58
Building speed 9.2	140	90	70783	197	50265	15783	3016	3106	29353 0.,000	0.,000	61043	6	3	6	15	404478	30006	·	0	0	62
Building speed 9.3	130	90	71410	210	53489	16796	3209	3343	29355 0.,000	0.,000	62488	9	3	9	16	399774	30007	-	0	0	67
Building speed 9.4	120	90	72146	228	58211	18278	3493	3620	29375	29375 0.,000	64557	7	4	7	17	401794	30027	·	0	0	72
Building speed 9.5	110	90	72985	250	63585	19966	3815	3944	29382	23382 0.,000	66301	8	4	7	19	403036	30035	Ļ	0	0	79
Building speed 9.6	100	90	74101	276	70349	22089	4221	4341	29420 0.,000	0.,000	63877	8	5	8	21	405220	30073	(0	0	87
Building speed 9.7	8	8	75416	304	77486	24331	4649	4816	29433 0.,000	0.,000	73040	6	S	б	23	402304	30087	Ę	0	0	96
Building speed 9.8	8	90	76976	341	86811	27259	5209	5417	29448 0.,000	0.,000	77148	9	9	10	26	400692	30102	I,	0	0	108
Building speed 9.9	2	8	78727	383	38993	31084	5940	6188	29458 0.,000	0.,000	82489	4	9	4	8	399942	30113 ,	Į	0	0	124
Building speed 9.10	99	90	81609	440	111996	35167	6720	7211	29486 0.,000	0.,000	88411	4	2	13	34	388228	30141	I,	0	-	144
Building speed 9.11	2	8	85411	537	136914	42991	8215	8651	29518	29518 0.,000	99214	17	σ	9	41	395605	30174	9	0	4	173
Building speed 9.12	4	8	91251	661	168531	52919	10112	10813	29521	29521 0.,000	113205	2	÷	2	52	389848	30177	₽	0	Ħ	216
Building speed 9.13	8	8	33365	885	225449	70791	13527	14404	29532	8	138181	27	ξ	27	89	391225	30188	σ	0	20	288
Building speed 9.14	20	8	118641	1284	327127	102718	19628	21521	29543	4792	188049	98	21	35	92	380053	30200	Ħ	0	330	430
Building speed 9.15	₽	8	174900	2602	662951	208167	39777	42991	29530	119625	449933	38	43	27	8	385474	30186	₽	2	841	860
Building speed 10.1	150	100	70205	185	47027	14767	2822	2300	29338 0.,000	0.,000	59605	9	e	S	4	405309	23930	Ļ	0	0	8
Building speed 10.2	140	<u>0</u>	70783	197	50265	15783	3016	3106	29352 0.,000	0.,000	61041	9	e	9	ξ	404478	30004	Ļ	0	0	62
Building speed 10.3	130	100	71410	210	53591	16828	3215	3344	29363	0.,000	62537	9	e	9	9	400471	30015 ,	Ļ	0	0	67
Building speed 10.4	120	đ	72146	229	58312	18310	3499	3621	23383 0.,000	0.,000	64607	~	e	~	4	402404	30036	Į	0	0	72
Building speed 10.5	110		72985	250	63585	13966	3815	3944	29381	23381 0.,000	66900	00	4	~	¢	403160	30034 ,	Į	0	0	79
Building speed 10.6	₿	đ	74101	276	70382	22100	4223	4342	29424 0.,000	0.,000	63837	00	4	ω	2	405333	30078	Į	0	0	87
Building speed 10.7	8	100	75416	304	77553	24351	4653	4818	29444	29444 0.,000	73081	σ	S	σ	3	402411	30098	Į	0	0	96
Building speed 10.8	8	<u>1</u>	76976	341	86811	27259	5209	5417	29447	29447 0.,000	77146	₽	S	₽	26	400692	30101	Ļ	0	0	108
Building speed 10.9	20	100	78751	390	39438	31224	5366	6188	29455	29455 0.,000	82651	12	9	4	53	401797	30109 ,	Ļ	0	0	124
Building speed 10.10	8	0	81655	447	113836	35744	6830	7216	29493 0.,000	0.,000	89115	4	~	5	34	394302	30149 ,	Ļ	0	0	144
Building speed 10.11	3	ġ	85153	534	135946	42687	8157	8646	29497	29497 0.,000	98818	₽	80	φ	4	393043	30152	U	0	2	173
Building speed 10.12	4	đ	91129	662	168572	52932	10114	10788	29511	0.,000	113182	21	₽	8	20	390747	30166	80	0	ŋ	216
Building speed 10.13	8	ġ	100477	882	224722	70563	13483	14386	29524	8	137881	27	β	27	67	390545	30180	n	0	6	288
Building speed 10. 14	2	ġ	118440	1310	333704	104783	20022	21575	29541	2292	188060	37	£	8	92	386742	30197	9	0	324	432
Building speed 10.15	₽	<u>1</u> 0	173869	2612	665602	208999	39936	42913	29526	78917	410133	8	8	23	97	387750	30182	92	2	88	858

It is confirmed that an increase in building speed has a positive impact on the spare part supply. However, not that from a cost perspective there is a limit to production expenses. Further, compensation of building space volume increase can be confirmed partly only, since a cost increase can be created.

It can be seen that an increase in building speed leads to a decrease in the total AM penalty until the machine utilization reaches approximately 38 % (similar to the base case setting). These findings are supported by the results of average time in queue, average number of parts in queue, and parts in queue total decrease. For the current base case model setup, no significant cost reduction is generated by a building speed of more than 40 cm³ /hr. Results are displayed in Figure 6-2 and Figure 6-3.

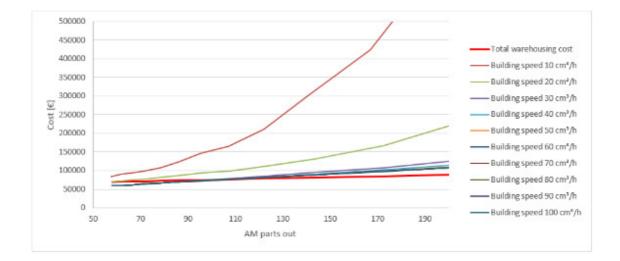


Figure 6-2: Building speed and upper limit search

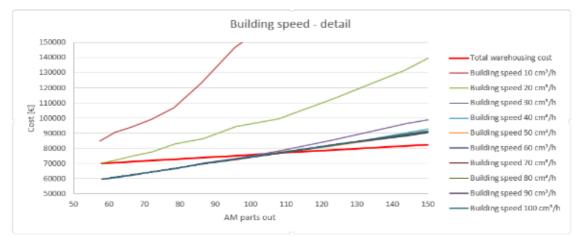


Figure 6-3: Building speed and upper limit search - details

The results can also be analyzed by constant building speed. 40 cm³/ hr is selected here since no further cost improvement is obvious for the current setup.⁷ By keeping the building speed constant while decreasing the upper limit another interesting effect becomes apparent. At the point where the mean arrival is 70 hr the first penalty occurs but the Total AM cost already exceeded the Total warehousing cost. Compared to the base setting this means that at a high enough building speed the penalty is no longer an issue, but the production related variable operation, material and energy consumption cost are. This is also supported by the fact that the Total machine utilization can increase significantly when the building speed increases. The building machine utilization can therefore be increased as long as the level of penalty is within the accepted range.

This leads to the finding that increasing the building speed strongly increases the production capacity, which seems to be a logical conclusion⁸. In consequence, production cost and service level related factors need to be evaluated to find an acceptable balance.

⁷ The effect of the building speed variation is assumed to be very specific for the presented case. Another case can show significant effects to changes in the building speed.

⁸ Doubling the production speed approximately doubled the production capability in this case.

Another interesting issue occurs in the context of the machine utilization and process speed. As can be seen in Table 6-2 there is a change in machine time results. At lower building speeds the machine production time takes the major part of the total machine utilization time, while machine setup and cool-down time are less significant. When the building speed increases the machine setup and cool-down time become more significant, since both are assumed to be constant for simulation. This observation can be justified by the fixed building space volume. When the simulation model is running the building space volume will be filled and a certain average building volume will occur. Since the machine production time is dependent upon the building speed, the actual machine production time will decrease while setup and cool-down time are constant. When the building space volume is completely filled, it is not possible to place one more part in the production run and arriving spare part requests need to wait in queue. At these high utilizations the effect can be observed best. But in general queuing should be avoided to achieve fast delivery times for the spare parts, since spare parts on demand should be delivered as fast as possible in the allowed time (there lies the difference between optimization for production and spare parts on demand).

Another interesting aspect here is that the building space fill up is executed as a volumetric approach. Since typically no more than one part should be in production in order to have a stable system this assumption fits the purpose. It is also possible to align the process times, depending on the part height instead of the part volume. This change of philosophy can then allow a placement of two parts next to each other while the building time will be defined by the total building height of the entire batch. This case will be analyzed during the technical extensions.

6.3 MATERIAL PRICE

Since it is commonly agreed that the material price is a key factor and limits the application of AM in industry, the following is investigated:

• The price a company would be willing to pay for material.

The calculations regarding the material price use the same simulation model which was used for the base case.

In this experiment the material price is increased stepwise starting at $10 \notin kg$, up to the maximum price of $150 \notin kg$. Effects on the responses will be discussed.

6.3.1 RESULTS AND DISCUSSION

Table 6-3: Results of material price variation

1	Controls		Responses																		
Unit	Unit hours o	cm³/h	£	kg	kWh	ŧ	•	£	ŧ	ŧ	€ 9	%	%	%	*	mm ³ €	€attime h	hours P	Parts	Parts P	Parts
			Total			Consumed	Consumed		Total AM		2	Machine N	Machine	Machine	Total machine	Average N	Machine A	A Average n	Average number of	Parts in	
Simulation run	Mean I arrival p	Material price	Material warehousing Consumed price cost material		Consumed material energy cost		energy cost	Operator r cost o	Operator maintenance Total AM cost cost Penalty		Total AM s cost ti	setup p time t	production cool down utilization time time time	cool down time		building d volume c	depre- t ciation q	time in p queue	parts in queue	queue A total o	AM parts out
Material price 1.1	100	10	74191	275	70160	2754	4210	4336	29407	3708	54217	•••	19	80	35	404530	30061	5	0	2	87
Material price 1.2	100	20	74191	275	70160	5508	4210	4336	29407	3708	56971	8	19	80	35	404530	30061	50	0	2	87
Material price 1.3	100	30	74191	275	70160	8261	4210	4336	29407	3708	59725	8	19	8	35	404530	30061	50	0	5	87
Material price 1.4	100	40	74191	275	70160	11015	4210	4336	29407	3708	62479	8	19	8	35	404530	30061	50	0	5	87
Material price 1.5	100	50	74191	275	70160	13769	4210	4336	29407	3708	65232	8	19	8	35	404530	30061	50	0	5	87
Material price 1.6	100	60	74191	275	70160	16523	4210	4336	29407	3708	67986	8	19	8	35	404530	30061	50	0	5	87
Material price 1.7	100	70	74191	275	70160	19277	4210	4336	29407	3708	70740	8	19	8	35	404530	30061	50	0	5	87
Material price 1.8	100	80	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	30061	50	0	5	87
Material price 1.9	100	90	74191	275	70160	24784	4210	4336	29407	3708	76248	8	19	8	35	404530	30061	50	0	5	87
Material price 1.10	100	100	74191	275	70160	27538	4210	4336	29407	3708	79001	8	19	8	35	404530	30061	50	0	5	87
Material price 1.11	100	110	74191	275	70160	30292	4210	4336	29407	3708	81755	8	19	8	35	404530	30061	50	0	5	87
Material price 1.12	100	120	74191	275	70160	33045	4210	4336	29407	3708	84509	8	19	8	35	404530	30061	50	0	5	87
Material price 1.13	100	130	74191	275	70160	35799	4210	4336	29407	3708	87263	80	19	8	35	404530	30061	50	0	2	87
Material price 1.14	100	140	74191	275	70160	38553	4210	4336	29407	3708	90017	80	19	80	35	404530	30061	50	0	2	87
Material price 1.15	100	150	74191	275	70160	41307	4210	4336	29407	3708	92770	80	19	80	35	404530	30061	50	0	S	87



Figure 6-4: Cost compared to building material price

Generally, the price a company is willing to pay must be as low as possible. But the calculation shows that even a higher price can be reasonable for the given set of conditions.

It is obvious that the material price related costs follow a linear function which influences the total AM cost. Based on the model setup, this is not surprising since the material cost is the product of consumed material and the material price. Therefore a decreasing material price will directly improve the Total AM cost. At the current Total AM cost (material price: $80 \notin kg$) the material price makes consumed material cost/ Total AM cost = $22030\notin 73494 \notin \approx 30\%$ of the Total AM cost. Since the material cost follows a linear function, it can be concluded that each 2.67 \notin decrease in the material price will lower the Total AM cost by 1 % for the current model setup.

To estimate an acceptable price for the material the real warehouse data can be taken into account, since there is a difference between the actual spare part requests of the real warehouse and the possible spare part requests of the simulation model. The real warehouse got 50 spare part requests, while the simulation goes for an upper limit which allows for 87 spare part requests as a

limit to work economical (see Chapter 8.2.1 for details). With this information an acceptable price for the material can be estimated due to the linear behavior of the results in the simulation. Taking the simulation results as a basis, the price can be scaled to the acceptable price for the actual number of spare parts delivered.

$$Material \ price * \frac{Max. \ \# \ of \ parts}{Actual \ number \ of \ parts}$$
(6)
= Max. Material Price

$$80 \notin /kg / \left(\frac{87}{57}\right) = 122 \notin /kg$$

For the assumed situation, 57% of the actual required parts are needed. Consequently, as long as the material price does not exceed 122 €/ kg, AM is economical for the current situation.

This approximation can be corrected further by considering energy and operator cost. Less material will need less material and operator cost, which will also allow a further material price increase.

Calculations are only valid as long as only the material price is varied, as no other variables are changed for this analysis.

6.4 MACHINE PURCHASE PRICE

For the machine price, literature indicates that the machine purchase price is a key factor and limits the application of AM in industry. The following is investigated:

- Influence of the machine purchase price regarding the decision for AM.
- Indication of a useful depreciation time for an AM machine.

The calculations regarding the machine purchase price use the same simulation model which was used for the base case.

The experiment is executed in two steps. As a first step the machine purchase price is increased stepwise from $100,000 \notin$ to $1,000,000 \notin$. The depreciation time is kept constant. In a second step the machine purchase price will be kept constant and the years of depreciation will be changed from 2 to 20 years. Responses will be analyzed to check how the machine purchase price and the depreciation time influence the results.

6.4.1 RESULTS AND DISCUSSION

Table 6-4: Results of machine purchase price variation

	Controls	ş	1	Responses																		
Unit	Unit hours	£	year 4	٤ ا	kg h	kWh é	£	e u	e		€ €	5	%		%		mm³ €	€ at time hours		Parts Pa	Parts P	Parts
									ŀ										₹			3
		Machine	Years of						<u> </u>	lotal AM				Machine		machine A	_	e	Average r		-	AM
Simulation run	Mean arrival	purchase price	depre- ciation	warehousing Consumed cost material	-	Consumed material energy cost		energy 0 cost co	Operator m cost co	Operator maintenance Total AM Total AM Machine cost cost Penalty cost setup tim	Total AM To Penalty Co	Total AM M cost se	a	uction		utilization b time v	volume ci	depre- ti ciation q	time in p queue q	parts in du queue to	queue p total o	parts out
Purchase price 1.1	100	10000	15	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	6535	50	0	5	87
Purchase price 1.2	100	20000	15	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	13070	50	0	5	87
Purchase price 1.3	100	30000	15	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	19605	50	0	5	87
Purchase price 1.4	100	40000	15	74191	275	70160	22030	4210	4336	29407	3708	73494	80	19	80	35	404530	26140	50	0	2	87
Purchase price 1.5	100	50000	15	74191	275	70160	22030	4210	4336	29407	3708	73494	80	19	80	35	404530	32675	50	0	2	87
Purchase price 1.6	100	60000	15	74191	275	70160	22030	4210	4336	29407	3708	73494	80	19	80	35	404530	39210	50	0	2	87
Purchase price 1.7	100	70000	15	74191	275	70160	22030	4210	4336	29407	3708	73494	∞	19	∞	35	404530	45745	50	0	5	87
Purchase price 1.8	100	80000	15	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	80	35	404530	52280	50	0	5	87
Purchase price 1.9	100	000006	15	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	80	35	404530	58815	50	0	5	87
Purchase price 1.10	100	100 100000	15	74191	275	70160	22030	4210	4336	29407	3708	73494	80	19	80	35	404530	65349	50	0	2	87

Table 6-5: Results of depreciation time variation

										Í												I
	Controls		-	Responses																		
Unit	Unit hours	÷	year 🕴	ų	ke l	kWh	•		و و		و و	*		*	*	*	mm ³ (€ at time h	hours Pa	Parts Pa	Parts	Parts
																Total			Ā	Average		
		Machine Years of Total	Years of	Total			Consumed Consumed	Consumed	-	Total AM			-	Machine 1	Machine	machine	Average N	Machine Average number of	verage ni		Parts in /	AM
	Mean	purchase depre-		warehousing Consumed	-	Consumed material	_	energy (Operator n	Operator maintenance Total AM Total AM Machine	Total AM T	otal AM		production cool down	cool down	utilization b	building o	depre- ti	time in pa	parts in qu	dueue p	parts
Simulation run	arrival	price	ciation 6	cost	material 6	energy	cost	cost	cost c	cost F	Penalty o	cost se	setup time time		time	time	volume	ciation q	dueue dr	queue to	total	out
Depreciation 1.1	100	460000	2	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	225456	50	0	5	87
Depreciation 1.2	100	460000	4	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	112728	50	0	5	87
Depreciation 1.3	100	460000	9	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	75152	50	0	5	87
Depreciation 1.4	100	460000	80	74191	275	70160	22030	4210	4336	29407	3708	73494	80	19	8	35	404530	56364	50	0	2	87
Depreciation 1.5	100	460000	10	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	45091	50	0	5	87
Depreciation 1.6	100	460000	12	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	37576	50	0	5	87
Depreciation 1.7	100	460000	14	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	32208	50	0	5	87
Depreciation 1.8	100	460000	16	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	28182	50	0	5	87
Depreciation 1.9	100	460000	18	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	25051	50	0	5	87
Depreciation 1.10	100	460000	20	74191	275	70160	22030	4210	4336	29407	3708	73494	8	19	8	35	404530	22546	50	0	5	87

Figure 6-5: Machine depreciation vs. purchase price

Figure 6-5 illustrates the linear relation between the machine purchase price and the machine depreciation. It must be mentioned that no depreciation factors of warehousing are included in calculations of the warehousing route (for example depreciation of the building – it must be individually evaluated if it is better to buy an AM machine or build up more storage space, which also creates cost. This is especially true when storage space is strongly limited and therefore valuable). The depreciation factors of warehousing and AM need to be compared directly for the specific case to reach a valuable response. Therefore the depreciation of the AM machine is excluded from the Total AM cost. A maximum price limit for an AM machine cannot be defined on this basis. However, the lower the price of the AM machine will be, the more the cost will improve.

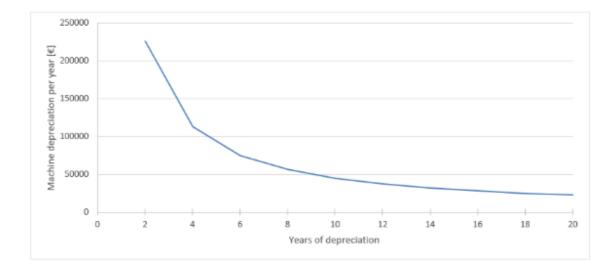


Figure 6-6: Years of depreciation vs. machine depreciation

Figure 6-7 shows the influence of depreciation time. The biggest cost impact occurs at a depreciation time between 2 and 8 years. In consequence this means if the depreciation time is bigger than 8 years the effect on the yearly depreciation tends to stabilize at a certain level.

6.5 COOL DOWN TIME

The following hypotheses is investigated with respect to cool down time:

• A decrease of cool down time leads to faster processing and improved spare part supply.

The calculations regarding the cool down time use the same simulation model which was used for the base case.

To analyze the influence of the cool down time, it is varied stepwise from 1 hr to 12 hr. For each cool down time the upper limit is decreased from 150 hr to 10 hr to stress the system at several levels and reach a clear response in the total AM cost.

-
4
RESULTS AND DISCUSSION
H.
S
Ň
5
Ы.
\cup
S
Ĥ.
\cap
\frown
4
≺
7
S
Ē
۲ì.
\square
Ś
řτĺ
-
Р.
6.5.1
<u> </u>
G

Table 6-6: Results of cool down time variation

Unit			cociodes.		_			-												Ī	
	Unit hours hours			kg	kWh			w	ŧ	w	6	%	*	*	*	mm ³	€ at time	hours	Parts P	Parts P	Parts
Simulation run	Cool down time	Mean arrival	Total warehousing cost material	Consumed material	Consumed energy	Consumed (material cost	Consumed energy cost	Operator cost	Total AM maintenance cost	Total AM Penalty	Total P AM s cost t	Machine I setup time	Machine production time	Machine cool down time	Total machine utilization time	Average building volume	Machine / depre- t ciation o	Average r time in d queue i	Average number F of parts q in queue to	Parts in <i>I</i> queue p total o	AM parts out
Cool down 1.1	0		70152	187	47588	14943	2855	2893	29303	42	53802	9	13	0	18	411406	29954	5	0	F	ß
Cool down 1.2	0		70553	195 1	49799	15637	2388	3095	29304	125	60917	9	Ω	0	đ	402216	23955	÷	0	2	62
Cool down 1.3	0	130	71135	215	54689	17172	3281	333	29321	200	63381	9	Ę	0	21	403330	23972	ε	0	m	67
Cool down 1.4	0		72032	229	58344	18320	3501	3615	29365	917	65506	2	£	0	22	403271	30018	8	0	m	72
Cool down 1.5	0		72871	249	63357	19894	3801	3330	29314	1292	68003	8	4	0	24	402875	23965	8	0	4	79
Cool down 1.6	0		73389	272	63255	21746	4155	4332	29401	1958	71393	8	\$	0	27	399842	30055	46	0	4	87
Cool down 1.7	0	8	75271	305	77812	24433	4669	4816	29432	3333	76494	σ	21	0	90	404778	30086	ਹ	0	9	96
Cool down 1.8	0		77075	339	86401	27130	5184	5405	29419	4750	81694	10	23	0	33	403628	30072	52	0	7	108
Cool down 1.9	0		78856	389	99154	31134	5949	6174	29433	6750	89251	11	26	0	38	416158	30087	42	0	12	123
Cool down 1.10	0		81469	442	112500	35325	6750	7188	29459	10333	38874	13	30	0	43	409735	30113	33	0	20	144
Cool down 1.11	0	ß	85632	519	132256	41528	7935	8638	29474	19208	116608	Ę	ŝ	0	20	41115	30129	ਲ	0	45	173
Cool down 1.12	0		91498	655	166350	52422	10017	10765	29443	58208	170670	ę	44	0	62	447871	30098	ଞ	0	8	215
Cool down 1.13	0		100327	877	223511	70182	13411	14291	29455	178167	315324	đ	53	0	78	568145	30109	46	-	168	286
Cool down 1.14	0	20	118316	1249	318095	39882	19086	20899	29214	858792	1037610	Ħ	8	0	96	1638506	29863	106	IJ	387	418
Cool down 1.15	0		173085	1392	354572	111336	21274	23178	28073	1532875	1726093	2	88	0	100	11721218	28697	638	163	1804	464
Cool down 2.1	1	150	70171	186	47493	14913	2850	2893	29307	42	59773	6	13	1	19	411172	23958	9	0	1	58
Cool down 2.2	F	140	70552	195	49739	15618	2984	3095	29307	208	60382	9	13	1	20	401723	29958	12	0	2	62
Cool down 2.3	1	130	71172	215	54751	17192	3285	3333	29319	625	63528	6	15	1	22	410540	29971	20	0	9	67
Cool down 2.4	L	120	72032	229	58344	18320	3501	3615	23369	917	65511	7	5	L	23	403334	30022	31	0	e	72
Cool down 2.5	1	110	72871	249	63357	19894	3801	3930	29317	1292	68007	8	17	1	25	402875	29969	40	0	4	79
Cool down 2.6	-	100	73981	274	63848	21932	4191	4331	29400	2042	71695	00	8	-	28	402990	30053	46	0	S	87
Cool down 2.7	L	90	75266	304	77371	24294	4642	4813	29426	3458	76443	9	20	1	31	401623	30080	52	0	S	96
Cool down 2.8	-	8	77229	342	87170	27371	5230	5403	29432	5000	82246	₽	23	L	35	403354	30086	48	0	8	108
Cool down 2.9	F	20	78749	387	38667	30981	5920	6169	29442	7458	89785	Ħ	26	1	39	399734	30097	42	0	12	123
Cool down 2.10	-	60	81518	438	111575	35034	6634	7189	29470	10625	98837	13	29	2	44	387885	30125	38	0	21	144
Cool down 2.11	F	22	85501	532	135619	42584	8137	8623	29470	23167	121804	¢	8	2	53	393227	30125	g	0	48	172
Cool down 2.12	-	4	91365	652	166173	52178	9370	10768	29447	59000	171179	₽ ₽	44	2	64	385952	30101	37	0	84	215
Cool down 2.13	-	8	100462	865	220361	69193	13222	14317	29455	185667	321672	₽	ŝ	2	8	384800	30110	48	-	163	286
Cool down 2.14	-	8	117784	1252	319005	100168	19140	20787	29245	891208	1070297	÷	8	-	97		23835	117	S	333	416
Cool down 2.15	-	₽	174660	1390	354177	111212	21251	23005	28109	1537167	1730112	~	8	0	ē	386929	28733	68	ŝ	1828	460
Cooldown 3.1	2	5	70124	186	47293	14850	2838	2893	29300	42	59689	ω	ε	-	20	408802	29951	Θ	0	-	22
Cooldown 3.2	2		70493	196	50030	15709	3002	3093	29280	292	61135	9	13	1	21	405108	29930	12	0	2	62
Cool down 3.3	2		71177	215	54718	17181	3283	3333	29316	875	63760	9	15	2	23	410316	29967	21	0	e	67
Cool down 3.4	2		72032	229	58314	18311	3439	3615	29372	1042	65629	7	ά	2	24	403128	30025	32	0	m	72
Cool down 3.5	2		72842	249	63482	19934	3809	3929	29314	1375	68132	00	17	2	26	403677	29966	41	0	4	79
Cool down 3.6	2	ġ	74114	272	63326	21768	4160	4331	29398	2167	71623	œ	æ	2	29	400043	30052	47	0	4	87
Cool down 3.7	2		75154	303	77104	24211	4626	4811	29418	3625	76496	6	20	2	32	400552	30071	52	0	9	36
Cool down 3.8	2	8	77042		85679	26903	5141	5398	29420	5042	81710	₽	23	2	35	396709	30074	49	0	00	108
Cool down 3.9	2		79097		98432	30908	5306	6169	29445	7583	89825	÷	26	e	40	338910	30099	42	0	4	123
Cool down 3.10	2	8	81615	440	112061	35187	6724	7198	29446	11833	100203	<u>е</u>	8	e	46	389257	30101	99	-	8	144

	Controls		Responses									╞									
Unit	hours hours			kg	kWh	•	•	w		e	*	8		*	*	mm³	€ at time	hours	Parts	Parts	Parts
Simulation run	Cool down time	Mean arrival	Total warehousing cost material	Consumed (Consumed	Consumed (material e cost	Consumed energy (cost	Operator 1 cost	Total AM maintenance cost	Total T AM A Penalty c	Total M. AM se cost tin	Machine M setup pr time tii	Machine production time	Machine cool down time	Total machine utilization time	Average building volume	Machine depre- ciation	Average I time in o queue i	Average number of parts in queue	Parts in 4 queue 1 total 6	AM parts out
Cool down 3.11	2	2	85372	518	132067	41469	7924	8636	23475	24958	122287	Ŕ	8	4	54	382657	30130	8	0	48	173
Cool down 3.12	2	40	91117	659	167909	52724	10075	10763	29481	63000	175869	₽	44	4	67	390254	30137	8	0	88	215
Cool down 3.13	2	8	33352	873	222522	63872	13351	14300	29449	191500	328289	£	ß	5	82	389101	30104	8	-	176	286
Cool down 3.14	2	20	118539	1243	316666	99433	19000	20643	29139	891375 1	1069302	₽	85	e	38	384550	29786	117	9	395	413
Cool down 3.15	2	₽	172033	1381	351826	110473	21110	22908	27940	1527792 1	1719536	2	8	0	100	385957	28561	696	163	1789	458
Cool down 4.1	e	150	70125	185	47105	14791	2826	2893	29307	42	59627	9	13	2	20	407176	23958	9	0	-	58
Cool down 4.2	e	140	70433	196	50060	15719	3004	3093	29282	292	61149	9	5	2	21	404597	29932	12	0	2	62
Cool down 4.3	e		71177	214	54613	17148	3277	3331	29297	917	63736	9	5	2	23	409750	29948	22	0	e	67
Cool down 4.4	m	120		229	58311	18310	3499	3614	29372	1083	65668	~	ξ	m	25	403214	30025	32	0	m	72
Cool down 4.5	e		72824		63439	19920	3806	3930	29330	1458	68221	00	17	e	27	403358	23382	41	0	4	79
Cool down 4.6	9				69567	21844	4174	4333	29404	2333	71890	8	18	3	30	401305	30058	47	0	S	87
Cool down 4.7	e		75176	303	77324	24280	4639	4813	29421	3958	76919	σ	20	e	33	401496	30075	52	0	9	36
Cool down 4.8	e	80			85349	26799	5121	5393	29416	5250	81784	10	23	4	37	395751	30070	48	0	8	108
Cool down 4.3	m		73046		100336	31505	6020	6177	29463		92112	÷	27	4	42	406094	30118	4	0	4	124
Cool down 4.10	m				111768	35095	6706	7198	29444		100257	φ	8	U	48	388133	30098	8	0	22	144
Cool down 4.11	e			523	133300	41856	7998	8630	29459		124555	φ	ŝ	9	56	386182	30114	8	0	ត	173
Cool down 4.12	e			654	166723	52351	10003	10761	29492		174688	۴	44	9	88	387373	30147	8	0	8	215
Cool down 4.13	e			871	221938	63683	13316	14298	29457	206583	343162	₽	ß	2	84	388171	30111	6	-	180	286
Cool down 4.14	e		117953	1256	319975	100472	19199	20599	29062	940750	1119769	σ	88	9	88	389305	29708	120	9	405	412
Cool down 4.15	e				352490	110682	21149	23089	28038	1541500 1	1733804	0	ŝ	-	100	383691	28661	669	165	1817	462
Cool down 5.1	4		70146	185	47173	14812	2830	2893	29312	125	59742	9	13	e	21	407764	29963	2	0	-	58
Cool down 5.2	4				50268	15784	3016	3093	29290	333	61280	9	13	3	22	406149	29940	13	0	2	62
Cool down 5.3	4				54610	17147	3277	3330	29297	917	63733	9	ξ	e	24	403867	29948	23	0	e	67
Cool down 5.4	4	120			58311	18310	3499	3614	29375	1083	65673	7	15	3	26	403214	30028	33	0	Э	72
Cool down 5.5	4			249	63333	19887	3800	3330	29333	1458	68186	00	17	4	28	402762	23385	42	0	4	79
Cool down 5.6	4	đ			69594	21853	4176	4332	29402	2667	72239	00	₽ ₽	4	31	401480	30055	6	0	S	87
Cool down 5.7	4		75230		77031	24188	4622	4812	29413	4125	76964	σ	50	4	34	400125	30067	23	0	9	98
Cool down 5.8	4		77000		86303	27099	5178	5394	29409	5917	82800	₽	8	u	8	333386	30062	47	•	σ	9
Cool down 5.9	4		78882	387	38681	30386	5921	6176	29455	- L	90356	₽	58	9	43	339455	30110	4		7	124
Cool down 5.10	4		81746	438	111500	32011	6630	7203	29465		102607	<u>е</u> і	ន	9	69	386962	30120	Ж I		58	144
Cool down 5.11	4,		84838	220	132357	41560	7941	8636	29478	28708	126150	τΩ	<u>к</u>	~ (8	383353	30133	8		ः व	173
21.5 nwob loou	t		30476	0 1 1	104.302	200	2002	N/9/	79407		1/2318	2	3	ית	5	101244	30121	'n	•	8	212
Cool down 5.13	4,		33605	200	JJ BLZZ	10/69	13319	14310	23473		352501	p	B I	, ,	81	387833	30728	2	-	<u>8</u>	286
Cool down 5. 14	• •		118636		321312	759001	R/78	20045		3/00/5	1150532	, ,	88	, t	R	101050	2122	174		4 IC	2
Cool down 5.15	4		172504	1374	350106	103333	21006	22751		1508792	1699712	~	8	-	6	387049	28543	635	<u>8</u>	1782	455
Cool down 6.1	IJ		70152	184	46730	14692	2807	2892	29316	167	59645	ω	4	m	21	404639	29967	~	•	-	ß
Cool down 6.2	5		70533	138	50362	15814	3022	3094	29299	417	61412	9	φ	4	23	406817	23950	4	0	2	62
Cool down 6.3	n		71180	214	54610	17147	3277	3330	29301	917	63739	œ	Ψ	4	25	409867	29952	24	0	m	67
Cool down 6.4	IJ		72006	229	58308	18309	3498	3613	29372	1208	65792	~	Ę	4	27	403214	30025	β	0	m	72
Cool down 6.5	ŋ		72792	248	63106	19815	3786	3330	29338	1625	68274	00	17	IJ	29	401344	29990	4	0	4	79
Cool down 6.6	5	<u>1</u>	74145	274	63685	21881	4181	4332	29410	2875	72482	00	8	S	32	402003	30063	6	0	U)	87
Cool down 6.7	ى ا	8	75196	300	76515	24026	4591	4813	29411	4417	77061	σ	20	9	35	397429	30064	22	0	9	98
Cool down 6.8	പ	8	76383	336	85613	26883	5137	5333	29417	8000	82636	₽	8	9	R	396815	30071	47		σ	108

	Controls	Γ	Responses									\mid									
Unit	t hours hours		ŧ	kg	kWh		ę			e e	*	*		*	*	mm³	€ at time	hours	Parts	Parts	Parts
Simulation run	Cool down time	Mean arrival	Total warehousing cost material		Consumed energy	Consumed material cost	Consumed energy C cost c	Operator 1 cost	Total AM maintenance cost	Total T AM A Penalty c	Total M AM Si cost ti	Machine M setup pi time ti	Machine production time	Machine cool down time	Total machine utilization time	Average building volume	Machine J depre- 1 ciation	Average time in queue	Average number of parts in queue	Parts in queue total	AM parts out
Cool down 6.9	5		79037	385	98172	30826	5830	6167	23466	8833	91004	Ħ	26	7	44	397925	30120	41	0	14	123
Cool down 6.10	2		81929		113305	35578	6738	7194	29432	15292	104104	13	30	8	51	393803	30086	35	0	28	144
Cool down 6.11	2		85070	517	131668	41344	7900	8638	29487	29167	126364	15	35	9	59	381199	30142	33	0	52	173
Cool down 6.12	S	40	91244	643	163795	51432	9828	10768	29451	72125	183420	18	43	Ħ	72	380233	30106	40	0	93	215
Cool down 6.13	2		100223	867		69367	13255	14261	29443	217500	353640	18	58	п	87	387280	30098	49	1	190	285
Cool down 6.14	2		118638	1239	315597	33038	18936	20606	29033	954917 1	1132267	9	85	5	99	383535	29679	117	9	413	412
Cool down 6.15	5		173330	1382		110524	21119	23113	28094	1536167 1	1728381	1	98	1	100	382914	28719	638	163	1802	462
Cool down 7.1	9	150	70133			14708	2811	2892	29319	208	59711	9	12	4	22	405051	29971	80	0	2	58
Cool down 7.2	9		70557				3048	3096	29312	542	61717	9	φ	4	24		29964	τ	0	m	62
Cool down 7.3	9	5	71180	214		17146	3276	3329	29304	917	63740	9	φ	IJ	26		29955	53	0	e	67
Cool down 7.4	9		72031				3507	3613	29370	1333	65365	~	έ	U U	28	- 1	30023	Я	0	e	72
Cool down 7.5	9		72740				3759	3928	29337	1708	68185	8	4	9	8		29989	6	0	4	79
Cool down 7.6	9		74157				4205	4329	29390	3250	72977	8	£	9	ŝ	404634	30043	6 4	0	U.	87
Cool down 7.7	9		75263				4608	4811	29415	4417	12177	б	8	2	98		30069	ន	0	Θ	98
Cool down 7.8	9		77145				5233	5397	29425	6667	83913	₽	R	2	41	I	30079	47	0	₽	108
Cool down 7.9	9		78808				5876	6163	29446	8250	90305	=	28	80	46		30101	g	0	Ę	123
Cool down 7.10	9		81653				6777	7187	29438	14958	103641	р С	8	₽	ខ	393368	30092	8	0	8	144
Cool down 7.11	9		85344				7991	8621	29477		129735	ξ	ЗS	Ŧ	61		30132	34	0	ß	172
Cool down 7.12	9		91069	642	163576	51363	9815	10717	29443	73125	184276	17	43	13	73	381618	30097	88	0	97	214
Cool down 7.13	9		100841				13083	14275	29435	212667	347740	₽ ₽	ß	Ω	8	381992	30089	47	-	194	286
Cool down 7.14	9	20	117966	1255	319762	100405	19186	20643	29153	1001208 1	1180313	8	85	9	99	387987	23801	126	9	419	413
Cool down 7.15	9		173768	1377	350821	110158	21049	22834	28029	1523333 1	1714747	1	97	1	100	386188	28652	705	168	1835	457
Cool down 8.1	7	150	70168	184	46854	14712	2811	2893	29329	292	59812	9	12	5	23	404974	23380	9	0	2	58
Cool down 8.2	7	140	70564	200		16010	3059	3096	29315	708	61960	6	14	5	25	411572	23966	15	0	9	62
Cool down 8.3	7	130	71180	214		17146	3276	3329	29307	1042	63870	9	ά	S	26	410052	23959	26	0	e	67
Cool down 8.4	7	120	72081	230	58561		3514	3613	29363	1417	66081	2	9	9	28	405065	30015	99	0	e	72
Cool down 8.5	2	0 <u>1</u>	72700				3762	3931	29345	1875	68384	ω	17	9	ਕ		29997	44	0	4	79
Cool down 8.6	2	ê	74110				4198	4333	29412	3375	73091	8	£	7	34	- I	30065	8	•	n	87
Cool down 8.7	^	8	75238				4646	4811	29408	4583	77563	,	8	œ	8	_ I	30061	ន		œ	8
Cool down 8.8	~	8	77092				5237	238	29412	6875	84136	e :	8	σ	42	404250	30066	4		P.	108
Cool down 8.9		2	78766				5852	8161	29446		90232	=	38	₽°	47		30100	8		φ 1	123
Cool down 8.10	~	8	81565				6810	7192	29463		103297	е Г	8	F	54	- I	30117	R		33	144
Cool down 8.11	~	ន	85333				7931	8621	29458		132582	έ	Я	φ	8	- I	30113	¥		8	172
Cool down 8.12	2	6	90730				9734	10758	29483		181449	œ	4	Ψ	75	- 1	30138	33	-	₽	215
Cool down 8.13	2	8	100279				13338	14292	29458		375836	4	ន	4	8		30113	6	-	205	286
Cool down 8.14	2	8	117902	1243		Ĩ	18995	20568	29081	993208 1	1170956	8	8	7	8	385470	29727	120	ω	420	411
Cool down 8.15	2	₽	173505	-	ິ		21054	23159		1539375 1	1731231	-	97	-	đ		28721	202	164	1808	463
Cool down 9.1	8		70144				2803	2892	29338		59772	9	4	IJ	23	- 1	29990	σ	0	2	22
Cool down 9.2	80		70574				3046	3097	29324	875	62060	9	φ	9	25		29976	φ	0	e	62
Cool down 9.3	00		71180				3276	3329	29311	1083	63917	9	Ϋ́	9	27	- 1	29962	27	0	m	67
Cool down 9.4	00	120	72104				3512	3612	29364	1417	66070	~	φ	2	53		30017	37	0	en	72
Cool down 9.5	00		72746				3767	3333	29351	2167	68717		4	2	32		30003	44	0	4	79
Cool down 9.6	80		74191	275	70160	22030	4210	4336	29407	3708	73494	00	£	8	ŝ	404530	30061	8	ī	2	87

hours cis kg huh Altean Varbousing Consumed Authousing Consumed Artean cost T3516 Consumed Consumed 000 74191 275 70160 100 74191 275 70160 100 77316 341 86557 100 73516 341 86577 100 77316 341 86577 100 77316 341 86557 100 773517 3507 523 10557 100 773516 1377 3507 36577 100 773517 523 10556 3677 110 775316 523 132259 50578 110 77518 237 36073 5055 110 77518 245 70150 50578 110 77518 245 70150 50578 110 77446 364 5057						-	-			-	_	_	-		
Cool inne Total acrival acrival cost Total material material cost Total material material cost Total material material cost Total material material cost Total material material cost Total material material cost Total material material cost Total material material cost Total material material cost Total material cost Total material material cost Total material material cost Total material material cost Total material cost Total material cost Total material cost Total material cost Total material cost Total material cost Total material cost Total cost 8 70 77316 54 7052 7052 7052 8 30 77316 54 100 77316 54 100 8 30 77517 57052 100 7741 2076 1043 9 100 77316 7416 7052 100 10741 9 100 77416 7052 101 10741 1043 10741 9 100 77416 7052 100 107416 100 <td< th=""><th>ł</th><th>e e</th><th>¥</th><th>÷</th><th>*</th><th>*</th><th></th><th>*</th><th>*</th><th>mm³</th><th>€attime h</th><th>hours Parts</th><th>ts Parts</th><th>Parts</th><th>N</th></td<>	ł	e e	¥	÷	*	*		*	*	mm³	€attime h	hours Parts	ts Parts	Parts	N
8 100 74151 275 8 90 75118 341 8 7 75753 304 8 50 71553 304 8 50 81932 440 8 50 81832 340 8 70 7755 330 8 40 90377 654 8 10 17351 1377 9 150 7023 183 9 150 7023 183 9 130 7703 183 9 140 77503 183 9 130 74207 247 9 130 74207 214 9 130 7430 230 9 130 7430 214 9 10 75193 305 9 10 75136 214 9 10 7014 230	Consumed Consumed energy cost	Consumed energy cost	Total AM Operator maintenance cost cost	Total AM Penalty	Total N AM s cost ti	Machine M setup p time ti	Machine production time	Machine sool down time	Total machine utilization time	Average building volume	Machine A depre- ti ciation q	Av Average nuu time in of queue in o	Average number Parts i of parts queue in queue total	Parts in AM queue parts total out	_ <u>ខ</u>
8 90 75118 304 8 70 77316 341 8 70 77315 341 8 70 77315 341 8 70 71315 341 8 50 84622 523 8 10 118255 523 8 10 173515 1317 9 140 7053 131 9 140 7053 133 9 140 7053 133 9 140 77533 133 9 140 7053 133 9 100 74207 214 9 100 74207 214 9 100 74203 247 9 100 77446 334 9 20 7044 23 9 10 101 7053 247 9 10 7053 <t< td=""><td>70160 22030</td><td></td><td>4336 29407</td><td>3708</td><td>73494</td><td>8</td><td>6</td><td>00</td><td>35</td><td>404530</td><td>30061</td><td>20</td><td>0</td><td>S</td><td>87</td></t<>	70160 22030		4336 29407	3708	73494	8	6	00	35	404530	30061	20	0	S	87
8 80 77316 341 8 70 78155 380 8 50 84522 523 8 50 84522 523 8 50 84522 523 8 50 84522 523 8 10 11253 654 8 10 7155 531 9 150 7155 533 9 140 7053 183 9 140 7053 183 9 140 7053 183 9 100 74207 275 9 100 74207 275 9 100 77460 335 9 10 77563 334 9 10 77563 247 9 10 77460 337 9 10 7053 244 10 10 7053 244		4650	4802 23390	30 5208	78178	6	21	б	88	403511	30043	23	0		8
8 70 7815 380 8 60 81932 540 8 50 81932 540 8 50 81932 540 8 50 81932 540 8 50 8157 554 3 8 50 118255 1251 3 9 140 70533 133 7 345 9 140 75193 230 244 3 9 140 75193 133 131 377 35 9 120 7180 214 275 340 340 9 100 77546 7754 341	86957 27304		5395 29421	21 7000	84145	₽	23	₽	43	402876	30075	45	0	1	108
8 60 81332 440 8 50 8452 523 53 8 30 99377 845 53 8 30 99377 845 53 8 30 99377 845 53 8 30 93977 845 53 8 10 17551 1737 845 9 140 7023 1837 845 9 140 7023 1837 845 9 140 7033 193 744 9 100 7204 230 247 9 100 7203 193 305 9 100 7446 340 236 9 10 7032 144 236 9 10 17266 347 253 9 10 17296 523 136 10 10 100 1120 <			6154 23441	41 9292	90838	Ŧ	58	Ŧ	48	393467	30096	37	0		123
8 50 84622 523 7 8 40 90377 645 23 8 10 17351 1377 545 8 10 17351 1377 545 9 150 70123 183 247 9 150 70123 183 213 9 150 70123 183 2147 9 150 77163 2147 2147 9 120 74207 2147 2147 9 120 74207 2147 2147 9 120 7446 214 2147 9 100 7446 214 2147 9 210 77164 2147 2147 9 210 77164 2147 214 9 210 77446 2147 214 10 10 111 7012 1214 10 10		6724	7191 29435	35 16417	104765	р С	8	φ	28	389576	30090	32	0		144
8 40 30377 654 8 10 118255 557 8 10 118255 1375 8 10 118255 1375 9 150 7023 845 9 150 7023 845 9 110 71825 1375 9 120 70533 1337 9 120 72753 247 9 100 74207 275 9 100 74207 275 9 100 74207 275 9 100 74207 275 9 100 74207 275 9 20 7446 347 9 20 8487 573 9 10 17366 432 10 10 101 7033 10 10 101 7033 10 10 101 101			8622 29466	35542	133290	ξ	ŝ	Ę	85	386618	30121	34	0	1	172
8 30 33977 845 8 20 118255 1251 8 10 171351 1377 9 150 717351 1377 9 150 717351 1377 9 130 7180 1377 9 130 7180 1337 9 130 7180 230 9 110 72519 237 9 100 74207 236 9 100 77363 340 9 100 77363 340 9 100 77368 347 9 10 77368 432 9 10 172568 1374 9 10 71596 1374 9 10 71596 1374 10 10 10 103 134 10 10 100 74368 336 10 716	166689	Ĺ	10723 29461	61 86667	199013	4	44	4	28	388515	30116	R	0		214
8 20 118255 1251 2551 8 10 17351 1337 3<		12913	14288 23456	56 221958	356010	4	23	4	5	376724	30110	45	-	207 2	88
8 10 1735/1 1377 3 9 150 70123 183 9 140 71180 2143 9 140 71180 2143 9 110 72783 247 9 110 72783 247 9 100 74207 276 9 100 74307 305 9 100 7446 340 9 80 7746 340 9 80 7746 340 9 9 80 7746 340 9 9 9 864 2 9 9 10 17566 134 2 9 10 140 7053 139 14 10 10 10 7053 139 14 10 10 10 7053 14 2 10 10 70533 366			20451 29032	32 1040792	1219129	7	85	7	99	390566	29677	139	7		409
9 150 70123 183 9 130 71963 149 9 130 71963 149 9 130 77104 234 9 100 74207 247 9 100 74207 216 9 100 74207 216 9 100 74207 216 9 20 7146 340 9 20 75183 340 9 20 75183 340 9 20 7180 347 9 20 77463 347 9 20 8613 347 9 20 84815 573 9 20 84315 573 9 20 7034 543 9 10 105 7034 9 10 70345 543 10 10 7033 545	350726 110128	21044	22846 28119	19 1518458	1709967	-	97	1	100	386299	28743	706	- 167		157
9 140 70583 139 9 130 71160 214 9 130 77513 247 9 100 74207 215 9 100 74207 215 9 100 74207 215 9 700 74207 215 9 700 74207 215 9 700 74207 215 9 700 74203 341 9 50 84815 523 9 20 84815 523 9 20 84815 523 9 20 84815 523 9 20 70124 184 10 10 1123 7013 10 11 70533 1301 10 11 71863 301 10 10 71863 301 10 10 71863 301 <td></td> <td></td> <td>2890 29329</td> <td></td> <td>59770</td> <td>9</td> <td>12</td> <td>6</td> <td>24</td> <td>404488</td> <td>29981</td> <td>10</td> <td>0</td> <td>2</td> <td>58</td>			2890 29329		59770	9	12	6	24	404488	29981	10	0	2	58
3 130 7180 214 3 120 72704 230 3 100 74207 275 3 100 74207 275 3 100 74207 275 3 90 77446 340 3 9 641 237 3 9 641 237 3 9 641 237 3 9 80 7446 340 3 9 641 237 247 3 9 9 77446 340 3 9 9 77446 340 3 9 9 9 9 9 3 9 10 17256 1314 14 10 10 10 7053 149 14 10 10 10 71633 216 14 10 10 70533 216 <td></td> <td>3035</td> <td>3095 29328</td> <td>28 875</td> <td>61330</td> <td>9</td> <td>13</td> <td>7</td> <td>26</td> <td>408380</td> <td>29979</td> <td>17</td> <td>0</td> <td>en</td> <td>62</td>		3035	3095 29328	28 875	61330	9	13	7	26	408380	29979	17	0	en	62
9 120 72104 230 9 110 74207 275 9 100 74207 275 9 90 754207 275 9 90 754207 275 9 90 754207 275 9 90 77446 340 9 9 70 78032 367 9 56 867156 403 367 9 9 10 71465 340 9 9 10 118653 1243 3 10 10 10 11 70368 641 3 10 10 140 70533 139 3 10 10 10 77486 340 3 10 10 70533 139 3 3 10 10 70533 139 3 3 10 10 70533 336			3329 29315	15 1083	63921	9	15	7	28	410052	23366	28	0	9	67
9 110 72783 247 9 900 74207 275 9 800 74519 340 9 800 74519 340 9 80 74515 340 9 80 77516 340 9 80 77416 340 9 80 77416 340 9 9 80 865 23 9 9 9 94815 523 340 9 9 9 94815 523 340 9 9 10 11653 1243 523 10 10 11 70533 139 134 10 10 140 70533 139 134 10 10 10 74184 236 130 10 10 10 74184 338 145 145 10 10 77367 <td< td=""><td>58525</td><td></td><td></td><td></td><td>66136</td><td>~</td><td>9</td><td>00</td><td>8</td><td>404970</td><td>30019</td><td>R</td><td>0</td><td>e</td><td>72</td></td<>	58525				66136	~	9	00	8	404970	30019	R	0	e	72
9 100 74207 275 9 9 90 75189 305 9 8 7 75189 305 9 70 75189 305 9 70 75189 305 9 70 78032 337 9 50 84815 523 9 30 9886 865 9 30 99888 865 10 10 110 7034 134 10 10 140 70533 139 10 10 140 70533 139 10 10 10 70533 139 10 10 70533 139 214 10 10 71305 745 230 10 10 7363 336 366 10 10 7333 366 245 10 20 77486 336	62851				68907	80	4	8	R	399413	30003	45	0	4	5
9 90 75193 305 9 70 75193 340 9 7 7305 340 9 70 7305 340 9 50 84315 523 9 50 84315 523 9 50 84315 523 9 20 84315 523 9 20 84315 523 9 20 10 1236 1314 10 150 70124 184 213 10 10 130 7180 245 10 10 70124 214 275 10 10 7053 1301 245 10 10 7583 336 374 10 10 7583 336 374 10 10 7383 336 374 10 10 7383 336 374 <t< td=""><td>70152</td><td></td><td></td><td></td><td>73576</td><td>00</td><td>£</td><td>σ</td><td>8</td><td>404379</td><td>30062</td><td>2</td><td>0</td><td>IJ</td><td>87</td></t<>	70152				73576	00	£	σ	8	404379	30062	2	0	IJ	87
9 80 77446 340 9 70 78032 387 9 70 87935 436 9 50 84875 523 9 50 84875 523 9 50 84875 523 9 50 84875 523 9 10 172565 523 10 150 70124 1374 10 140 70533 134 10 140 70533 134 10 10 140 70533 134 10 10 10 70533 134 10 10 70533 134 245 10 10 77485 336 245 10 77486 336 245 366 10 10 77486 336 245 10 10 77486 336 455 10 20 <td>77741</td> <td></td> <td></td> <td>81 5333</td> <td>78384</td> <td>σ</td> <td>21</td> <td>P</td> <td>4</td> <td>404794</td> <td>30034</td> <td>ਹ</td> <td>-</td> <td>~</td> <td>8</td>	77741			81 5333	78384	σ	21	P	4	404794	30034	ਹ	-	~	8
9 70 78032 337 9 50 84815 537 9 50 84815 537 9 50 84815 537 9 40 91008 641 9 40 91008 641 9 70 118553 1243 10 10 10 12368 865 10 10 70533 139 10 10 71366 131 10 10 70533 139 10 10 7180 230 10 10 7333 338 10 10 74164 275 10 7361 243 301 10 73867 338 366 10 10 7333 338 10 10 74164 275 10 10 7333 366 10 643 3748	86625				84010	₽	33	=	4	401146	30097	44	0		ĝ
1 5 60 82736 432 2 3 5 60 82735 432 3 3 5 60 8475 523 4 3 30 99888 865 2 9 10 118653 1243 2 10 140 7038 134 2 10 140 70533 139 10 140 70533 139 10 10 140 70533 139 10 10 10 245 301 10 10 10 74184 274 10 10 72503 139 10 10 73807 301 10 10 73807 301 10 10 73867 301 10 10 73867 301 10 10 73867 301 10 10 8431	38439			10167	92426	₽	28	4	20	400033	30103	8	-		123
9 50 84815 523 73 1 3 40 910653 641 1 1 3 30 95863 641 1 10 10 150 70124 1374 3 10 150 70124 134 3 3 10 140 70533 134 3 10 140 70533 134 3 10 10 140 70533 139 10 10 120 7180 244 3 10 10 120 7180 245 3 3 10 10 10 7333 336 3 3 3 10 10 7336 748 3	110145		7190 23445	15 16208	103853	φ	53	4	57	382957	30100	8	0		44
0 40 91008 641 1 1 9 20 99888 641 1 1 9 20 99888 865 2 2 10 150 150 70124 184 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2			8621 29473	73 38417	136124	£	ŝ	4	67	386107	30128	8	0		172
1 3 30 95868 865 2 1 1 172665 1243 3 10 150 70724 1843 3 10 150 707365 1243 3 10 140 70543 1344 3 10 140 70533 134 3 10 140 70533 139 34 10 10 140 70533 139 34 10 10 110 7180 244 3 10 10 110 70533 139 34 10 10 7418 2.75 301 34 10 10 74184 2.75 301 36 36 10 10 74485 336 338 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 <					194085	4	£	£	52	380569	30111	8	-		215
0 20 118653 12.4.3 3 1 10 150 772.366 137.4 3 10 140 70533 139 137.4 3 10 140 70533 139 149 149 149 10 140 70533 139 149				71 260583	396596	4	ß	8	8	384867	30126	48	-		286
1 10 172566 1374 3 10 150 150 70124 184 10 140 70533 199 10 140 70533 199 10 130 71180 214 10 130 71180 214 10 10 120 72103 230 10 10 100 74184 214 10 10 10 74184 230 10 10 10 74184 311 10 10 74184 338 10 10 74184 317 10 10 74186 338 10 10 74185 318 10 10 74186 338 10 10 74353 366 10 10 8743 255 10 10 10 143 143 10 10 </td <td></td> <td></td> <td></td> <td></td> <td>1217838</td> <td>~</td> <td>8</td> <td>2</td> <td>8</td> <td>391306</td> <td>29618</td> <td>145 1</td> <td>2</td> <td></td> <td>406</td>					1217838	~	8	2	8	391306	29618	145 1	2		406
10 150 70124 184 10 140 70533 193 10 140 70533 193 10 130 7180 214 10 130 7180 214 10 120 72103 230 10 120 7387 317 10 10 73887 317 10 90 75887 317 10 90 75833 336 10 90 75833 366 10 80 7387 316 10 814 375 43 10 90 76333 366 10 916 9162 43 1 10 10 117281 1255 3 11 150 17281 154 3	-				1701885	-	97	2	9	389093	28733	210	-	1853 4	453
10 140 70533 159 10 140 70533 159 10 130 70533 159 10 130 716 245 10 120 7149 245 10 100 7484 271 10 910 73833 236 10 90 75861 338 10 90 7533 386 10 80 77486 338 10 80 77486 338 10 80 77486 338 10 80 77486 338 10 819 765 453 10 90 77486 338 10 90 7748 338 10 91 914 755 10 91 916 745 10 10 1728 154 11 150 7026 154	46912				53303	ω	4	2	53	405824	23976	P	-	5	ß
10 140 70533 159 10 130 7193 214 10 130 7193 214 10 100 120 72801 245 10 100 710 74184 215 10 100 74184 215 10 10 74868 331 10 10 74868 331 10 70 7486 333 10 70 7486 336 10 10 7486 333 10 70 7486 333 10 10 7486 336 10 10 7486 435 10 10 94917 553 14 10 10 17291 536 314 31 11 150 17782 1235 314 31	50575				61982	φ	β	~	27	408380	23975	œ	0	m	82
10 130 7.180 214 10 120 72.013 235 10 110 72.801 245 10 100 74.184 2.75 10 100 74.184 2.75 10 100 74.84 2.75 10 80 7.7465 336 10 70 7.8455 336 10 70 7.8455 336 10 70 7.8455 336 10 70 7.8455 336 10 70 7.7455 364 1 10 90 7.7455 643 1 2 10 91 9100.76 874 2 1 2 10 10 17291 1235 1 2 3 3 11 150 700.76 1 1 3 3 3 3 3 3 3 3 3	50575				61982	0	₽ I	~ (27	408380	23975	<u>ب</u>	-		818
10 120 72103 230 10 100 110 72103 230 10 100 100 74184 245 10 100 74184 245 10 90 74384 245 10 90 74384 245 10 70 7486 333 10 70 74383 366 10 70 78333 366 10 70 78333 366 10 70 78333 366 10 70 8733 366 10 50 84317 523 1 10 90 9162 643 1 2 10 10 20 17281 1235 3 11 150 7026 134 3 3	546U3				78889		<u>ב</u> י	0	3	410052	79667	3	-	201	اظ
10 100 74184 2.75 10 90 74184 2.75 10 90 75387 301 10 90 74184 2.75 10 90 7486 338 10 70 7486 338 10 70 7486 338 10 70 7486 338 10 70 7486 338 10 64 7133 366 10 50 84317 523 1 10 50 84317 523 1 10 20 10767 874 2 10 20 177241 1235 3 11 150 7026 134 3		3503	36U9 23357 3428 24354	01 1583 2458	6621U 68805	- «	2 5	20 σ	5 8	396777	30003	84	=	27 7	2 वि
10 90 75387 301 10 80 7486 338 10 70 7486 338 10 70 7486 338 10 70 7333 366 10 70 78333 366 10 70 78333 366 10 80 84317 523 10 50 84317 523 10 90 9162 643 1 10 30 100076 874 2 10 20 117281 1255 3 11 150 70266 134 3	70190				73836	0	: p	P	3 6	404503	30059	2 6	-		2 28
10 80 77486 338 10 70 78333 386 10 60 70 78333 386 10 60 82193 425 316 10 50 82193 425 316 10 50 8417 523 366 10 90 9162 643 1 10 30 100076 874 2 10 20 117821 1256 3 11 150 17281 364 3					7771	0	8	Ŧ	4	399843	30029	2	0	~	8
10 70 78333 386 10 60 82193 425 10 50 84317 523 10 50 84317 523 10 50 84317 523 10 50 84317 523 10 30 00076 643 10 30 00076 874 10 20 117982 13.43 10 10 171982 13.43 11 150 70126 134	86063		5390 29434	34 6708	83531	₽	33	4	5	333008	30088	4	-	- P	108
10 60 82193 425 10 50 84317 523 425 10 50 84317 523 425 10 40 9162 643 425 10 30 00076 8174 52 10 20 117821 1235 43 10 10 177821 1235 134 11 150 7026 184 3		5833	6160 29441	41 10000	92149	F	26	4	ਹ	398588	30096	37	0	17	123
10 50 84317 523 10 40 3162 643 10 40 3162 643 10 30 10076 874 2 10 20 117821 1235 1 10 10 171821 1234 3 11 150 7026 184 3	108156 33961	6489	7180 29428	28 16833	103701	ε	29	16	8	376606	30082	31	0	35	144
10 4.0 3162 643 10 30 00076 874 3 10 20 117821 1235 344 3 10 20 10778 874 3	134763 42316		8592 29449	41333	139591	đ	36	18	69	392232	30103	35	0	62 1	172
0 20 10075 874 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	163842 51446	9831	10739 29454	54 98542	209830	17	43	20	81	381376	30109	40	1	111 2	215
10 20 117821 1235 10 10 110 172916 1364 11 150 70726 184			14233 29427		412386	9	ß	đ	94	391350	30081	49	F	228 2	285
10 10 172916 1364 3 11 150 70126 184			20313 28990	90 1030333	1206951	~	8	8	8	388504	29634	138	2		406
11 150 70126 184	-	~		1223	1713737	-	97	2	9	382492	28568	702	164	1781 4	457
	46788				59982	9	12	~	25	405042	29972	₽	0		ß
Cool down 12.2 11 140 70625 200 50900		3054	3094 29327	27 958	62192	9	4	8	27	411083	23979	ε	-	m	62

	Controle	[Derector																		
:				T.															T	Τ	
Unit	Unit hours hours	hours	ų	<u>.</u>	κwh Μ						*	*		*	*	²mu²	€ at time	hours	Parts	Parts	Parts
Simulation run	Cool down time	Mean	Total warehousing consumed		Consumed material	ed		Operator	Derator maintenance AM		Total N AM Soci	Machine Machine setup productio	5	Machine Total cool machi down utiliza	Total machine Average utilization building	Average building	Average Machine building depre- colume cistico	Average time in	Average number F of parts q	Parts in A queue	AM parts
Cool down 12 3		130	71180	14	573	1713B	3774	3328	PLEBC		ų t	ď	4	σ	ν. σ	409827	- u	30		٣	57 1
Cool down 12.4	÷			230	ER485	18364	3509	3808	29255	1 1 1 1 1 1	66204		£Ψ	σ	3 6	405022	30007	3 9		0 0	2
Cool down 12.5	-		ľ	246	62571	19647	3754	3927	29320	2708	63129	• •	2 12	P	병	398223	29971	5 4		0 4	15
Cool down 12.6	Ŧ	ľ		275	70112	22015	4207	4333	29401	4083	73840	0	е Р	Ŧ	8	1	30055	52	0	ر ا	87
Cool down 12.7	Ħ	8		301	76640	24065	4538	4794	23365	5458	78069	<i>в</i>	20	12	42	333636	30017	5	0	7	98
Cool down 12.8	Ŧ	8		335	85418	26821	5125	5338	29430	7458	84042	₽	33	4	46	395433	30084	6	0	Ŧ	8
Cool down 12.9	Ħ	20	78570	377	95958	30131	5757	6152	29440	10167	91460	=	25	15	52	389885	30094	35	0	\$	123
Cool down 12.10	Ħ			433	110270	34625	6616	7193	29446	18958	106655	13	29	17	60	383295	30101	31	0	37	144
Cool down 12.11	Ħ	50	85260	524	133589	41947	8015	8538	29428	41750	139547	ξ	35	20	70	388498	30082	35	0	63	172
Cool down 12.12	Ħ		91008	646	164704	51717	3882	10728	29474	97583	209209	17	43	22	83	383933	30129	39	-	117	215
Cool down 12.13	Ħ	30	33346	882	224649	70540	13479	14266	29462	303125	440691	ξ	53	21	95	393755	30116	49	-	239	285
Cool down 12.14	Ħ	20	118064	1237	315144	38955	18909	20213	28901	28901 1060250 1236861	1236861	9	8	8	66	391436	29543	148	7	421	404
Cool down 12.15	Ħ	10	173926	1365	347698	109177	20862	22426	28037	1496208	1686057	-	97	2	100	390231	28661	712	171	1856	449
Cool down 13.1	12	150	70106	184	46788	14692	2807	2889	29322	667	60151	9	12	8	26	404917	29974	12	0	2	28
Cool down 13.2	12			133	50761	15939	3046	3095	29335	1000	62192	9	13	9	28	409837	29987	20	0	e	62
Cool down 13.3	12		71180	214	54540	17125	3272	3328	29309	1333	64137	9	4	9	8	409724	23360	31	0	e	67
Cool down 13.4	12	120	72121	230	58673	18423	3520	3607	29351	1792	66477	2	16	10	33	406614	30004	41	0	9	72
Cool down 13.5	12	110	72817	246	62583	19651	3755	3928	29326	2708	69142	8	17	п	35	398222	29977	47	0	4	79
Cool down 13.6	12	100	74060	277	70521	22144	4231	4332	29396	4542	74443	8	19	12	39	407045	30049	52	0	2	87
Cool down 13.7	12	90	75510	305	77807	24432	4668	4791	29371	5833	78886	б	21	13	43	406055	30024	49	0	80	98
Cool down 13.8	12	80	77137	337	85927	26981	5156	5398	29455	7167	83975	9	23	15	48	397872	30109	42	0	Ħ	108
Cool down 13.9	12		78820	383	97684	30673	5861	6158	29460	11875	93846	Ħ	26	16	54	396525	30114	35	0	20	123
Cool down 13.10	12	60	81432	435	110838	34803	6650	7187	29440	22458	110352	13	29	19	62	385603	30094	31	0	39	144
Cool down 13.11	12	50	84856	537	136892	42384	8214	8593	29438	49208	148249	ŧ	36	22	73	398453	30092	36	0	68	172
Cool down 13.12	12	40	90588	650	165547	51982	9933	10726	29448	108167	220072	17	44	24	84	385967	30103	41	1	121	215
Cool down 13.13	12		99801	855	217824	68397	13069	14231	29428	297792	432725	9	28	23	36	382720	30081	49	-	243	285
Cool down 13.14	4		118051	1245	317281	39626	19037	20313	23010	1101292 1278947	1278947	9	8	8	10	391700	29654	147	~	424	406
Cool down 13.15	12	10	173363	1369	348914	109559	20935	22644	28133	1505500	1696148	1	97	2	100	386855	28758	714	172	1871	453

It can be confirmed that a reduced cool down time leads to faster processing and improved spare part supply. However, from a cost perspective the potential is limited.

The results show that cool down time has only a slight influence on the results as long as the system is in a stable state below ~ 38 % total machine utilization. The lower the utilization is, the smaller the effect is on the total AM cost. When ~ 38 % total machine utilization is exceeded the penalties start to increase significantly, so it is no longer possible to maintain a proper service level. Figure 6-7 and Figure 6-8 show the tolerance of the presented system with respect to cool down time. Allowing a cool down time of 12 hrs has a significant impact on the overall system performance, represented by the Total AM cost. A limit for the system performance is found at this point since an allowed cool down time of 12 hr has a significant impact on the Total AM cost and the delivered parts. The more the system is stressed the stronger the system will react on variations of the cool down time, especially when the found limit of 12 hrs is exceeded.

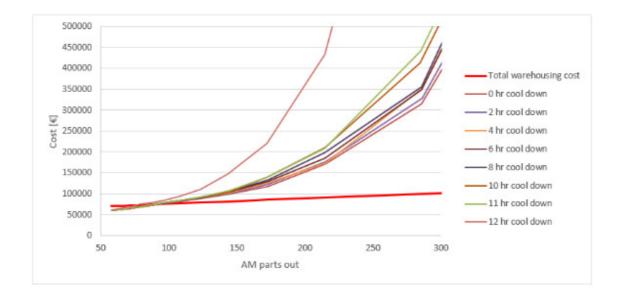


Figure 6-7: Cool down time variation

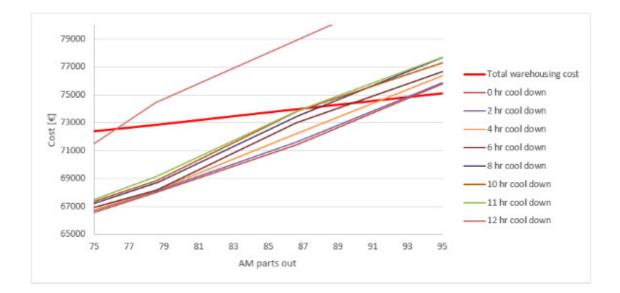


Figure 6-8: Cool down time variation - detail

As for the machine setup and building speed, a faster cool down will create a higher system output which can increase the variable production cost. The system must need to be balanced.

7 ADDITIVE STRATEGY INVESTIGATION

Based on the results from the basic model analysis, further investigations were made for various AM strategies. These strategies were designed to simulate multiple potential real-world strategies for AM spare part services, such as multiple machines and combination of queuing scenarios. In addition, since part size appears to have significant influence on the performance of the AM system. In order to evaluate the sensitivity of strategies to the average size distribution of the spare parts, part sets will vary size distributions and perform simulations. Since the simulation model requires specific information as input parameters the results of calculation can only be valid for the specific case. However, for the presented setup it will be possible to see trends or specific system behavior. For the multi-machine strategy study, details of each scenarios are briefly described below:

- Two machines with fixed material assignments Each machine will be dedicated to fabricate only one fixed type of material. One of the two possible materials will be assigned to each new spare part request. The spare part requests will then be assigned to the corresponding machines accordingly.
- 2. Two machines with flexible material assignments Each machine will be able to switch to either of the two materials for a new production run. Similar to the first strategy, one of the two possible materials will be assigned to each new spare part request. The spare part requests will be assigned to the machines according to their availability. If material switch occurred between builds for either machine, additional setup time will be included for that particular machine.

- 3. Three machines with a fixed material assignment Each machine will be dedicated to fabricate only one fixed type of material. One of three possible materials will be assigned to each spare part request. The spare part requests will be assigned to the corresponding machines accordingly.
- 4. Three machines with flexible material assignment Each machine will be able to switch to either of the three materials for a new production run. One of the three possible materials will be assigned to each spare part request. The spare part requests will be assigned to the machines according to their availability. If material switch occurred between builds for either machine, additional setup time will be included for that particular machine.

For each of these four strategies, two modes were evaluated for individual AM systems:

- (a) No-waiting In this mode arriving spare part requests will be forwarded to production immediately if a machine is idle. If no machine is idle, arriving spare part requests are sent to a queue. When a machine becomes idle again the parts in queue will be prioritized and sent to production directly.
- (b) Waiting Similar to the no-waiting mode, spare part requests will be sent to production directly, however the production will not start for a specific duration or until a certain building space volume is filled. This could potentially increase the chance that multiple parts can enter the production run without the need to wait in the queues.

For the part size distribution study, the simulated scenario was defined as below:

5. Part size distribution – A two-machine strategy with one type of material was set up. Several distribution models of part sizes, such as big parts only or an equally distributed mix of small, mid and big parts were analyzed. In addition, both waiting and no-waiting mode as described previously were also investigated for each part size distribution models.

For each of those strategies the following input and performance parameters were investigated:

- Upper limit/Mean part arrival
- Setup and cool down time
- Elapsed time (only for setups in waiting mode)
- Production Start volume (only for setups in waiting mode)
- Material changeover time (for flexible material strategies)

The mean part arrival time is an important control parameter and is used in all simulations to vary the mean arrival rate of spare part requests. Therefore it is an entire approach adopted in all simulations. The mean arrival time has the ability to find specific performance levels of the system. Finding these specific performance levels is described as upper limit search.Upper limit search – An upper limit search is intended to stress the system until a certain limit is reached by decreasing the mean arrival time of spare part requests that increases the actual arrival of spare part requests. In the following investigations three different stress levels were of interest.

- Low arrival rate none to minor penalties occur until this point (marked green).
- Upper limit a penalty of less than 5000 € is charged. The system runs stably with a defined penalty. The upper limit is the standard indicator for the system performance. (marked yellow).
- *High arrival rate* The system is still able to handle the spare part request, but a heavy penalty occurs. Typically the average number of parts in queue is below one. If the average number of parts in queue is larger than one the system is assumed to be unstable. As later results will show the spare part requests arrive in a higher frequency than the system can deliver (marked red). This is at least true for the current sytem setup and can be different in other cases. This effect is related to the total production time of the parts.

Investigations of setup and cool down time, elapse time, start volume and material change over time were relatively straightforward and since these parameter created a direct in- or decrease in the cost results of the simulations.

The general proceeding for all investigated strategies to be investigated will run in the no waiting and waiting mode, in the following setups:

- Upper limit search 10 to 150 hrs
- Setup and cool down time 3 to 36 hrs at low, upper limit and high arrival rate
- Start volume 0 to 100 % at upper limit
- Elapse time 0 to 12 hrs at upper limit
- Material changeover time 1 to 10 hrs at low, upper limit and high arrival rate

The described values are varied during simulations. Each variation is named and numbered accordingly. The material changeover time is investigated only when a material changeover is applied in the according strategy.

Results and findings will be discussed for each strategy individually in this section. Selected results are presented in this chapter. The tables containing all results of simulation runs are available in the appendix.

7.1 TWO MACHINES WITH FIXED MATERIAL ASSIGNMENTS

As described earlier, two machines with a fixed material assignment is to be modeled. Each machine will be dedicated to fabricate only one fixed type of material. One of the two possible materials will be assigned to each spare part request. The spare part requests will be assigned to the machines accordingly. Changes with respect to the upper limit, setup and cool down time, elapse time and start volume were investigated.

7.1.1 MODEL ADJUSTMENTS

The model for this strategy as shown in Figure 7-1 is a modification of the base case. The main change was the arrival and queueing logic of the AM route.

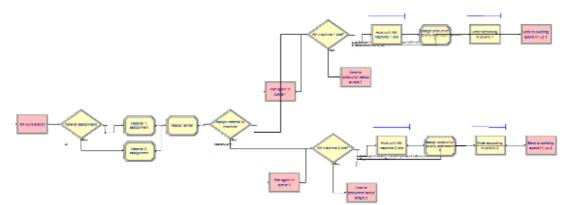


Figure 7-1: Adjusted AM rout arrival and queueing logic

Each of the two machines is dedicated to produce one of the two materials as oppose to the basic setup, in which only one material is assigned to the spare parts. Therefore the material type assignment must be added to the model. This is done by a decide module which assigns the two material with a 50% chance each.⁹ After that the arrival time is assigned to the part the same way as in the basic model.

⁹ It is assumed that an equal distribution of materials will represent the best setup to allow for further conclusions, based on a similar stress level of both machines. Another distribution would make one machine a bottleneck, creating a reduced system performance, what would also reduce the generality of the model when the results are compared with other strategies which can react better to different materials.

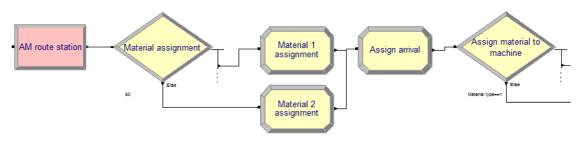


Figure 7-2: Material assignment

After the assignment of the arrival time the spare part request enters a decide module which checks for the assigned material. Spare part requests with assigned material type 1 will follow path one, those with material type 2 will follow path two. Paths one and two are copies of the basic setup and are adjusted to be independent of each other until the finished parts leave the system.

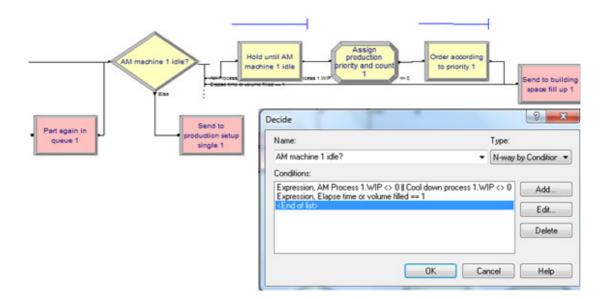


Figure 7-3: Modification of queueing logic

For each queuing logic an additional check function was added to the decide module of AM idle status checking, which determines whether the model should run in the waiting or no-waiting mode. This works as a switch during simulation runs. If the variable "Elapse time or volume filled" is 0, the model logic will follow the established mode as previously described. If "Elapse time or volume filled" is set to 1, the newly generated part arrivals will enter the "Building volume counter logic" module, where a separate "waiting logic" is integrated. The rest of the logic has the same functionality as the setup in the base case.

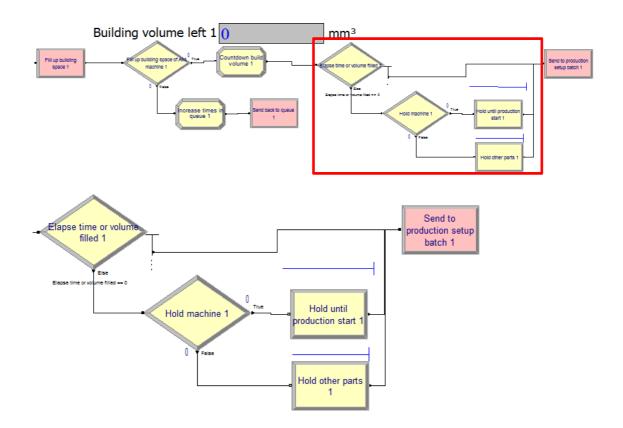
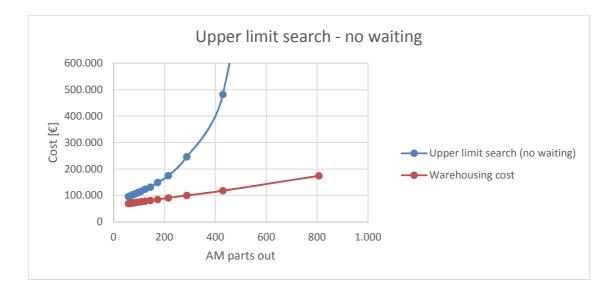


Figure 7-4: Changes in building volume counter logic

When a part enters in the building volume counter logic it flows downstream in the model following the path according to the basic model until it enters at the decide module "Elapse time or volume filled 1". When the model is set to the waiting mode the spare part request bypasses the normal queue and setup logic and begins the waiting until a specific time elapsed or a specific volume is filled. When either time elapsed or a "production start volume" is reached, the spare part request will be forwarded back to the basic model to continue the standard production setup. All other variables and settings are adjusted according to these changes of the model.


7.1.2 RESULTS AND DISCUSSION

The results of the upper limit search are presented in Table 7-1, Figure 7-5 and Figure 7-6. In comparison to the base case (chapter 5) the performance of the system improves as expected.

Compared to the base case the upper limit improved by 40 %, AM parts out by 66 % and the system utilization is reduced by 19 %. The highest possible arrival rate is at a mean arrival of 20 hrs. When high penalties are accepted the system can deliver up to 429 parts applying the highest arrival rate. Looking at the AM parts out, the system output did not double due to the second machine. This is due to the fixed material setup. If for example two parts of the same material arrive, the system will behave like a one machine strategy, with the results that one part request must wait in queue, while the other machine must wait idle. This decreases also the total system utilization at the upper limit.

Waiting		Basecase	Two	machine	s with fix	ed materi	ial assign	ment		
									Uppe	r limit -
			1	No waitin	g		Waiting		changes	compared
									to base	case [%]
			Low		High	Low		High		
		Upper	arrival	Upper	arrival	arrival	Upper	arrival	No	
Control		limit	rate	limit	rate	rate	limit	rate	waiting	Waiting
Mean arrival	hr	100	130	60	20	130	70	20	60%	70%
Cost related responses										
Total warehousing cost	£	55436	70873	81403	117856	70873	78402	117891	147%	141%
Total AM cost	£	73494	98913	131635	482313	99006	122822	508942	179%	167%
Consumed material cost	€	22030	15465	34664	105093	15451	29487	105102	157%	134%
Consumed energy cost	€	4210	2955	6623	20081	2952	5634	20083	157%	134%
Operator cost	€	4336	3332	7206	21470	3329	6172	21489	166%	142%
Total maintenance cost	€	29407	57745	58573	58907	57705	58396	58825	199%	199%
Total AM penalty	€	3708	166	5041	257125	333	3666	283833	136%	99%
AM process related responses										
Consumed material	kg	275	193	433	1313	193	368	1313	157%	134%
Consumed energy	kWh	70160	49251	110396	334693	49208	93907	334720	157%	134%
System setup time	%	8	3	7	15	3	6	15	86%	74%
System utilization time	%	19	7	15	44	7	13	44	77%	66%
Systen cool down time	%	8	3	7	15	3	6	14	83%	72%
Total system utilization	%	35	13	28	74	13	24	73	81%	69%
Average building volume	mm³	404530	369511	382907	389408	369507	380333	389230	95%	94%
Machine depreciation	€	30061	59028	59875	60216	58987	59694	60133	199%	199%
Average time in queue	hr	50		30	39		27	38	60%	54%
Average number of parts in queue	pcs.	0,001	0,002	0,027	0,642	0,003	0,017	0,725	2700%	1700%
Number of parts in queue total	pcs.	5	1	15	285	1	10	317	300%	200%
AM partsout	pcs.	87	67	144	429	67	123	430	166%	141%

Table 7-1: Results of two machines with fixed material assignment- Upper limit No-waiting/

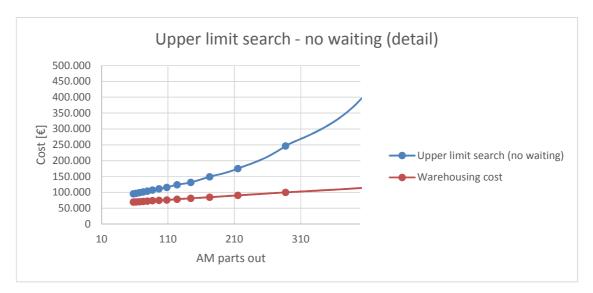
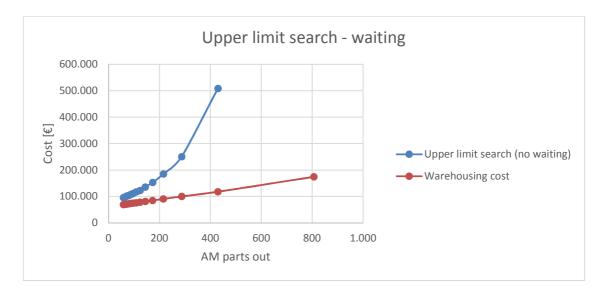



Figure 7-5: Two machines with fixed material - Upper limit search - No waiting

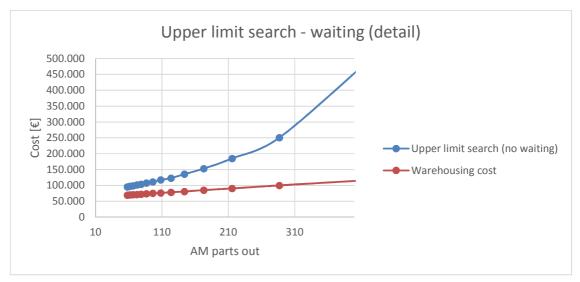


Figure 7-6: Two machines with fixed material - Upper limit search - Waiting

When the waiting mode is applied to the model, the upper limit is reduced, indicating a less efficient performance from the system. This results in a mean arrival time of 70 hrs with a part output of 123 parts. Consequently the machine utilization decreased to 24 %, since less parts can be produced due to waiting.

It was found that for all the simulated scenarios waiting is generally an unfavorable option. This is expected to be caused primarily by the current part set designs. For all the scenarios the part set was setup to have the maximum mean arrival time to be 20 hrs which ensures the stable operation of the system as discussed in previous chapters. However, since the maximum waiting time before a production run starts is set to 12 hrs, it became unlikely that a second part will enter the production before the waiting period is over, which result in a net delay for the production part in the machines and increases the probability to create additional penalties. It is now in question if a generic scenario where waiting is advantageous exists. An advantageous scenario setup was found in section 7.5.

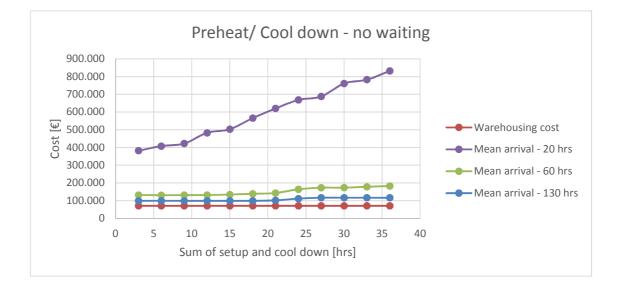


Figure 7-7: Two machines with fixed material - Setup & cool down time - No waiting

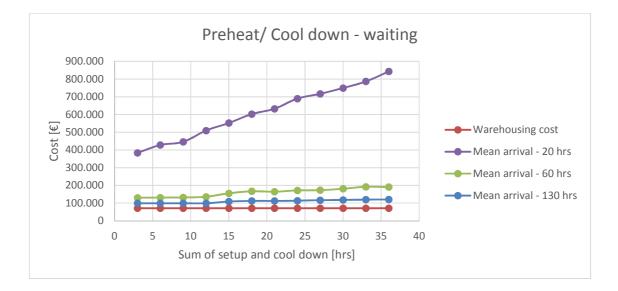


Figure 7-8: Two machines with fixed material - Setup & cool down time - Waiting

The effect of preheat and cool down is illustrated by Figure 7-7 Figure 7-8. The results clearly showed that the faster parts arrive, the more sensitive the system becomes with respect to setup and cool down times (simulated with high, medium and low inter-arrival times). This is reasonable since longer setup and cool down time will reduce the productivity of the system. Also, the no-waiting mode was found to be more efficient than the waiting mode in these cases since the same part set design was used.

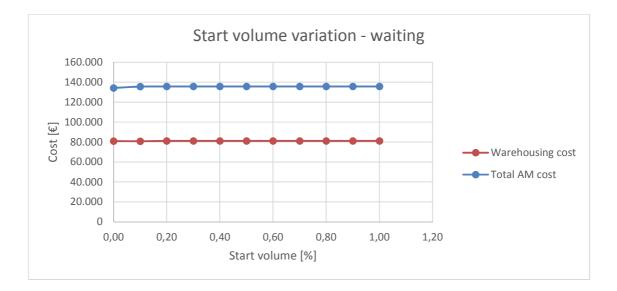


Figure 7-9: Two machines with fixed material - Start volume - Waiting

Figure 7-9 shows that the start volume variation does not have an effect of the system performance. With the part set designs used in the simulations there is never a second part arrival during waiting as long as the system is in a stable state. As described before this is due to the fact that the waiting time is shorter than the inter-arrival time of new spare part requests. The results might be different when the properties of the specific spare part set change. If for example the allowed time to manufacture is much longer, penalties are negligible or the overall production times change the situation might change.

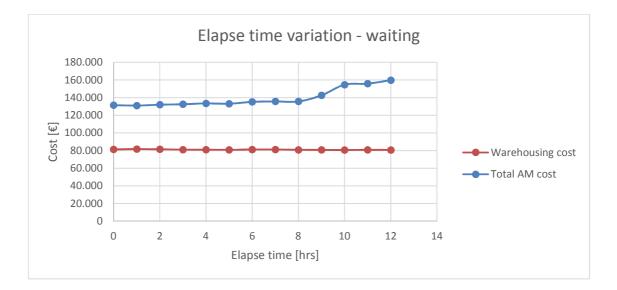


Figure 7-10: Two machines with fixed material – Elapse time – Waiting

Changes in the elapse time have an effect on the system, since an increased elapse time decreases the overall system availability, which is not assumed to be beneficial. This is due to the fact that a production start is postponed without adding a second part into the production run.

7.2 TWO MACHINES WITH FLEXIBLE MATERIAL ASSIGNMENT

In this strategy each machines is able to switch to either of the two materials for a new production run. One of the two possible materials will be assigned to each spare part request. The spare part requests will be assigned to the machines according to their availability. Since thorough machine cleaning is needed in operation whenever a change of material is needed, additional setup time will be needed for the system, which was modeled for this strategy.

Changes with respect to the upper limit, setup and cool down time, elapse time and start volume, and material change over time were investigated.

7.2.1 MODEL ADJUSTMENT

The modifications with the base model were mostly focused on the AM route arrival and queueing logic as shown in Figure 7-11.

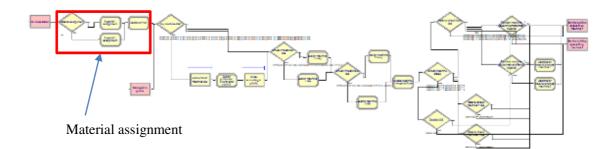


Figure 7-11: Adjusted AM route arrival and queueing logic

In the basic setup only one material is assigned to the spare parts. Therefore the material type must be reassigned. Similar to the strategies of two machines with a fixed material assignment, this was done by a decide module which assigns the two material with a 50 % chance each. The arrival time is assigned to the part the same way as in the basic model. In addition, the downstream part queuing logics remain identical to the two-machine strategies with fixed material assignment as described previously.

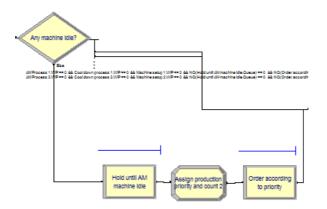


Figure 7-12: Check for idle machine

In order to facilitate the machine assignment in the model, machine states were assigned to the spare part requests as additional attributes. The states are 0 for an idle machine and 1 for a busy machine. In addition, a new attribute is created for each part called "material change", which is set to 0 by default which stands for no material change. It will be changed to 1 if a material change for a production run takes place.

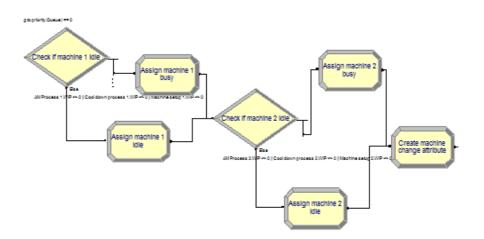


Figure 7-13: Machine states follow up by part attributes

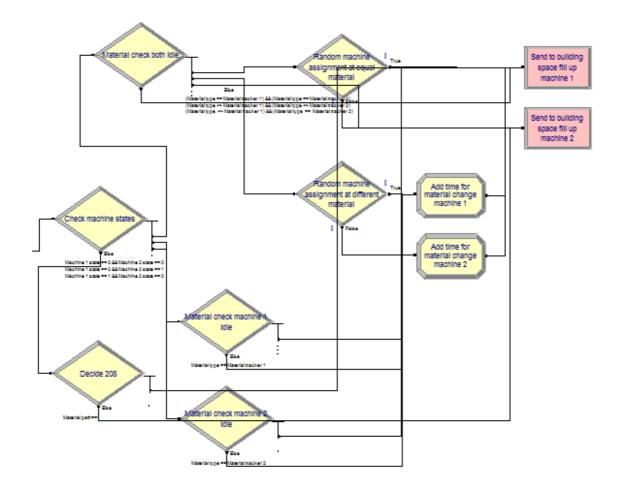
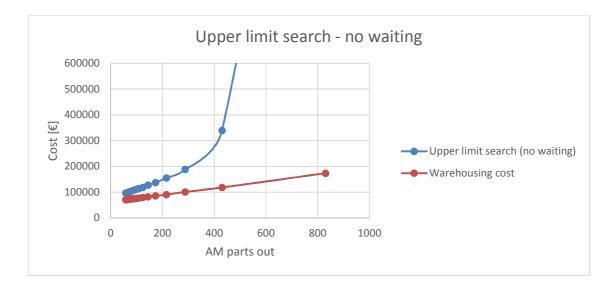


Figure 7-14: Machine assignment and material changeover logic

The new attributes were used in the machine assignment and material changeover logics. In the first step it was checked which machine is idle or busy. In a two machine setup this leads to four possible combinations. Table 7-2 illustrates these combinations in the "check for idle machine" section. Each combination of the consequent step is dependent upon the material of the requested part and the currently applied material of the machine. Each of the possible material combinations requires different actions, which are also listed in Table 7-2. After this step an independent downstream logic path is setup for each machine in the model.

logic
ngeover
cha
material
and
achine assignment and material changeover
Σ
Table 7-2:


	n 0-0	n 1-0	n 0-1	Can not happen - Spare part requests will wait in queue until one machine is idle			randomly			Assign Machine 1 or 2 randomly and execute material change				Assign Machine 2 and execute material change				
Action	Forward to combination 0-0	Forward to combination 1-0	Forward to combination 0-1	Can not happen - Spare		Action	Assign Machine 1 or 2 randomly	Assign machine 2	Assign Machine 1	Assign Machine 1 or 2		Action	Assign Machine 2	Assign Machine 2 and (Action	Assign Machine 1	
Description	Both machines idle	Machine 2 idle	Machine 1 idle	Both machines utilized	fial check	Description	Both machines apply required material type	Machine 1 does not apply required material type, Machine 2 applies required material type	Machine 1 applies required material type, Machine 2 does not apply required material type	Non of the machines apply the required material type	ial check	Material 1 Material 2 Description	Machine 2 applies the required material type	Machine 2 does not apply the required material type	ial check	Material 1 Material 2 Description	Machine 1 applies the required material type	
Machine 2	0	0	1	1	0-0 - Mater	Material 2	0	0	1	1	1-0 - Mater	Material 2	0	1	0-1 - Mater	Material 2	1	
Machine 1 Machine 2	0	1	0	1	Combination 0-0 - Material check	Material 1 Material 2	0	1	0	1	Combination 1-0 - Material check	Material 1	I	I	Combination 0-1 - Material check	Material 1	0	

The rest of the model is identical to the base case setup or the two machines with fixed material setup, with the only exception that the material changeover time is added to the production setup time when material change takes place.

7.2.2 RESULTS AND DISCUSSION

The results of the upper limit search are presented in Table 7-3. In comparison to the one machine setup the performance of the system improved as expected. When only one machine is applied AM parts out is 86 parts at the upper limit. In the two machine setup with flexible material assignment the machine utilization equals out at 44 %. The highest possible arrival rate is at a mean arrival of 20 hrs, creating significant penalties at a part output of 430 parts. Compared to the two machines with a fixed material assignment the results for mean arrival, AM parts out and total system utilization improved. A more detailed comparison of all strategies will follow in chapter 8.

		Base case	Two	machines	with flexi	ible mate	rial assigr	nment		
				1ean arriv No waitin		N	lean arriv Waiting	al		limit - compared case [%]
			Low		High	Low		High		
		Upper	arrival	Upper	arrival	arrival	Upper	arrival	No	
Control		limit	rate	limit	rate	rate	limit	rate	waiting	Waiting
Mean arrival	hr	100				120	70	20	0%	70%
Cost related responses										
Total warehousing cost	£	55436	60	40	10	72062	78751	117681	0%	142%
Total AM cost	£	73494	81601	90498	173380	102295	120773	378359	123%	164%
Consumed material cost	£	22030	34688	53087	201068	17058	28534	102863	241%	130%
Consumed energy cost	€	4210	6628	10144	38420	3259	5452	19655	241%	130%
Operator cost	€	4336	7208	10778	41495	3615	6163	21474	249%	142%
Total maintenance cost	€	29407	58673	58777	58304	57990	58498	58931	200%	199%
Total AM penalty	£	3708	291	2583	2E+06	1041	2625	155791	70%	71%
AM process related responses										
Consumed material	kg	275	433	663	2513	213	356	1285	241%	129%
Consumed energy	kWh	70160	110473	169069	640346	54326	90874	327590	241%	130%
System setup time	%	8	8	12	8	4	6	23	147%	81%
System utilization time	%	19	15	22	85	7	12	43	118%	64%
Systen cool down time	%	8	7	10	6	3	6	17	125%	72%
Total system utilization	%	35	29	44	99	14	24	83	126%	70%
Average building volume	mm³	404530	384452	393624	386716	377651	370109	382680	97%	91%
Machine depreciation	€	30061	59977	60083	59600	59279	59798	60240	200%	199%
Average time in queue	hr	50		19,264	78,027			18,353	39%	
Average number of parts in queue	pcs.	0,001	0,002	0,023	1,566	0	0,001	0,718	2300%	100%
Number of parts in queue total	pcs.	5	1	9	1268	0	1	335	186%	20%
AM partsout	pcs.	87	144	216	830	72	123	430	248%	142%

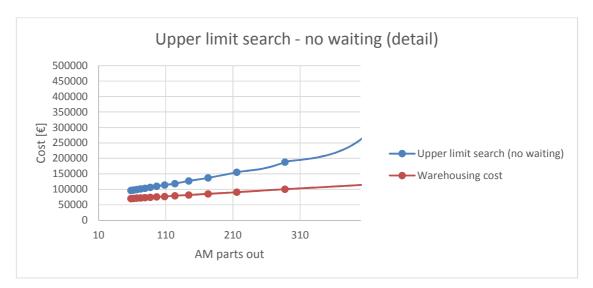
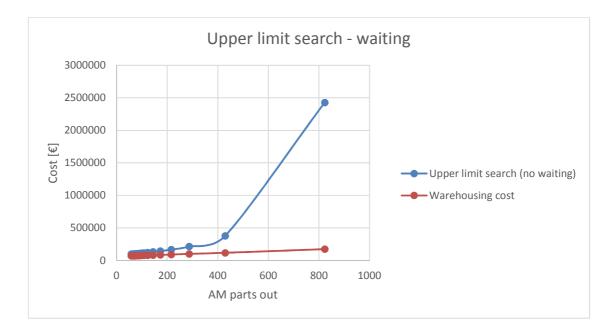



Figure 7-15: Two machines with flexible material - Upper limit search - No waiting

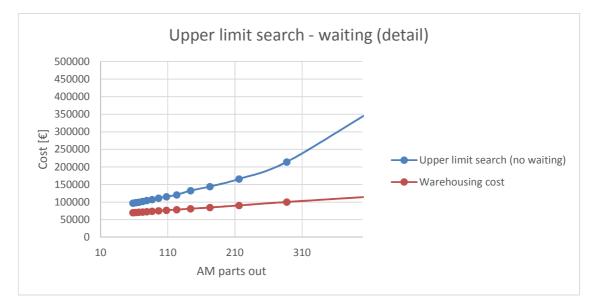


Figure 7-16: Two machines with flexible material - Upper limit search - Waiting

For the two-machine with flexible material assignment, the performance deterioration appears to be considerably more significant when the waiting mode is applied, which resulted in a near 45% reduction of the maximum system utilization as shown in Table 7-3. Comparing Table 7-1 and Table 7-3 it can be seen that under this condition the flexible strategy does not appear to add any

benefits to the system when waiting. Also, in this case machine utilization decreases to 24 %, since less parts can be produced due to waiting. This seems very similar compared the two machines with the fixed material assignment, but the average number of parts in queue decreased, which is indicates a well-performing system.

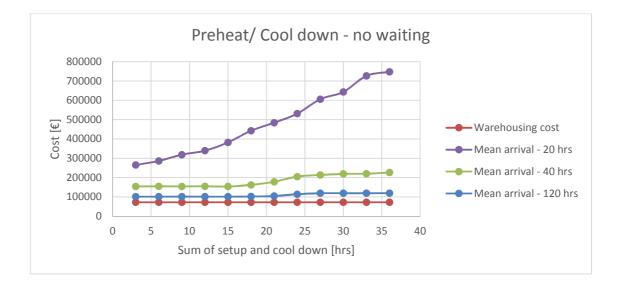


Figure 7-17: Two machines with flexible material – Preheat and cool down – No waiting

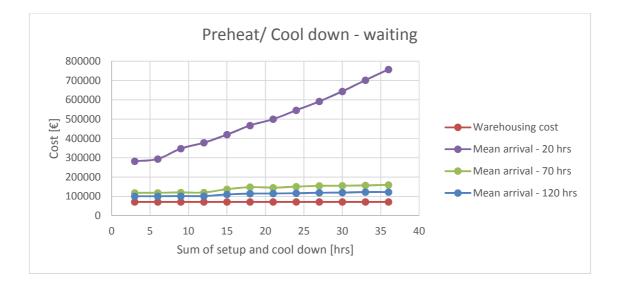


Figure 7-18: Two machines with flexible material – Preheat and cool down – Waiting

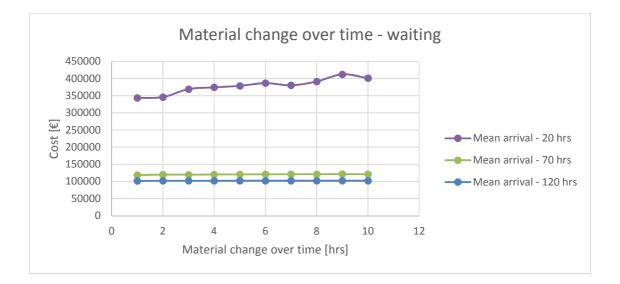


Figure 7-19: Two machines with flexible material – Material change over time – Waiting

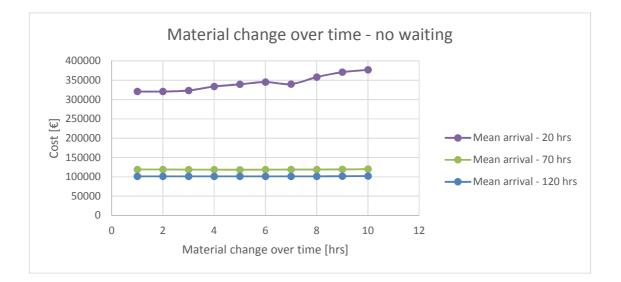


Figure 7-20: Two machines with flexible material – Material change over time – No waiting

The influences of material changeover, preheat and cool down are similar to the two-machine with fixed material assignment, with the no-waiting mode outperforming the waiting mode.

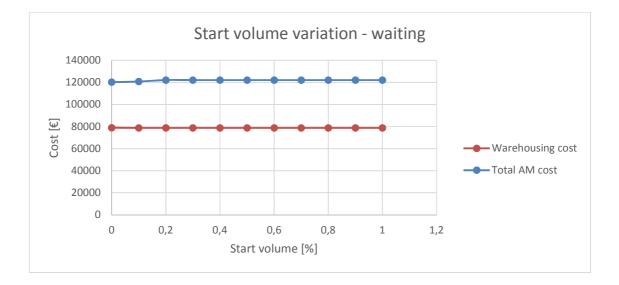


Figure 7-21: Two machines with flexible material - Start volume - Waiting

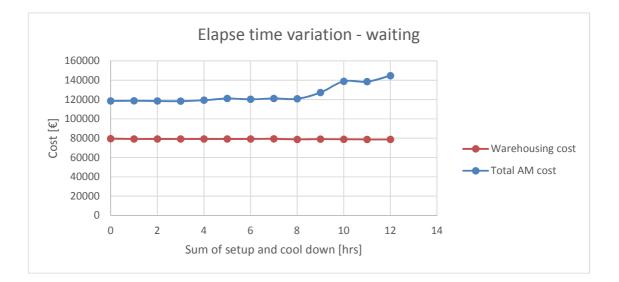


Figure 7-22: Two machines with flexible material – Elapse time – Waiting

Also, the start volume and elapse time variation show almost identical effects to the total cost compared to the fixed material strategy with the current part set designs as discussed previously.

7.2.3 THREE MACHINES WITH FIXED MATERIAL ASSIGNMENT

In this section the strategy of three-machine with fixed material assignments was modeled and analyzed. Each machine was dedicated to fabricate only one fixed type of material. One of the three possible materials was assigned to each spare part request, and the treatment of the model followed the same approach as that used in two-machine with fixed material assignment strategy. Again, changes with respect to the upper limit, setup and cool down time, elapse time and start volume were investigated.

7.2.4 MODEL ADJUSTMENT

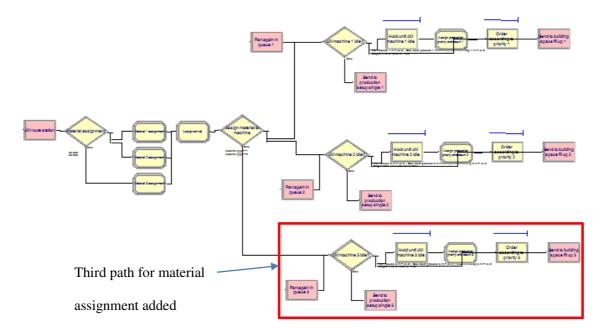


Figure 7-23: Main adjustment of the model

The Three machines with fixed material model is an extension of the two machines with fixed material model. A third path is added which allows assignment of a third material type. The rest of the model is adjusted accordingly.

7.2.5 RESULTS AND DISCUSSION

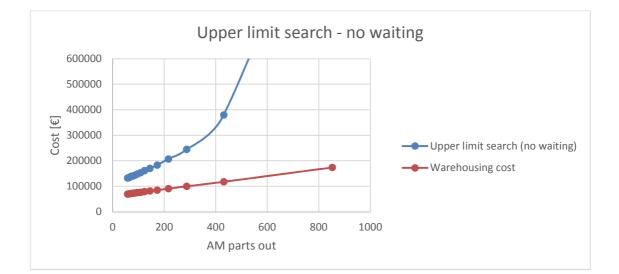

The result of the upper limit search is presented in Table 7-4

Table 7-4: Three machines with fixed material - Upper limit No waiting/ Waiting	Table 7-4: Three	e machines wi	th fixed	material -	Upper	limit No	waiting/	Waiting
---	------------------	---------------	----------	------------	-------	----------	----------	---------

		Base case	Thre	e machin	es with fix	ed mater	rial assign	ment		
				lean arriv No waitin		N	lean arriv Waiting	al	changes	limit - compared case [%]
			Low		High	Low		High		
		Upper	arrival	Upper	arrival	arrival	Upper		No	
Control		limit	rate	limit	rate	rate	limit	rate	-	Waiting
Mean arrival	hr	100	130	60	20	130	60	20	60%	60%
Cost related responses										
Total warehousing cost	£	55436	70873	81454	117537	70873	80950	120076	147%	146%
Total AM cost	£	73494	136044	169974	380022	136172	169690	409459	231%	231%
Consumed material cost	£	22030	15475	35687	103204	15461	35114	103328	162%	159%
Consumed energy cost	£	4210	2957	6819	19720	2954	6709	19744	162%	159%
Operator cost	£	4336	3333	7211	21558	3330	7186	21483	166%	166%
Total maintenance cost	£	29407	85584	87285	88122	85632	87228	88208	297%	297%
Total AM penalty	€	3708	166	3875	118041	250	4375	147291	105%	118%
AM process related responses										
Consumed material	kg	275	193	446	1290	193	438	1291	162%	159%
Consumed energy	kWh	70160	49284	113655	328677	49241	111829	329071	162%	159%
System setup time	%	8	2	5	12	2	5	12	58%	58%
System utilization time	%	19	4	10	29	4	10	29	53%	53%
Systen cool down time	%	8	2	5	12	2	4	11	56%	56%
Total system utilization	%	35	9	19	53	9	19	52	55%	55%
Average building volume	mm³	404530	366354	393399	90080	366389	389143	383055	97%	96%
Machine depreciation	£	30061	87485	89225	90080	87534	89166	90168	297%	297%
Average time in queue	hr	50	1,285	28,122	31,795	1,61	18,224	31,623	56%	36%
Average number of parts in queue	pcs.	0,001	0,001	0,013	0,236	0,001	0,014	0,279	1300%	1400%
Number of parts in queue total	pcs.	5	1	10	190	1	13	226	200%	260%
AM partsout	pcs.	87	67	144	431	67	144	430	166%	166%

From the previous results, the two-machine setup exhibited significantly higher total number of parts out and system utilization compared to the one-machine setup. Therefore, it would appear logical that a three-machine setup would further improve the system efficiency. However, from Table 7-4 the three-machine setup did not achieve any performance gain compared to the two-machine setup. The overall queuing is slightly reduced, but parts still has to wait in queue if two parts of the same material arrive in a row between short intervals. Therefore, with the current part set design the three-machine setup can be essentially treated as a scaled-up version of the two-machine setup. It can be reasonably concluded that the same observation can be made for four- or more-machine setups with the same part set design.

When the waiting mode was applied to the system, the upper limit is reduced slightly. However, a nearly identical system performance was observed for the three-machine strategy. On the other hand, the queuing situation for the no waiting mode is favorable.

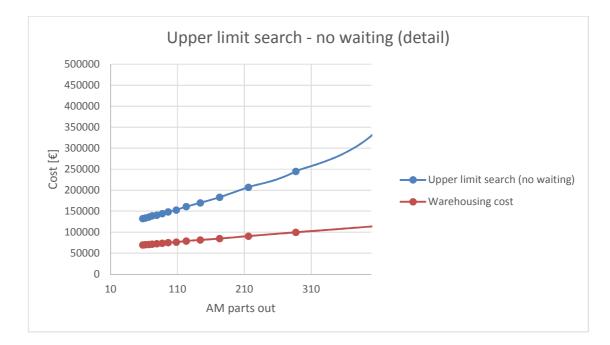
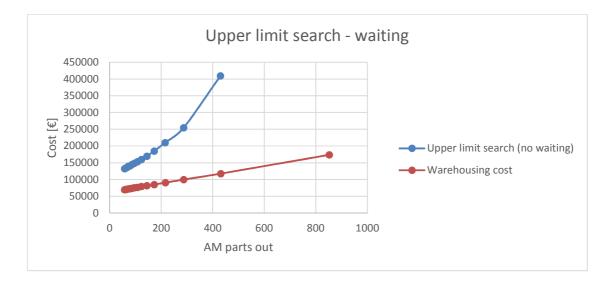



Figure 7-24: Three machines with fixed material - Upper limit search - No waiting

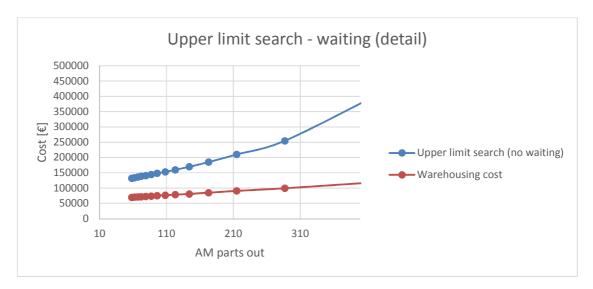


Figure 7-25: Three machines with fixed material - Upper limit search - Waiting

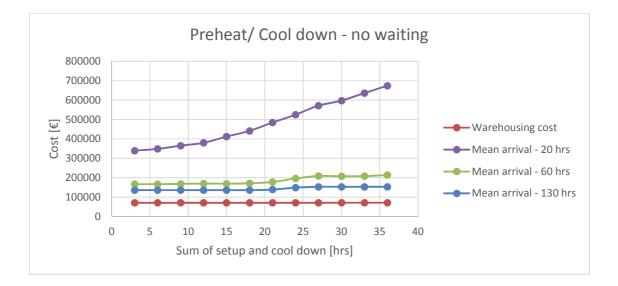


Figure 7-26: Three machines with fixed material - Preheat and cool down - No waiting

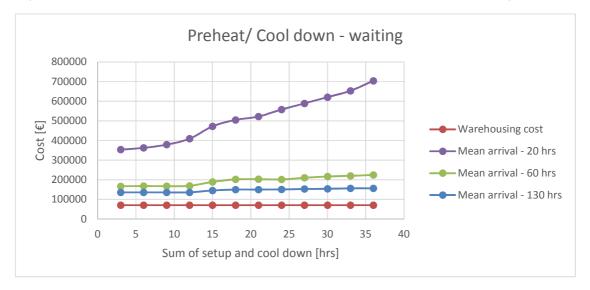


Figure 7-27: Three machines with fixed material – Preheat and cool down - Waiting

The influence of preheat and cool down is similar to the two-machine with fixed material assignment strategy. The no-waiting mode performed better compared to the waiting mode, and the start volume and elapse time variation show almost identical characteristics to the two-machine setups, which again could be readily explained by treating the three-machine system as a scaled-up two-machine system.

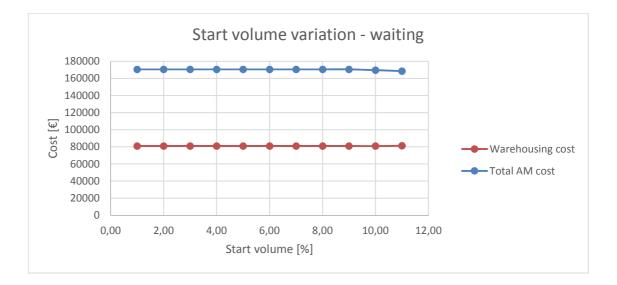


Figure 7-28: Three machines with fixed material - Start volume - Waiting

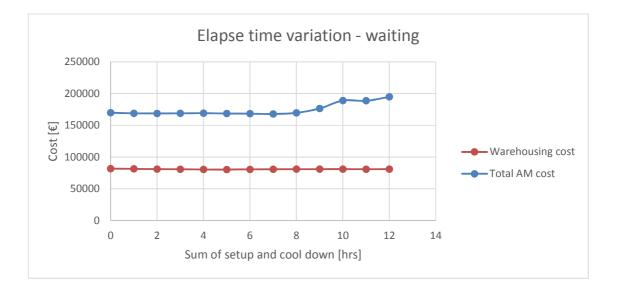


Figure 7-29: Three machines with fixed material – Elapse time – Waiting

7.3 THREE MACHINES WITH FLEXIBEL MATERIAL ASSIGNMENT

The three-machine with flexible material assignment strategy was modeled similarly to the twomachine with flexible material strategy, with the only difference being the number of material types. System performance with respect to the upper limit, setup and cool down time, elapse time, start volume and material changeover time were investigated.

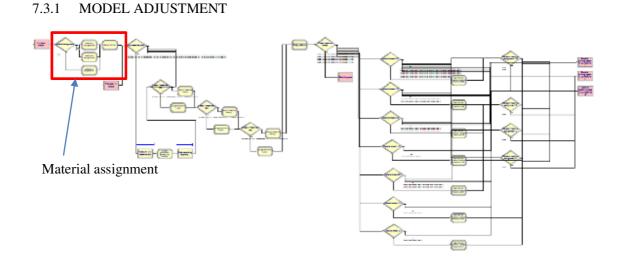


Figure 7-30: Adjusted AM route arrival and queueing logic

The model for three-machine with flexible material is a further expansion of the two-machine with flexible material model with a third machine added. Changes of the setup were made in the AM route and queueing logic. Similar to the two-machine with flexible material setup, the material assignment starts with a decide module, which forwards the part request to three material type assign modules with a 33 % chance each.

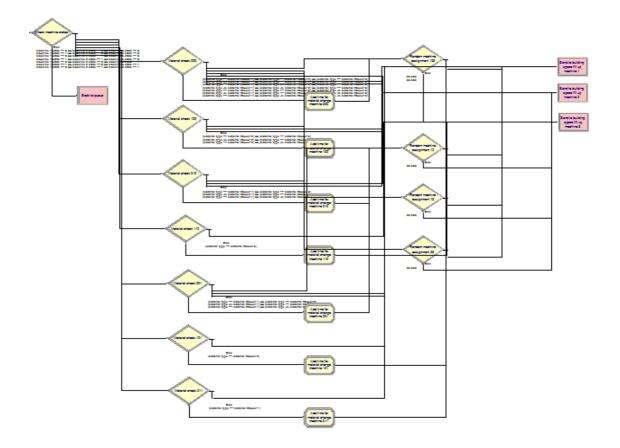
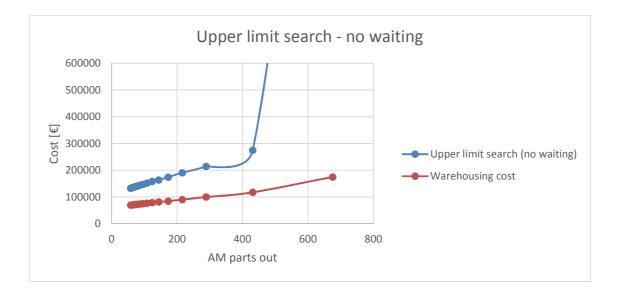


Figure 7-31: Machine assignment and material changeover logic – three machines

Similar to the two machine setup, machine assignment and material changeover setups were specified based on individual conditions of the machine status. Table 7-5 shows the overview of combinations and actions. After this step in the model an independent path is set up for each machine.

All muchtines a letter Autorbines 1 and 3 letter Macchines 1 and 3 letter Macchines 1 and 3 letter Macchines 1 and 3 letter Macchines 1 and 3 utilized. Machine 1.2 and 3 utilized Machine 1.2 and 3 utilized Machine 1.2 and 3 utilized Machine 1 and 3 apply required material type Machine 1 and 3 apply required material type Machine 1 and 3 apply required material type Machine 1 applies required material type Machine 2 applies required material type Machine 3 applies required material type	and the second s	Machine 1 Machine 2 Machine 3	3 Description	Action
Machine 2 and 3 idle watchine 3 idle watchine 3 idle watchine 3 idle watchine 3 idle watchine 3 idle watchine 4 idle watchine 4 idle watchine 4 idle watchine 3 apply required material type watchine 3 apply required material type watchine 3 applie required material type watchine 3 applies required material type	0	0		Forward to combination 0-0-0
Machine 1 and 3 Idla Machine 1 and 3 Idla Machine 1 and 2 Idla Machine 1 and 2 Idla Machine 1 and 3 uptiver Machine 1 and 1 and 1 uptive Machine 1 applies required material type Machine 2 uptiver and 1 uptive Machine 2 uptiver equired material type Machine 3 uptiver Machine 4 uptiver Machine 4 uptiver Machin	Ŧ		Machine 2 and 3 Idle	Forward to combination 1-0-0
Machine 3 kills Machine 3 kills Machine 2 kills Machine 1 kills Machine 2 and 3 apply required material type Machine 2 apply required material type Machine 3 applies required material type Machine 2 does not apply required material type Machine 2 applies required material type	0	1 0	Machine 1 and 3 idle	Forward to combination 0-1-0
Mechine 1 and 2 Idle Machine 1 and 2 Idle Machine 1 and 3 utilized. Description I machines apply required material type Machine 1 and 3 apply required material type Machine 1 and 3 apply required material type Machine 1 and 3 apply required material type Machine 1 applies required material type Machine 2 applies required material type Machine 3 applies required material type Machine 2 does not apply required material type	-	F	Machine 3 idle	Forward to combination 1-1-0
Machine 2 (die Machine 2 (die Machine 1, die Nachine 3 and 3 apply required material type Machine 3 apply required material type Machine 3 apply required material type Machine 3 applies required material type Machine 1 applies required material type Machine 1 applies required material type Machine 2 does not apply required material type	0		Machine 1 and 2 idle	Forward to combination 0-0-1
Wachine 1 (die) Wachine 1 (die) Bescription All matchine 1 and 3 utilized. Bescription Machine 1 and 3 apply required material type Machine 1 and 3 apply required material type Machine 1 applies required material type Machine 1 applies required material type Machine 1 applies required material type Machine 2 applies required material type Machine 3 applies required material type Machine 4 does not apply required material type Machine 2 does not apply required material type	-		Machine 2 idle	Forward to combination 1.0.1
Machine 1,2 and 3 utilized. Description The machine a sppty required material type Machine 2 and 3 apply required material type Machine 2 applies required material type Machine 3 applies required material type Nothine 3 applies required material type Machine 4 applies required material type Machine 4 applies required material type Machine 4 applies required material type	c		Machine 1 Idle	Forward to combination 0-1-1
Description All machines a sply required material type Machine 3 and 3 apply required material type Machine 3 applies required material type Machine 4 applies required material type	F	т т	Machine 1,2 and 3 utilized.	Can not happen - Spare part requests will wait in queue until one mechine is idle
Description Description Matchine 3 apply required material type Matchine 3 and 3 apply required material type Matchine 1 and 3 apply required material type Matchine 1 and 2 apple required material type Machine 1 apple required material type Machine 3 applies required material type Nachine 2 does not apply required material type Nachine 2 does not apply required material type		on Material D.D.D		
All matchines a suply required material type Machines 2 and 3 apply required material type Machine 2 apply supply required material type Machine 2 applies required material type Machine 3 applies required material type Machine 2 does not apply required material type	- I State and a state of the	Address of the second	12	Autors
Mutrime 1 and 3 apply required material type Machine 1 applies required material type Machine 3 applies required material type	TINICIPAL			
Machine 2 and 3 apply required material type Machine 3 apply required material type Machine 3 applies required material type Machine 4 applies required material type	5		adda maareen paarmbaa Aidde warmoona inv	Assign to mechine 1, 4 or a randomly with a 1,4 chance
Machine 1 and 3 apply required material type Machine 1 applies required material type Machine 2 applies required material type Machine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Machine 1 applies required material type Machine 2 does not apply required material type Machine 2 does not apply required material type Machine 2 does not apply required material type Machine 1 applies required material type Machine 1 applies required material type	H		Machine 2 and 3 apply required material type	Assign to mechanic 2 or 5 randomly with a 1/2 chance
Machine 3 applies required material type Machine 2 applies required material type Machine 2 applies required material type Machine 3 applies required material type Nachine 3 applies required material type Nachine 3 applies required material type Machine 2 does not apply required material type	с	1 0	Machine 1 and 3 apply required material type	Assign to machine 1 or 3 randomly with a 1/2 chance
Machine 1 and 5 apply required material type Machine 1 applies required material type Machine 3 applies required material type No machine applies required material type Machine 3 applies required material type Machine 1 applies required material type Machine 2 does not apply required material type Machine 1 applies required material type Machine 2 does not apply required material type Machine 2 does not apply required material type Machine 2 does not apply required material type	-	1	Machine 3 applies required material type	Assign to muchine 3
Machine 3 applies required material type Machine 2 applies required material type Nacription Baterine 3 applies required material type Machine 3 applies required material type Nucline 3 dows not apply required material type Machine 3 applies required material type	0		Machine 1 and 2 apply required material type	Assign to machine 1 or 2 randomly with a 1/2 chance
Machine 1 applies required material type No machine applies required material type baserption Baserption Nachine 3 applies required material type Nachine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Nachine 3 applies required material type Machine 3 applies required material type Machine 1 applies required material type Machine 1 applies required material type Machine 1 applies required material type Nachine 1 applies required material type Machine 2 does not apply required material type Machine 2 applies required material type Machine 2 does not apply required material type Machine 1 applies required material type Machine 1 applies required material type Machine 2 does not apply required material type Machine 2 does not apply required material type			Machine 2 applie required material type	Assign to machine 2
No marchine applies required material type Bathine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Description Doth machine 4 applies required material type Machine 5 applies required material type Machine 3 applies required material type Machine 3 applies required material type Nachine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Nachine 3 applies required material type Nachine 3 applies required material type Nachine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Nachine 3 applies required material type Machine 3 applies required material type	0		Million from a second s	
Dateription Both machines apply required material type Machine 3 applies required material type Machine 3 applies required material type both machine sapplies required material type both machine 3 applies required material type Machine 3 applies required material type Nachine 3 applies required material type Nachine 3 applies required material type Wachine 3 applies required material type Description Machine 3 applies required material type Machine 2 does not apply required material type			No machine applies required material type	Assign to machine 1, 2 or 3 randomly with a 1/3 chance and execute material changeover
Description Machine 3 apply required material type Machine 3 applies required material type Machine 3 applies required material type Nonchine 3 applies required material type Machine 3 applies required material type Description Machine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Machine 1 applies required material type Machine 1 applies required material type Machine 1 applies required material type Machine 2 does not apply required material type Machine 2 applies required material type Machine 2 applies required material type Machine 2 applies required material type Machine 2 does not apply required material type Machine 2 does not apply required material type Machine 2 does not apply required material type	mbinatic	on Material 1-0-0		
Both machines apply required material type Machine 3 applies required material type Nachine 3 applies required material type Nonmachine applies required material type Description Dethree 1 applies required material type Machine 2 applies required material type	terist 1	Material 2 Material	13	Action
Machine 3 applies required material type Machine 3 applies required material type Nachine 3 applies required material type Nachine 3 applies required material type Machine 3 applies required material type Nachine 3 applies required material type Nachine 3 applies required material type Nachine 3 applies required material type Description Machine 3 applies required material type Machine 3 applies required material type Machine 1 applies required material type Machine 2 does not apply required material type		0		Assess to machine 2 or 3 randomly with a 1/2 chance
Wachine 2 applies required material type No machine applies required material type Det machines applies required material type Machine 1 applies required material type Machine 1 applies required material type Machine 1 applies required material type Description Description Machine 2 applies required material type Machine 2 does not apply required material type Machine 2 does not apply required material type			Machine 3 applier required material type	Artista to machine 1
No marche applies required material type (Next piton Both machine applies required material type Machine 3 applies required material type Nachine 3 applies required material type Description Machine 3 does not apply required material type Machine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Machine 2 does not apply required material type Machine 2 does not apply required material type Machine 2 does not apply required material type			Markine 2 andles required material type	Accession for an accession of the second
Description Destroy applies required material type Machine 1 applies required material type Machine 1 applies required material type Description Description Description Description Description Description Description Description Description Machine 2 applies required material type Machine 2 does not apply required material type Machine 2 upplies required material type			No machie applies required material type	Assists to machine 2 or 3 randomly with a 1/2 chance and execute material changeover
Description Machine 3 applies required material type Machine 3 applies required material type Nachine a applies required material type Nescription Machine 3 applies required material type Machine 3 applies required material type Machine 3 applies required material type Machine 1 applies required material type Machine 1 applies required material type Machine 2 does not apply required material type	mbinatie	to Material 0-1-0		
Doth matchines spoly required material type Machine 1 applies required material type Machine 1 applies required material type Nachine 3 applies required material type Machine 3 applies required material type Soft machines apply required material type for machine 3 applies required material type Machine 1 applies required material type Machine 2 applies required material type Machine 2 applies required material type Machine 2 does not apply required material type Machine 2 upplies required material type	terial 1	Material 2 Material	200	Action
Machine 3 applies required material type No machine a applies required material type No machine a pipelies required material type Description Machine 3 applies required material type Machine 3 applies required material type Description Description No mechine applies required material type Machine 1 applies required material type Machine 2 applies required material type Machine 1 applies required material type	c		Both machines apply required material type	Assign to machine 1 or 3 randomly with a 1/2 chance
Machine 1 applies required material type No machine applies required material type Description Machine 3 dows not apply required material type Costription Description Machine 2 applies required material type Machine 2 upplies required material type Machine 1 upplies required material type	F	0	Machine 3 applies required material type	Assien to machine 3
No machie applies required material type Description Machine 3 applies required material type Machine 3 does not apply required material type Description Description No mechine applies required material type Machine 1 applies required material type Machine 2 applies required material type Machine 1 applies required material type Machine 2 applies required material type	0		Machine 1 applies required material type	Assist to machine 1
Description Machine 3 applies required material type Machine 3 applies required material type Machine 2 does not apply required material type Description Description Machine 2 applies required material type Machine 2 applies required material type No machine 2 applies required material type Machine 2 does not apply required material type Machine 2 applies required material type Machine 2 upplies required material type Machine 1 upplies required material type	н	-	No mechie applies required meterial type	Assign to machine 1 or 5 randomly with a 1/2 chance and execute meterial changeover
Description Machine 3 applies required material type Machine 3 does not apply required material type Description Description Machine 1 applies required material type Machine 2 applies required material type Nachine 2 applies required material type Machine 2 does not apply required material type Machine 2 does not apply required material type Machine 1 applies required material type Machine 2 does not apply required material type				
Description Machine 3 applies required material type Machine 3 does not apply required material type Description Both machine 2 applies required material type Machine 2 applies required material type No machine applies required material type Machine 2 applies required material type Description Machine 2 does not apply required material type Machine 2 upplies required material type	mbimatic	on Material 1-1-0	- 8	
 Matchine 3 applies required material type Matchine 3 applies required material type Rescription Both machine a pily required material type Matchine 1 applies required material type Matchine 2 applies required material type Matchine 2 applies required material type Matchine 2 applies required material type Rescription Rescription Matchine 2 does not apply required material type 	terial 1	Material 2 Material		Action
 Matchine 3 does not apply required material type Description Both machines apply required material type Matchine 2 applies required material type No machine applies required material type No machine 2 applies required material type Matchine 2 does not apply required material type Matchine 2 does not apply required material type Matchine 2 does not apply required material type 	1		Machine 3 applies required material type	Assign to matchine 3
 Crial 3. Description Both machines apply required material type Machine 2 applies required material type Machine 2 applies required material type Neachine 2 applies required material type Machine 2 does not apply required material type Machine 2 does not apply required material type Machine 2 does not apply required material type 			Machine 3 does not apply required material type	Assign to machine 3 and execute material changeover
cerial 3. Description. Both machines apply required material type Machine 1 applies required material type Machine 2 applies required material type Machine 2 does not apply required material type	nbinatic	m Material 0-0-1		
 Both machines apply required material type Machine 2 applies required material type Machine 2 applies required material type No machine applies required material type Machine 2 applies required material type Machine 2 applies required material type Machine 2 does not apply required material type 	Terial 1	Material 2 Material	152	Action
 Machine 2 applies required material type Machine 2 applies required material type No motione applies required material type Machine 2 applies required material type Machine 2 does not apply required material type 	0	0		Assists to machine 1 or 2 randomly with a 1/2 chance
 Machine 1 applies required material type No machine applies required material type Machine 2 applies required material type Machine 2 does not apply required material type Machine 1 applies required material type Machine 1 applies required material type 	-		Marchines 2 anothes received conterial two-	Assess to machine 2
No machine applies required material type 	0		Machine 1 andles required material type	Artists to machine 1
no mechine applies required material type Machine 2 does not apply required material type Machine 2 does not apply required material type erial 3 Description Machine 1 applies required material type	,			resultant and an antimizer at the second second solution of the advances and the second second second solution and
erial 3. Description 			No meaning applies required material type	Assign to machine 1 of 2 randomly with a 1/2 chance and execute material changeover
Machine 2 applies required material type Machine 2 does not apply required material type rerial 3 Description Mechine 1 applies required material type	montal 1	Material 2 Material	10	Action
Machine 2 does not apply required material type Machine 2 does not apply required material type material 3 Description	1 1011-001	MUNICIPAL & MUNICIPAL		AVENUE A
Machine 1 applies required material type	1	- -	Machine 2 applies required material type Machine 3 discensis and another contract controls have	Autiliar to instanting 2 and eventual examination discussioners Accise to essentiate 2 and eventual examination discussioners
terial 3. Description Machine 1 applies required material type		4	machine a doce not apply require a machine type	
Machine 1 applies required material type	mbimutic	Material 0-1-1	- 12	Arelan
adda ustatu nadantes redates a subset	T ICLIAND			
	0		Machine 1 applies required material type	Assign to muchine 1

Table 7-5: Machine assignment and material changeover logic – three machines


7.3.2 RESULTS AND DISCUSSION

The result of the upper limit search is presented in Table 7-6:

Table 7-6: Three machines with	flexible material assignm	ient - Upper limit N	o waiting/ Waiting

		Basecase	Three	e machine	es with fl o	cible mate	rial æsign	ment		
			I	/lean arriv No waiting	5		lean arriv Waiting		changes	limit - compared case [%]
			Low		High	Low		High		
		Upper	arrival	Upper	arrival	arrival	Upper	arrival	No	
Control		limit	rate	limit	rate	rate	limit	rate	waiting	Waiting
Mean arrival	hr	100	40	20	10	100	60	20	20%	60%
Cost related responses										
Total warehousing cost	£	55436	90275	117594	174999	74119	81248	118375	212%	147%
Total AM cost	€	73494	190719	274890	2471954	145352	169015	313436	374%	230%
Consumed material cost	€	22030	52633	103858	164495	20851	34054	102195	471%	155%
Consumed energy cost	€	4210	10057	19845	31432	3984	6507	19527	471%	155%
Operator cost	£	4336	10775	21550	33762	4318	7186	21538	497%	166%
Total maintenance cost	€	29407	87814	88351	88448	86368	87356	88349	300%	297%
Total AM penalty	£	3708	166	11833	2124333	1041	4791	52375	319%	129%
AM process related responses										
Consumed material	kg	275	657	1298	2056	260	425	1277	472%	155%
Consumed energy	kWh	70160	167623	330758	523870	66404	108452	325464	471%	155%
System setup time	%	8	8	18	30	3	5	18	224%	65%
System utilization time	%	19	15	29	46	6	10	29	153%	51%
Systen cool down time	%	8	7	13	21	3	5	13	167%	56%
Total system utilization	%	35	29	60	97	12	19	60	173%	55%
Average building volume	mm⁵	404530	391011	386009	390217	386701	378199	379486	95%	93%
Machine depreciation	£	30061	89766	90315	90413	88287	89298	90313	300%	297%
Average time in queue	hr	50		10,62	12,45	0	0	10,744	21%	0%
Average number of parts in queue	pcs.	0,001	0,001	0,094	8,806	0	0	0,139	9400%	0%
Number of parts in queue total	pcs.	5	0	73	58618	0	0	108	1469%	0%
AM parts out	pcs.	87	216	431	675	86	144	431	495%	166%

When compared to the base case, the three-machine setup appears to bring about further improvements. The maximum parts out exhibited an approximately 400 % increase with the mean arrival rate of 20 hours. Also, the possible total system utilization increased by almost 73 %. The high system utilization is due to the fact that each machine can start production at arrival of a spare part request. No unnecessary idle times, as in the fixed material setups, must be compensated by the system. On the other hand, when the waiting mode is applied to the system, the upper limit is significantly reduced to a level similar to the two-machine setup with the same waiting mode. In addition, the total system utilization was even further lowered compared to the two-machine setup.

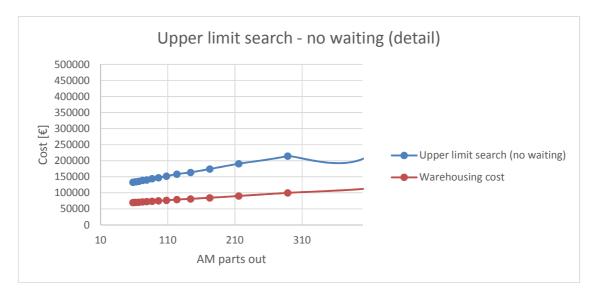
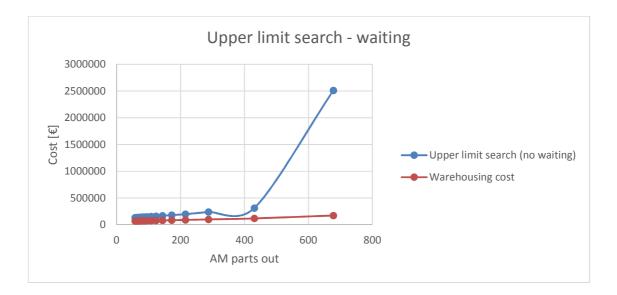



Figure 7-32: Three machines with flexible material - Upper limit search - No waiting

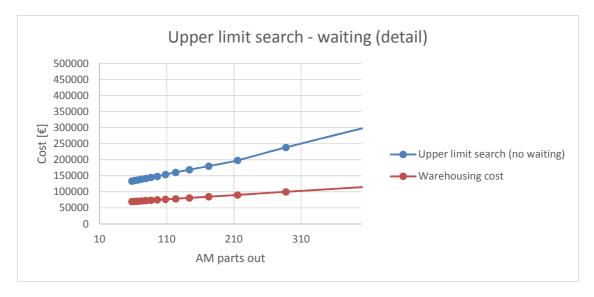


Figure 7-33: Three machines with flexible material - Upper limit search - Waiting

The influences of material changeover, preheat and cool down are similar to the two-machine with fixed material assignment strategy. Again, the no-waiting mode significantly more efficient compared to the waiting mode. The start volume and elapse time variation still show identical characteristics compared to the fixed material setup. On the other hand, the effect of preheat and cool down time on the total system cost exhibited a different pattern as shown in Figure 7-36.

When the sum of preheat and cool down time exceeds a certain level (approx. 24 hrs) the total AM cost decreases. This result is seemingly counterintuitive and is actually artificial effects due to the modelling. Cost related factors are updated when a part leaves the system. In other words, the more parts leave the system, the more cost and/ or penalties are charged. As a result, when preheat and cool down time becomes significantly elongated, the number of parts leaving the system will be largely controlled by this time delay, which contributed to the reduction of the AM costs over the fixed period of time. Therefore, after taking the artificial effects into account, the system output is actually expected to exhibit decrease due to the increasing overall process time.

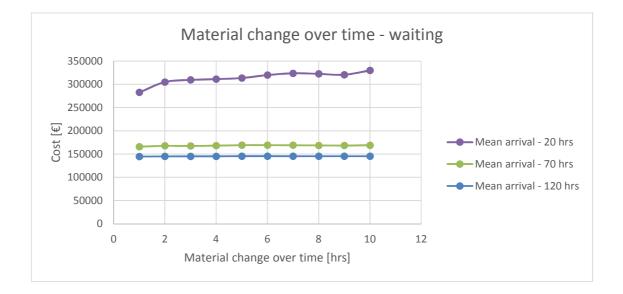


Figure 7-34: Three machines with flexible material - Material change over time - Waiting

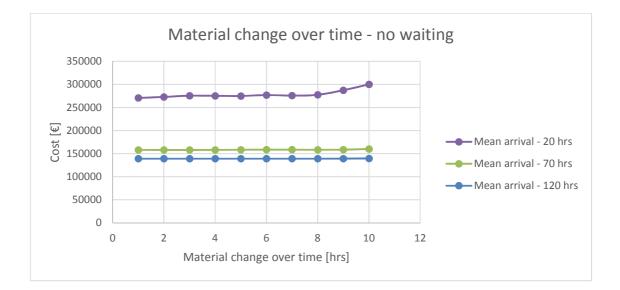


Figure 7-35: Three machines with flexible material - Start volume - No waiting

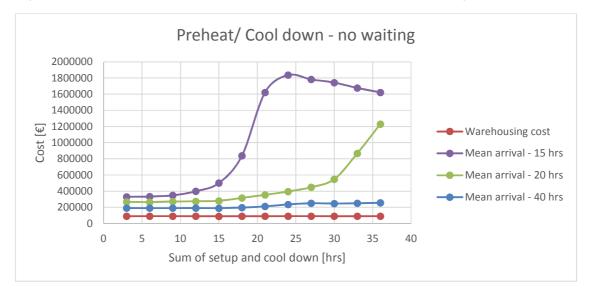


Figure 7-36: Three machines with flexible material - Preheat and cool down - No waiting

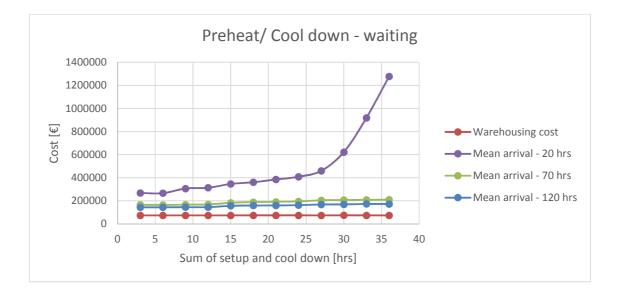


Figure 7-37: Three machines with flexible material – Preheat and cool down - Waiting

The start volume variation and elapse time shows the same properties like in the two machines with flexible material experiment.

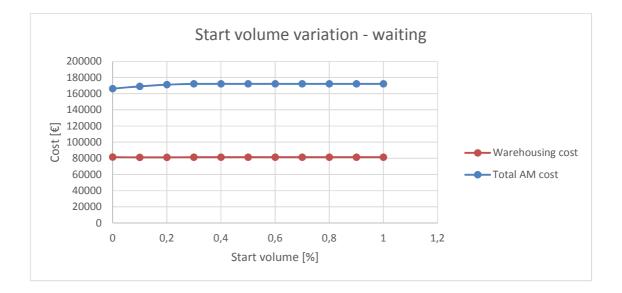


Figure 7-38: Three machines with flexible material - Start volume - Waiting

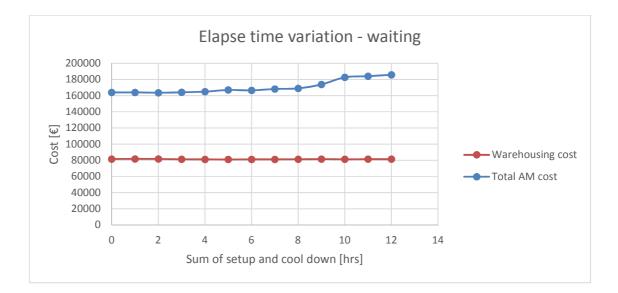


Figure 7-39: Three machines with flexible material - Elapse time - Waiting

7.4 PART SIZE DISTRIBUTION

The part size distribution setups are based on the two-machine system with flexible material assignment strategy with the part size distribution being the only variable. In this experiment the spare parts requests require only one material in order to focus the investigation on the part size effects. Several distributions of part sizes such big parts only or an equally distributed mix of small, mid and big parts were analyzed. The setup were also simulated in both a waiting and no waiting mode.

7.4.1 MODEL ADJUSTMENT

The part size simulation model was created based on the two-machine with flexible material setup. The main changes were made in the AM rout arrival and queuing logic.

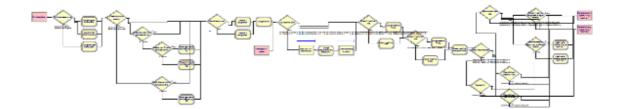


Figure 7-40: Adjusted AM rout arrival and queueing logic

Firstly, the spare part sizes attributes were re-defined (see Figure 7-41). The original spare part set consisted of 75 % small, 20 % medium size and 5 % big parts, which were modified for this study. Three new variables "Reassign small parts", "Reassign mid parts" and "Reassign big parts" were introduced. The values represent the percentage of the occurring spare part size on random basis, with the only restriction that the sum of those three needed to equal 100. The variables were then used in a decide module to control the assignment of the spare part size.

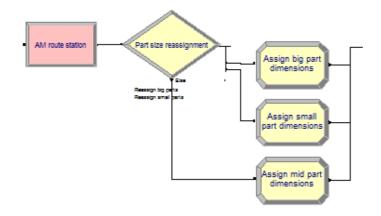


Figure 7-41: New part size assignment

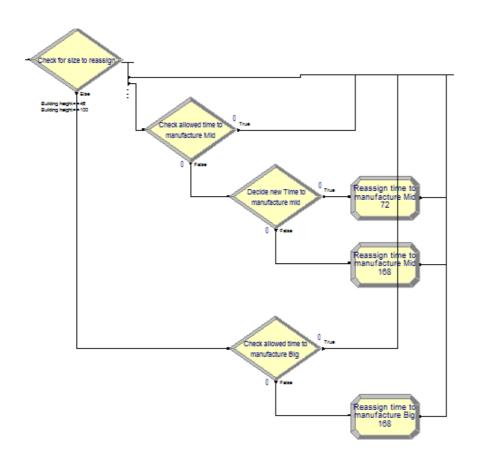


Figure 7-42: Check for allowed time to manufacture

Due to the part size reassignment it is necessary to recheck the allowed time to manufacture. For example a big part cannot be produced in the originally defined allowance time which was 46 hrs.

First, the reassigned part size was checked to ensure that it meets the following criteria:

- Small parts work with all times to manufacture.
- Medium size parts work with medium time to manufacture and long time to manufacture.
- Big parts work with the long time to manufacture only.

The parts will follow a specific path according to part size which works according to the following logics:

- Small parts are simply forwarded to the next material assignment section.
- Medium size parts are assigned with medium or long allowance time (50/50 chance)
- Large size parts are assigned with long allowed time to manufacture.

After that the parts are sent to the material assignment. The rest of the model is identical to the two-machines with flexible material setup.

7.4.2 PROCEEDING

The percentages of big, medium and small parts were varied at several levels. These variations allow for multiple combinations. In order to limit the simulations to only the most representative setups, combinations with extreme settings were selected for simulations as listed in Table 7-7. For the purpose of comparison, the basic setup was included as the baseline reference.

	Selected s	spare part s	ize setups
	Big	Mid	Small
	%	%	%
Case 1	5	20	75
Case 2	33	33	33
Case 3	50	50	0
Case 4	50	0	50
Case 5	100	0	0
Case 6	0	50	50
Case 7	0	100	0
Case 8	0	0	100

Table 7-7: Selected variations of part size distributions

The applied tool for calculation is the integrated process analyzer of Arena.

Following simulations will run in the no waiting and waiting mode:

• Upper limit search

7.4.3 RESULTS AND DISCUSSION

Figure 7-43: Results of part size simulations - Upper limit - No waiting

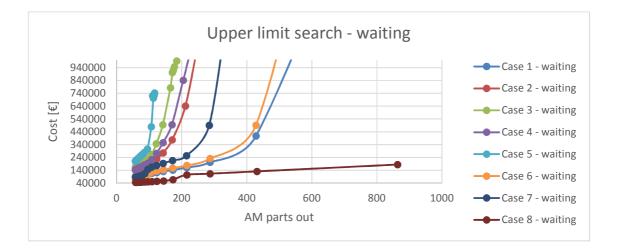


Figure 7-44: Results of part size simulations - Upper limit - Waiting

Figure 7-43 and Figure 7-44 show the results of the upper limit search for each setup in the waiting and no-waiting mode. The cases show a clear trend. The smaller the average size of the requested spare parts, the better the system can react to arriving spare part requests. This seems logical since producing small parts allows to produce more parts in the same time frame.

					Part size	evariation			
					Mean arriva	al - Nowaiti	ing		
Control		Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
Mean arrival	hr	40	80	90	90	90	40	40	8
Big parts	%	5	33	50	50	100	0	0	0
Medium parts	%	20	33	50	0	0	50	100	0
Small parts	%	75	33	0	50	0	50	0	100
Cost related responses									
Total warehousing cost	€	90275	76559	75075	75201	75056	90227	90697	201283
Total AM cost	€	161281	195676	226837	193128	300524	178079	250516	213543
Consumed material cost	€	58101	92354	120589	92386	181434	74446	135040	65914
Consumed energy cost	€	11102	17647	23042	17653	34668	14225	25804	12595
Operator cost	€	10780	5389	4781	4795	4738	10794	10751	53915
Total maintenance cost	£	58816	58433	58536	58438	58575	58897	58908	59088
Total AM penalty	€	2875	2375	375	375	1583	83	375	2333
AM process related responses									
Consumed material	kg	726	1154	1507	1154	2267	930	1688	823
Consumed energy	kWh	185036	294123	384042	294224	577816	237092	430066	209918
System setup time	%	10	5	5	5	5	10	10	34
System utilization time	%	24	39	51	39	77	31	57	28
Systen cool down time	%	10	5	4	4	4	10	10	33
Total system utilization	%				45	50	60	48	86
Average building volume	mm³	431063	1368484	2011654	1538840	3048625	550032	1000000	97336
Machine depreciation	€	60123	59731	59837	59736	59876	60206	60217	60401
Average time in queue	hr	21,271	8,648	1,988	1,823		1,806	3,401	8,269
Average number of parts in queue	pcs.	0,027	0,005	0,001	0	0,002	0	0,002	0,905
Number of parts in queue total	pcs.	10	5	1	1	3	1	4	945
AM parts out	pcs.	216	108	96	96	95	216	215	1078

Table 7-8: Upper limit results of spare part size variation - No waiting and waiting

					Part size	evariation			
					Mean arri	val - Waiting	ł		
Control		Case1	Case 2	Case 3	Case 4	Case5	Case 6	Case 7	Case 8
Mean arrival	hr	40	80	90	90	100	40	40	7
Big parts	%	5	33	50	50	100	0	0	0
Medium parts	%	20	33	50	0	0	50	100	0
Small parts	%	75	33	0	50	0	50	0	100
Cost related responses									
Total warehousing cost	€	90648	76489	74836	75039	73685	90860	90886	219627
Total AM cost	€	161905	198649	230666	195556	279998	178438	254449	233128
Consumed material cost	€	57149	92622	121559	92866	163182	74156	134988	75166
Consumed energy cost	€	10920	17698	23227	17745	31181	14170	25794	14363
Operator cost	€	10783	5373	4765	4784	4261	10780	10747	61484
Total maintenance cost	£	58758	58497	58429	58433	58498	58841	58907	59085
Total AM penalty	£	4708	4958	3208	2250	3375	875	4375	3333
AM process related responses									
Consumed material	kg	714	1157	1519	1160	2039	926	1687	939
Consumed energy	kWh	182003	294975	387131	295752	519688	236167	429900	239384
System setup time	%	10	5	5	5	4	10	10	30
System utilization time	%	24	39	52	39	69	31	57	32
Systen cool down time	%	10	5	4	4	4	10	10	29
Total system utilization	%	44	50	61	49	77	52	77	91
Average building volume	mm⁵	423489	1378738	2033402	1550195	3048625	548455	1000000	97336
Machine depreciation	€	60064	59797	59728	59731	59798	60149	60217	60398
Average time in queue	hr	19,772	8,853	4,405	3,125		3,968	4,591	6,974
Average number of parts in queue	pcs.	0,031	0,009	0,001	0,001	0	0,004	0,015	0,822
Number of parts in queue total	pcs.	13	8	2	2	0	8	28	1017
AM parts out	pcs.	216	107	95	96	85	216	215	1230

Even if this is an important finding it must be extenuated. The spare part size distribution has an effect on the system's performance. But if the system's overall performance is better than the required system performance there is no argument for limiting the spare part sizes to an unnecessarily small size. For example in case 7 - no waiting only medium size parts are produced and 95 spare parts can leave the system. When the actual system would require less parts to be delivered in this time the setup is sufficient to meet the demand.

Results also allow to conclude that a smaller the part size results in a higher machine utilization. For example small parts only allows for a system utilization of 94 % at an upper limit of 8 hrs, while big parts allow for a system utilization of 86 % at an upper limit of 90 hrs. A mix of two types of spare parts strongly reduces the system performance. A 50/ 50 mix of small and big size spare parts reaches a 49 % total system utilization at an upper limit of 90 hrs.

90 hrs is the upper limit for both, big parts only and the 50/50 mix of small and big parts, but the utilization is 49 % instead 86 % for the small and big size mix. To explain this gap it can be assumed that several big parts are requested in a row. Then the situation is equal to the big parts only case. In consequence, if penalties should be avoided, the system must be designed to handle big parts only. If again small parts arrive again the total system utilization must decrease, due to the fact that the total production time for small parts is shorter, while the system is designed for longer production times.

The effect is also recognizable when the upper limits of the other cases are taken into account. Small parts only have an upper limit of 8 hours, medium size parts have an upper limit of 40 hrs and big parts only 100 hrs. If other part sizes are mixed in the upper limit of the bigger spare part type decreases only slightly. For example in case 1 75 % of parts are small, 20 % are medium size and 5 % are big. The upper limit is at 40 hrs. Compared to the small only case with an upper limit of 8 hrs the system performance decreased by the factor 5. Further medium size parts are the second relevant group of requested spare parts and 40 hrs is the upper limit of the medium parts only setup. Since a certain penalty is accepted it can be created by arriving big part requests. Also the system utilization decreased by approx. 50 %. It can be assumed that the biggest part type will influence the upper limit of a system most. The utilization will be a result of the produced amount of smaller parts. Consequently for a high utilization a uniform part size is advantageous.

The waiting setup decreases the system performance in most cases. But things change at the point where only small parts are produced. Table 7-8 shows that the waiting mode performs better than the no waiting mode in case 8 (More AM parts out at an equivalent cost level). This seems logical, since setup and cool down is only applied once if one, two or more parts are placed in the building space, while the production time is relatively short and the allowed time to manufacture is relatively long. If the parts would become even smaller, waiting is assumed to become a more beneficial strategy. Consequently this means that the advantage of waiting can improve when the typical part size is decreases.

	1	i	i										
	Allowed												1
	time to			Max									1
	manufac-	Manufac-	Preheat &	waiting									
Part size	ture	turing	cool down	time		Pro	duction p	ossible if	two parts	are in bui	Iding space	e	
		Part			small -	small -	small -	mid - 168	mid - 72	mid - 48	big - 168	big - 72	big - 48
		volume/		(if no	168	72	48						
		Building	Preheat +	other part									
	Defined	speed	cool down	arrives)									
	hrs	hrs	hrs	hrs	hrs	hrs	hrs	hrs	hrs	hrs	hrs	hrs	hrs
small	168	4,5	12	151,5		51	27	106,5	10,5	-13,5	11,5	-84,5	-108,5
Sinan	100	-,-	12	151,5		147	147	106,5	106,5	106,5	11,5	11,5	11,5
small	72	4,5	12	55,5	147		27	106,5	10,5	-13,5	11,5	-84,5	-108,5
Siliali	12	4,5	12	22,2	51		51	10,5	10,5	10,5	-84,5	-84,5	-84,5
small	48	4,5	12	31,5	147	51		106,5	10,5	-13,5	11,5	-84,5	-108,5
Sman	40	4,5	12	51,5	27	27		-13,5	-13,5	-13,5	-108,5	-108,5	-108,5
mid	168	45	12	111	106,5	10,5	-13,5		-30	-54	-29	-125	-149
mia	108	45	12	111	106,5	106,5	106,5		66	66	-29	-29	-29
	70	45	40	45	106,5	10,5	-13,5	66		-54	-29	-125	-149
mid	72	45	12	15	10,5	10,5	10,5	-30		-30	-125	-125	-125
					106,5	10,5	-13,5	66	-30		-29	-125	-149
mid	48	45	12	-9	-13,5	-13,5	-13,5	-54	-54		-149	-149	-149
					11,5	-84,5	-108,5	-29	-125	-149		-220	-244
big	168	140	12	16	11,5	11,5	11,5	-29	-29	-29		-124	-124
					11,5	-84.5	-108.5	-29	-125	-149	-124		-244
big	72	140	12	-80	-84,5	-84,5	-84,5	-125	-125	-125	-220		-220
					11.5	-84.5	-108.5	-29	-125	-149	-124	-220	
big	48	140	12	-104	-108,5	-108.5	-108.5	-149	-149	-149	-244	-244	

Table 7-9: Possibility of simultaneous production

Table 7-9 illustrates this fact. The left part of the table lists the different part size types and their major production related characteristics. Manufacturing allowance time is the driving component from which manufacturing, setup and cool down time are subtracted. This results in the maximum waiting time (values are simplified), which describes the time a spare part request is allowed to wait in queue before a penalty is charged. A negative maximum waiting time indicates that a production of the part is not possible, since a penalty cannot be avoided. Therefore several parts are excluded from further analysis. If the maximum allowed waiting time is bigger than zero, it is checked if a second part can enter the production run without creating a penalty. The production time of the second part is positive, waiting can be beneficial. The same check is executed on the second part. If the result is positive, waiting can be beneficial. If one of those two checks is negative waiting is not an option since a penalty will be charged for the part with the negative results.

The same check can be done for third part which might enter the production run, but introducing a third part would not lead to new system behaviors. But if the calculations are executed for a third part entering the production run the results represent the new maximum waiting time for the two already set parts. This allows to increase the number of parts in the building volume in some situations.

Table 7-9 now shows the possible combinations of part sizes in green and the non-possible combinations in red. This shows that waiting is only possible when small parts are produced. If medium and big parts are introduced penalties will be created. A better control of the spare part set might slightly improve the situation, since a production of exceptionally small/ medium size and small/ big combinations are possible. However, in the current setup this is not an option. For future extensions to this work this may present a new field of study. In a situation in which for no

part in process a penalty is charged, adding a part to an ongoing production run might become an option to eliminate double setup and cool down times for certain part combinations. For now it is assumed that the more parts are added to a production run the longer the production will take. This can increase the chance to create a penalty if the system is not balanced accordingly.

The smaller the part size will become, the bigger the influence of setup and cool down times will be. This can lead to the conclusion that reducing setup and cool down times might again lead to further improvements. It can be assumed that the waiting mode can become less beneficial for the small parts only production if setup and cool down times decrease significantly.

8 SUMMARY OF FINDINGS

The individual findings have been presented in the previous chapters. This chapter focuses on the comparison between different strategies directly. The following tables summarize findings when parameter such as setup and cool down are varied for one-, two- or three machine setups in no waiting and waiting mode.

If relevant, the most representative results are added according to the specific purpose.

The following tables are presented:

Table 8-1: Discussion of base case simulation

Table 8-2: Discussion of AM strategy investigations

Table 8-3: Comparison of different strategies - Upper limit - No waiting

Table 8-4: Comparison of different strategies - Upper limit - Waiting

Table 8-5: Comparison of different strategies - Preheat and cool down - No waiting

Table 8-6: Comparison of different strategies - Preheat and cool down - Waiting

Table 8-7: Comparison of different part size setups - No waiting

Table 8-8: Comparison of different part size setups - Waiting

Irvestigation Control variation		Base case	1s - Vermoat	tion			
Control variation	1	case for direct	Building space volume Increased building space volume	Building speed Increased building speed will lead	Material price Price a company is willing to pay	Machine purchase price Influence of machine purchase	Cool down time Decrease of the cool down time
Control variation		enarios.	increases processing and and delivery time.		for material.	price and depreciation time.	leads to faster processing and improved spare part supply.
		Arrival mean: 10 - 1500 hr	Building height: 145 - 500 mm Building depth: 145 - 650 mm Building width: 145 - 500 mm	Building speed: 10 - 100 cm³/ hr Arrival mean: 10 - 150 hr	Material price: 10 - 150 €	Machine purchase price: 100000 - 500000 ¢ Depreciation time: 2 - 20 yr	Arrival mean: 10 - 150 hr Cool down time: 0 - 12 hr
Responses at upper limit							
Control set for results		Arrival mean: 100 hr	Building heigth: 145 mm Building depth: 145 mm Building width: 145 mm	Building speed: 40 cm²/ hr Arrival mean: 80 hr	Material price: 10 €	Machine purchase price: 450000 € Depreciation time: 8 yr	Arrival mean: 100 hr Cool down time: 11 hr
Upper limit	Pr.		100	80	1	1	100
AM parts out	bcs.	10	10		10	91	
Cost related responses Total warehousing cost	ون	74191	74115				
Total AM cost	9	73494	72439		5		
Consumed material cost		22030	21881	27082	2754	22030	22015
Operator cost	, u	4336					
Total maintenance cost	ų	29407	29409	2946	2	2	
Total AM penalty	3	3708	2833	0	3708	3708	73840
AM process related responses		100	100				
Consumed material	kWh	2/2	2/4 69685	539 86748	2/2 09107	C/2 09102	2/2
Machine setup time	%	00	5				
Machine production time	%	19	18		19	1	19
Machine cool down time	%	80 uc	2	10	80 ut	00 y	11
Average building volume	*mm	404530	402003	398349	404530	4045	40430
Machine depreciation	¢	30061	30063				
Average time in gueue	۲	50	48	1		5	5
Average number of parts in queue Number of parts in queue total	pcs.	0 0	0 0		0 0		0 0
Findings	DC5.			The positive impact on spare part supply and compensation of building space volume increase strongly increases the production can be confirmed. Building speed strongly increases the production capacity, but production cost and service related factors need to be balanced. With increasing building speed the relevance of penalties is decreaseing compared to the production related cost. Building speed can be selected according to the system requirements, since at a certain limit no cost improvements can be gained by increasing the building speed further.	Price level of model is balanced due to upper limit defined in the base case. General conclusion: - The lower the price the better. A higher material price can be acceptable when the actual consumed material is lower than the consumed material at the upper limit case, since the material cost follows a linear function. The acceptable material price can be calculated on this basis.	Better to evaluate the purchase price independent of the total AM cost. Gerneral conclusion: - The lower the price the better. After 8 years the annual machine depreciation tends to "stabilize" at a certain level.	It can be confirmed that a reduced cool down time leads to faster processing and improved spare part supply. But from a cost perspective the potential is limited. The cool down time has only slight influence on the results as long as the system is in a stable state. The lower the utilization is, total AM cost. As for the machine setup and building speed a faster cool down supports a higher system output which can increase the variable production cost. The system needs to be balanced.

Table 8-1: Discussion of base case simulation

Cranarine	Technical extensions - Alternative strategies	strategies						
SCENELIOS	Two machines with fixed material assignment	ssignment	Two machines with flexible material assignment	gnment	Three machines with fixed material assignment	gnment	Three machines with flexible material assignment	signment
Description	Two identical AM systems will work	Two identical AM systems will work in parallel. Each machine is dedicated to Two identical AM systems will work in parallel. Each machine can fabricate two Three identical AM systems will work in parallel. Each machine is dedicated to	Two identical AM systems will work in po	arallel. Each machine can fabricate two	Three identical AM systems will work in	parallel. Each machine is dedicated to	Three identical AM systems will work in	Three identical AM systems will work in parallel. Each machine can fabricate two
	fabricate with one fixed type of material only. Spare parts are either of	terial only. Spare parts are either of	types of material. Spare parts are either	of material type one or two, both with	fabricate with one fixed type of materia	I only. Spare parts are either of materia	types of material. Spare parts are either of material type one or two, both with fabricate with one fixed type of material only. Spare parts are either of material type one or two, both with	of material type one or two, both with
	material type one or two, both with a 50 % chance.	a 50 % chance.	a 50 % chance. Material change time is considered when a material change on	onsidered when a material change on	type one, two or three, all with a 33 % chance.	hance.	a 50 % chance. Material change time is considered when a material change on a	considered when a material change on a
			a machine is required.				machine is required.	
	Investigation	Control variables	Investigation	Control variables	Investigation	Control variables	Investigation	Control variables
	(For both, with and without waiting		(For both, with and without waiting		(For both, with and without waiting		(For both, with and without waiting	
	before production start):		before production start):		before production start):		before production start):	
	Upper limit	Mean arrival	Upper limit	Mean arrival	Upper limit	Mean arrival	Upper limit	Mean arrival
	Setup and cool down time (at low,	Sum of setup and cool down time	Setup and cool down time	Sum of setup and cool down time	Setup and cool down time	Sum of setup and cool down time	Setup and cool down time	Sum of setup and cool down time
	mid and high arrival rates)		(at low, mid and high arrival rates)		(at low, mid and high arrival rates)		(at low, mid and high arrival rates)	
	Waiting only: Elapse time	Elapse time	Waiting only: Elapse time	Elapse time	Waiting only: Elapse time	Elapse time	Waiting only: Elapse time	Elapse time
	Waiting only: Start volume	Production start volume	Waiting only: Start volume	Production start volume	Waiting only: Start volume	Production start volume	Waiting only: Start volume	Production start volume
			Material change over time	Material change time			Material change over time	Material change time
			(at low, mid and high arrival rates)				(at low, mid and high arrival rates)	
Findings								
Upper limit (No waiting)	The upper limit was reached at 60 hrs with 144 parts Marchine utilisation at this unner limit is 28 %.	irs with 144 parts of is 28 sk	The upper limit was reached at 40 hrs with 215 parts Marchine utilization at this upper limit is 44 %	ith 215 parts	The upper limit was reached at 60 hrs with 144 parts Machine utilization at this unnear limit is 19 %	ith 144 parts 10 %	The upper limit was reached at 30 hrs with 288 parts Machine utilization at this unner limit is 39 %.	ith 288 parts 29 ec
	The bishort security actual states and	in to 40 M.	The bishort monthly worked on the second of the second second by the second sec	and the second section) of 20 here unlike 430	The highest section of the bighter minute	and a manage actival of 20 has with A24	The bishoot seccible section of the spectrum is	and the second section of 30 here unlike 434
	The nignest possible production rate	The nignest possible production rate was at a mean arrival of 20 hrs with	The flightest possible production rate was at a mean arrival of 20 hrs with 450	s at a mean arrival of 20 hrs with 450	The highest possible production rate was at a mean arrival of 20 hrs with 431	is at a mean arrival of ZU hrs with 431	The highest possible production rate was at a mean arrival of 20 hrs with 4.51	s at a mean arrival of 20 hrs with 451
	473 perts.		parts.		barrs.		parts.	
							(Compared to the two machine setup the system performs better, since the	e system performs better, since the
							number of parts in gueue is lower)	
Upper limit (Walting)	The upper limit was reached at 60 hrs with 123 parts	irs with 123 parts	The upper limit was reached at 70 hrs with 123 parts	ith 123 parts	The upper limit was reached at 60 hrs with 144 parts	ith 144 parts	The upper limit was reached at 60 hrs with 144 parts	tth 144 parts
	Machine utilization at this upper limit is 24 %	nit is 24 %	Machine utilization at this upper limit is 44 %	44 %	Machine utilization at this upper limit is 19 %	19 %	Machine utilization at this upper limit is 19 %	19 %
	The highest possible production rate	The highest possible production rate was at a mean arrival of 20 hrs with	The highest possible production rate was at a mean arrival of 20 hrs with 429	s at a mean arrival of 20 hrs with 429	The highest possible production rate was at a mean arrival of 20 hrs with 430	is at a mean arrival of 20 hrs with 430	The highest possible production rate was at a mean arrival of 20 hrs with 431	s at a mean arrival of 20 hrs with 431
	429 parts.		parts.		parts.		parts.	
							(Compared to the two machine setup the system performs better, since the	e system performs better, since the
							number of parts in queue is lower)	
Setup and cool down (No waiting)	A decrease in setup and cool down t	A decrease in setup and cool down time increases the system performance. The sensitivity of the system is degendent on the mean arrival rate. An increased part arrival rate makes the system more sensitive changes in the setup and cool down times.	The sensitivity of the system is dependent	t on the mean arrival rate. An increased	part arrival rate makes the system more	sensitive changes in the setup and coo	down times.	
Setup and cool down (Waiting)	Equivalent to setup and cool down v	Equivalent to setup and cool down with no waiting with an increased total cost, caused by more charged penalties due waiting.	ost, caused by more charged penalties du	e waiting.				
Waiting only: Elapse time	At the current setup elapse time has	At the current setup elapse time has no influence on the system due to no further part arrival in the max. waiting time	irther part arrival in the max. waiting time					
Waiting only: Start volume	At the current setup start volume his	At the current setup start volume has no influence on the system due to no further part arrival in the max. waiting time.	urther part arrival in the max. waiting tim	- i				
Fexible only: Material change over time	The material changeover time has a	The material changeover time has a slight influence on the system performance. Similar to other increased time consumers (e.g. setup and cool down times) the syst	nce. Similar to other increased time consu	umers (e.g. setup and cool down times)	the system is stronger the more the system is stressed	em is stressed.		
	A decrease in material changeover t	A decrease in material changeover time will lead to an improved system performance.	ormance.					
General findings	Waiting can not be better in this spa	are part setup. The max. part arrival rate	is 20 hrs. If the waiting time does not exc	eed 20 hrs (what will lead to pentalties (due to the allowd time for production), p	roduction will always be delayed witho	Waiting can not be better in this spare part setup. The max, part arrival rate is 20 hrs. If the waiting time does not exceed 20 hrs (what will lead to pentialities due to the allowd time for production, production will always be delayed without receiving a second part for production while the machine is idle. Waiting can	while the machine is idle. Waiting can
	become an option when the parts a	become an option when the parts are relatively small and production is fast. Extra setup and cool down times can be avoided by waiting, but total production plus waiting time may not exceed the allowed time to manufacture. Otherwise penalties are charged	Extra setup and cool down times can be	svoided by waiting, but total production	plus waiting time may not exceed the a	lowed time to manufacture. Otherwise	penalties are charged.	
	Also variations of the start volume a	Also variations of the start volume and the elapse time support that waiting is not effective in the current setup, since variations show no to minor effect on the results.	is not effective in the current setup, since	variations show no to minor effect on t	he results.			
	and the second s	We can see a second at the addition of the second states which the second states at the		The second s				

was variations on the start volume and the elapse time support that waiting is not effective in the current setup, since variations show no to minor effect on the results. It can be clearly stated that waiting strategies are not efficient when no other part arrival is expected during waiting time and only reduceds the performance of the system.

Table 8-2: Discussion of AM strategy investigations

Table 8-3: Comparison of different strategies – Upper limit – No waiting

	and the second	Investigation: Upper limi	t		
Setting - No waiting	Unit	Two machines with fixed material assignment	Two machines with flexible material assignment	Three machines with fixed material assignment	Three machines with flexible material assignment
Investigation		Two identical AM systems will work in parallel. Each machine is dedicated to fabricate with one fixed type of material only. Spare parts are either of material type one or two, both with a 50 % chance.	Two identical AM systems will work in parallel. Each machine can fabricate two types of material. Spare parts are either of material type one or two, both with a 50 % chance. Material change time is considered when a material change on a machine is required.	Three identical AM systems will work in parallel. Each machine is dedicated to fabricate with one fixed type of material only. Spare parts are either of material type one, two or three, all with a 33 % chance.	Three identical AM systems will work in parallel. Each machine can fabricate two types of material. Spare part are either of material type one or two, both with a 50 % chance. Material change time is considered when a material change on a machine is required.
Control variation		Upper limit	Upper limit	Upper limit	Upper limit

Res	ponses	at u	pper	limit

Upper limit	hr	60	40	60	30
AM parts out	pcs.	144	216	144	288

Cost r	elated res	ponses
--------	------------	--------

cust related responses					
Total warehousing cost	E	81403	90498	81454	99982
Total AM cost	£	131635	154963	169974	214494
Consumed material cost	¢	34664	53087	35687	68923
Consumed energy cost	€	6623	10144	6819	13170
Operator cost	£	7206	10778	7211	14424
Total maintenance cost	€	58573	5877	87285	88138
Total AM penalty	€	5041	2583	3875	458

AM process related responses

Consumed material	kg	433	663	446	861
Consumed energy	kWh	110396	169069	113655	219501
System setup time	%	6,88	11,786	4,65	10,876
System utilization time	%	14,67	22,387	10,13	19,383
Systen cool down time	%	6,67	10,022	4,51	8,968
Total system utilization	%	28,22	44,194	19,3	39,226
Average building volume	mm ³	382907	393624	393399	382545
Machine depreciation	€	59875	60083	89225	90097
Average time in queue	hr	30	19,264	28,123	6,191
Average number of parts in queue	pcs.	0,027	0,023	0,012	0,003
Number of parts in queue total	pcs.	15	9,3	10	3,217

The results show a clear trend with respect to system performance.
The fixed material systems perform on a similar level with respect to AM parts out. The overall peformance of the three machine setup can even be evaluated as worse compared to the two machine setup, since the total system utilization is only 19 % compared to 28 % using two machines only.
The flexible material systems improve significantly with respect to system perfomance. The number of AM parts out is increased by 33 % while the upper limit improved by 25 % when a third machine is added. Also the two machine setup shows clearly better results compared to the fixed material setup.
With respect to a performance evaluation of fixed vs. flexible material systems, the flexible material system is preferable for the current system setup.

Table 8-4: Com	parison of	different	strategies –	Upper	limit –	Waiting
14010 0 00	pennoon or		Strategres	e pp er		

		Investigation: Upper limi	t		
Setting - Waiting	Unit		Two machines with flexible material assignment	Three machines with fixed material assignment	Three machines with flexible material assignment
Investigation	***	parallel. Each machine is dedicated to fabricate with one fixed type of material only. Spare parts are either of material type one or two, both with a 50 %	Two identical AM systems will work in parallel. Each machine can fabricate two types of material. Spare parts are either of material type one or two, both with a 50 % chance. Material change time is considered when a material change on a material change on a machine is required.	Three identical AM systems will work in parallel. Each machine is dedicated to fabricate with one fixed type of material only. Spare parts are either of material type one, two or three, all with a 33 % chance.	Three identical AM systems will work in parallel. Each machine can fabricate two types of material. Spare parts are either of material type one or two, both with a 50 % chance. Material change time is considered when a material change on a machine is required.
Control variation		Upper limit	Upper limit	Upper limit	Upper limit

Upper limit	hr	70	70	60	60
AM parts out	pcs.	123	123	144	144

Cost related responses

Total warehousing cost	E	78402	78751	80950	81248
Total AM cost	e	122822	120773	169690	169015
Consumed material cost	€	29487	28534	35114	34054
Consumed energy cost	¢	5634	5452	6709	6507
Operator cost	€	6172	6163	7185	7186
Total maintenance cost	€	58396	58498	87228	87356
Total AM penalty	e	3666	2625	4375	4791

Consumed material	kg	368	356	438	42
Consumed energy	kWh	93907	90874	111829	108452
System setup time	%	5,93	6,473	4,64	5,174
System utilization time	%	12,52	12,095	9,98	9,66
Systen cool down time	%	5,74	5,773	4,49	4,50
Total system utilization	%	24,19	24,341	19,11	19,342
Average building volume	mm ³	380333	370109	389143	37819
Machine depreciation	£	59694	59798	89166	89298
Average time in queue	hr	27		27,336	
Average number of parts in queue	pcs.	0,017	0,001	0,015	(
Number of parts in queue total	pcs.	10	1	13	

Findings	The upper limit search in the "waiting" setting shows similar results to the "no waiting" setting. The flexible
1 1	material setup performs better than the fixed material setup. While the upper limit and the number of parts
1 1	out are equal for both setups with an equivalent penalty, the queing behaviour is different. While queueing
	occurs for the fixed material setup, no queuing occurs for the flexible material setup. That indicates that the
1 1	system performs better.

	(C) (22)	Investigation: Preheat/ C	ool down variation		
Setting - No waiting	Unit	Two machines with fixed material assignment	flexible material assignment	Three machines with fixed material assignment	Three machines with flexible material assignment
Investigation		Two identical AM systems will work in parallel. Each machine is dedicated to fabricate with one fixed type of material only. Spare parts are either of material type one or two, both with a 50 % chance.	Two identical AM systems will work in parallel. Each machine can fabricate two types of material. Spare parts are either of material type one or two, both with a 50 % chance. Material change time is considered when a material change on a machine is required.	Three Identical AM systems will work in parallel. Each machine is dedicated to fabricate with one fixed type of material only. Spare parts are either of material type one, two or three, all with a 33 % chance.	Three identical AM systems will work in parallel. Each machine can fabricate two types of material. Spare parts are either of material type one or two, both with a 50 % chance. Material change time is considered when a material change on a machine is required.
Control variation		Sum of setup and cool down	Sum of setup and cool down	Sum of setup and cool down	Sum of setup and cool down
Setting					
			*0	60	20
Mean arrival	hr	60	40		
Sum of setup and cool down	hr hr	60 9	15		
	Contract Contract Contract Contract			80609	
Sum of setup and cool down Cost reloted responses Total warehousing cost	hr €	9 81203	90533	15 80609 169277	11790: 26510
Sum of setup and cool down Cost related responses Total warehousing cost Total AM cost	hr €	9 81203 131289	15 90533 153721	15 80609 169277 34289	11790: 26510/ 10370.
Sum of setup and cool down Cost related responses Total warehousing cost Total AM cost Consumed material cost	hr € €	9 81203 131289 35080	90533 153721 51965	15 80609 169277 34289 6552	11790 26510 10370 1981
Sum of setup and cool down Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost	hr € € €	9 81203 131289 35080 6703 7201 58478	90533 153721 51965 9929 10772 58758	80609 169277 34289 6552 7191 87214	11790: 26510(10370) 1981: 2153: 8825:
Sum of setup and cool down Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost	6 € € € € €	9 81203 131289 35080 6703 7201	90533 153721 51965 9929 10772	80609 169277 34289 6552 7191 87214	11790: 26510(10370) 1981: 2153: 8825:
Sum of setup and cool down Cost reloted responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total Maintenance cost Total AM penalty	hr € € € € €	9 81203 131289 35080 6703 7201 58478	90533 153721 51965 9929 10772 58758	80609 169277 34289 6552 7191 87214	11790: 26510(10370) 1981: 2153: 8825:
Sum of setup and cool down Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penalty AM process related responses Consumed material	hr E E E E E E E kg	9 81203 131289 35080 6703 7201 58478 4333 438	90533 153721 51965 9929 10772 58758 2708 649	15 80609 169277 34289 6552 7191 87214 4958 428	11790: 26510(10370) 1981(2153) 88259 2379 2379
Sum of setup and cool down Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penalty AM process related responses Consumed material Consumed material Consumed material Consumed energy	hr E E E E E kg kWh	9 81203 131289 35080 6703 7201 58478 4333 4333 4334	90533 153721 51965 9929 10772 58758 2708 649 165494	15 80609 169277 34289 6552 7191 87214 4958 428 109202	11790: 26510(10370) 1981) 2153) 88259 2379 1299 330259
Sum of setup and cool down Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penalty AM pracess related responses Consumed material Consumed material Consumed material System setup time	hr € € € € € € kg kWh %	9 81203 131289 35080 6703 7201 58478 4333 4333 4334 438 111721 6,06	15 90533 153721 51965 9929 10772 58758 2708 2708 649 165494 13,05	15 80609 169277 34289 6552 7191 87214 4958 428 109202 5,2	11790: 26510(10370) 1981: 2153: 8825: 237: 237: 129: 33025: 13,667
Sum of setup and cool down Cost reloted responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penalty AM process related responses Consumed material Consumed energy System setup time System utilization time	hr E E E E E kg kWh %	9 81203 131289 35080 6703 7201 58478 4333 4333 4333 4334 111721 6,06 14,87	15 90533 153721 51965 9929 10772 58758 2708 2708 649 165494 13,05 21,925	15 80609 169277 34289 6552 7191 87214 4958 428 109202 5,2 9,74	11790: 26510(10370) 2153(8825) 2379 2379 2379 2379 2379 2379 2379 2379
Sum of setup and cool down Cost reloted responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Total maintenance cost Total maintenance cost Total AM penalty AM process reloted responses Consumed material Consumed material Consumed material System utilization time System cool down time	hr € € € € € € kg kWh % %	9 81203 131289 35080 6703 77201 58478 4333 4333 4333 4333 4333 111721 6,06 14,87 5,01	15 90533 153721 51965 9929 10772 58758 2708 2708 165494 13,05 21,925 12,51	15 80609 169277 34289 6552 7191 87214 4958 4958 109202 5,2 9,74 9,74 5,62	11790 26510 10370 1981 2153 8825 237 237 129 33025 13,66 29,12 6,68
Sum of setup and cool down Cost reloted responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total maintenance cost Total AM penalty AM process reloted responses Consumed material Consumed material Consumed energy System setup time System setup time System cool down time Total system utilization	hr € € € € € € € 8 8 8 8 8 8 8 8 8 8 8 8	9 81203 131289 35080 6703 7201 58478 4333 4333 4333 4333 4333 4334 111721 6,06 14,87 5,01 25,93	15 90533 153721 51965 9929 10772 58758 2708 2708 649 165494 13,05 21,925 21,925 12,51 47,486	15 80609 169277 34289 6552 7191 87214 4958 4958 109202 5,2 9,74 9,74 5,62 20,56	11790 26510 10370 1981 2153 8825 2375 1299 33025 13,66 29,12 6,68 49,474
Sum of setup and cool down Cost reloted responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penalty AM process related responses Consumed material Consumed energy System setup time System setup time System cool down time Total system utilization Average building volume	hr € € € € € € kw/h % % % % % % %	9 81203 131289 35080 6703 7201 58478 4333 4333 4333 4333 4334 111721 6,06 14,87 5,01 25,93 387570	15 90533 153721 51965 9929 10772 58758 2708 2708 649 165494 13,05 21,925 12,51 27,93 12,51 47,486 386087	15 80609 169277 34289 6552 7191 87214 4958 428 109202 5,2 9,74 5,62 20,56 20,56 378971	11790: 26510 10370 1981: 2153: 8825 237: 129: 33025: 13,66 29,12: 6,68: 6,68: 49,47:
Sum of setup and cool down Cost reloted responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total responses Total AM penalty AM process reloted responses Consumed material Consumed material Consumed energy System setup time System cool down time Total system utilization Average building volume Machine depreciation	hr € € € € € € kg kWh % % % % % % %	9 81203 131289 35080 6703 7201 58478 4333 4333 4384 111721 6,06 14,87 5,01 25,93 387570 59777	15 90533 153721 51965 9929 10772 58758 2708 649 165494 13,05 21,925 12,51 12,51 47,486 3386087 60064	15 80609 169277 34289 6552 7191 87214 4958 428 109202 5,2 9,74 5,62 20,56 20,56 378971 89152	11790 26510 10370 1981 2153 8825 237 237 129 33025 13,66 29,12 6,68 (49,47) 338518 9022
Sum of setup and cool down Cost reloted responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Total AM process reloted responses Consumed material Consumed material Consumed energy System setup time System utilization time System cool down time Total system utilization Average building volume Machine depreciation Average time in queue	hr € € € € € € kWh % % % % % % % hr	9 81203 131289 35080 6703 7201 58478 4333 4333 4333 4333 4333 111721 6,06 14,87 5,01 25,93 387570 59777 32	15 90533 153721 51965 9929 10772 58758 2708 2708 165494 13,05 21,925 12,51 47,486 386087 60064 18,368	15 80609 169277 34289 6552 77191 87214 4958 428 109202 5,2 9,74 5,62 20,56 378971 89152 29,296	11790 26510 10370 1981 2153 8825 237 237 237 237 237 237 237 237 237 237
Sum of setup and cool down Cost reloted responses Total warehousing cost Total AM cost Consumed material cost Consumed mergy cost Operator cost Total maintenance cost Total AM penalty AM process related responses Consumed mergy System setup time System utilization time System utilization time Total system utilization Average building volume Machine depreciation Average time in queue Average number of parts in queue	hr € € € € € € € € € % % % % mm* € hr pcs.	9 81203 131289 35080 6703 7201 58478 4333 4333 4333 4333 4333 4333 4333	15 90533 153721 51965 9929 10772 58758 2708 2708 165494 165494 13,05 21,925 12,51 12,51 47,486 386087 60064 18,368 0,024	15 80609 169277 34289 6552 7191 87214 4958 428 109202 5,2 9,74 5,62 20,56 378971 89152 29,296 0,013	11790 26510 10370 1981 2153 8825 237 237 237 237 237 237 237 237 237 237
Sum of setup and cool down Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penalty AM pracess related responses Consumed material Consumed material Consumed material System setup time	hr € € € € € € kWh % % % % % % % hr	9 81203 131289 35080 6703 7201 58478 4333 4333 4333 4333 4333 111721 6,06 14,87 5,01 25,93 387570 59777 32	15 90533 153721 51965 9929 10772 58758 2708 2708 165494 13,05 21,925 12,51 47,486 386087 60064 18,368	15 80609 169277 34289 6552 7191 87214 4958 4958 109202 5,2 109202 5,2 20,56 20,56 378971 89152 89152 29,296 0,013	11790: 26510(10370) 21533 88255 2375 2375 330255 13,66 299,12 6,685 49,47 338518 90220 8,981 90220 8,981 0,033 0,033

Table 8-5: Comparison of	f different strategies	Drohoot and gool day	un No moiting
I ADIE 6). COMDANSON OF	i uniereni strategies -	– Preneal and cool dov	$N \Pi = I N O Walting =$

Findings	With respect to setup and cool down times the flexible material systems perform better than the fixed material
	systems.
	(Results show the middle upper limit of the upper limit search. The systems where stressed by increasing the
	sum of setup and cool down times.]
	The three machine setup with flexible material very good results with respect to the mean arrival rate of part
	requests, but needs extremely low setup/ cool down times to perform with an acceptable penalty. This means
	that the more part request arrive the faster the setup and changeover should be, since the sum of setup and
	cool down become significant. This effect is not as significant as long as the mean arrival rate is in a more
	relaxed state.

Table 8-6: Comparison	of different strategies -	 Preheat and cool 	down – Waiting
ruene e et eempunsen			

	308 2053394	Investigation: Upper limi			
Setting - Waiting	Unit	Two machines with fixed material assignment	Two machines with flexible material assignment	Three machines with fixed material assignment	Three machines with flexible material assignment
Investigation		Two identical AM systems will work in parallel. Each machine is dedicated to fabricate with one fixed type of material only. Spare parts are either of material type one or two, both with a 50 % chance.	Two identical AM systems will work in parallel. Each machine can fabricate two types of material. Spare parts are either of material type one or two, both with a 50 % chance. Material change time is considered when a material change on a machine is required.	Three identical AM systems will work in parallel. Each machine is dedicated to fabricate with one fixed type of material only. Spare parts are either of material type one, two or three, all with a 33 % chance.	Three identical AM systems will work in parallel. Each machine can fabricate two types of material. Spare parts are either of material type one or two, both with a 50 % chance. Material change time is considered when a material change on a machine is required.
Control variation		Upper limit	Upper limit	Upper limit	Upper limit
Responses at upper limit					
	NAME PROPERTY	70	70	60	60
Upper limit	hr				
AM parts out Cost related responses	pcs.	123	78751		91249
AM parts out Cost related responses Total warehousing cost Total AM cost	pcs. E	78402 122822	78751 120773	80950 169590	81248 169015
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost	рся. € €	78402 122822 29487	78751 120773 28534	80950 169590 35114	81248 169015 34054
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost	pcs. € € €	78402 122822 29487 5634	78751 120773 28534 5452	80950 169690 35114 6709	81248 169015 34054 6507
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost	рся. Е Е Е Е	78402 122822 29487 5634 6172	78751 120773 28534 5452 6163	80950 169690 35114 6709 7186	81246 169015 34054 6507 7186
AM parts out Cost related responses Total warehousing cost Total AM cost	pcs. € € €	78402 122822 29487 5634	78751 120773 28534 5452	80950 169690 35114 6709 7186 87228	81248 169015 34054 6507 7186
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total Maintenance cost Total AM penalty	рся. Е Е Е Е	78402 122822 29487 5634 6172 58396	78751 120773 28534 5452 6163 58498	80950 169690 35114 6709 7186 87228	81248 169015 34054 6507 7186 87356
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penalty AM process related responses	рся. Е Е Е Е	78402 122822 29487 5634 6172 58396	78751 120773 28534 5452 6163 58498	80950 169690 35114 6709 7186 87228 4375	81248 169015 34054 6507 7186 87356 4791
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penalty AM process related responses Consumed material	ρες, ε ε ε ε ε ε ε	78402 122822 29487 5634 6172 58396 3666	78751 120773 28534 5452 6163 58498 2625	80950 169690 35114 6709 7186 87228 4375 438	81248 169015 34054 6507 7186 87356 4791 425
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penalty AM process related responses Consumed material Consumed energy	pcs. € € € € € € kg kWh %	78402 122822 29487 5634 6172 58396 3666 3666	78751 120773 28534 5452 6163 58498 2625 356	80950 169690 35114 6709 7186 87228 4375 4385 4385 4385 4385 4385	81248 169015 34054 6507 7186 87356 4791 425 108452
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Total maintenance cost Total AM penalty AM process related responses Consumed material Consumed energy System setup time	pcs. € € € € € € € € € kg kWh % %	78402 29487 5634 6172 58396 3666 3666 3666 368 93907 5,93 12,52	78751 120773 28534 5452 6163 58498 2625 2625 356 90874	80950 169690 35114 6709 7186 87228 4375 4375 438 111829 4,64	81248 169015 34054 6507 7186 87356 4791 425 108452
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Total maintenance cost Total maintenance cost Total AM penalty AM process related responses Consumed material Consumed energy System setup time System utilization time System cool down time	pcs. € € € € € € € € € % %	78402 122822 29487 5634 6172 58396 3666 3666 3668 93907 5,93 12,52 5,74	78751 120773 28534 5452 6163 58498 2625 2625 356 90874 6,473 12,095 5,773	80950 169690 35114 6709 7186 87228 4375 4375 4375 438 111829 4,64 9,98 4,49	81248 169015 34054 6507 7186 87355 4791 4791 108452 5,174 9,661 4,508
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Total maintenance cost Total Mpenalty AM process related responses Consumed material Consumed material System setup time System setup time System coll down time Total system utilization	pcs. € € € € € € € € € % % % % % % % %	78402 122822 29487 5634 6172 58396 3666 3666 3666 3668 93907 5,93 12,52 5,74 24,19	78751 120773 28534 5452 6163 58498 2625 356 90874 6,473 12,095 5,773 24,341	80950 169690 35114 6709 7186 87228 4375 4375 438 111829 4,64 9,98 4,49 9,98 4,49	81248 169015 34054 6507 7186 87356 4791 425 108452 5,174 9,661 4,508 19,342
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total admenance cost Total adm penalty AM process related responses Consumed material Consumed energy System setup time System setup time System cool down time Total system cool down time Total system utilization Average building volume	pcs, € € € € € € € € € % % % % % % % % % % % % % % % % % % %	78402 122822 29487 5634 6172 58396 3666 3668 368 93907 5,93 12,52 5,74 24,19 380333	78751 120773 28534 5452 6163 58498 2625 356 90874 6,473 12,095 5,773 24,341 370109	80950 169690 35114 6709 7186 87228 4375 438 111829 4,64 9,98 4,49 19,11 389143	81248 169015 34054 6507 7186 87356 4791 425 108452 5,174 9,661 4,500 19,342 378199
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost Total AM penality AM process related responses Consumed material Consumed material Consumed energy System setup time System setup time System cool down time Total system utilization Average building volume Machine depreciation	pcs. € € € € € € € € € % % % % % % % % % % % % % % %	78402 122822 29487 5634 6172 58396 3666 3666 368 93907 5,93 12,52 5,74 2,4,19 380333 59694	78751 120773 28534 5452 6163 58498 2625 356 90874 6,473 12,095 5,773 24,341	80950 169690 35114 6709 7186 87228 4375 438 111829 4,64 9,98 4,64 9,98 4,64 9,98 19,11 389143 89166	81248 169015 34054 6507 7186 87356 4791 425 108452 5,174 9,661 4,508 19,342 378199 89298
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Total AM penalty AM process related responses Consumed material Consumed energy System setup time System utilization time Systen cool down time Total system utilization Average building volume Machine depreciation Average time in queue	pcs. € € € € € € € %	78402 29487 5634 6172 58396 3666 3666 3668 93907 5,93 12,52 5,74 24,19 380333 59694 27	78751 120773 28534 5452 6163 58498 2625 356 90874 6,473 12,095 5,773 24,341 370109 59798	80950 169690 35114 6709 7186 87228 4375 438 111829 4,64 9,98 4,49 19,11 389143 89166 27,336	81246 169015 34054 6503 7186 87356 4791 425 108452 5,174 9,661 4,508 19,345 378195 89296
AM parts out Cost related responses Total warehousing cost Total AM cost Consumed material cost Consumed energy cost Operator cost Total maintenance cost	pcs. € € € € € € € € € % % % % % % % % % % % % % % %	78402 122822 29487 5634 6172 58396 3666 3666 368 93907 5,93 12,52 5,74 2,4,19 380333 59694	78751 120773 28534 5452 6163 58498 2625 356 90874 6,473 12,095 5,773 24,341 370109	80950 169690 35114 6709 7186 87228 4375 4375 4375 4389 4489 9,98 4,64 9,98 4,49 19,11 389143 89166 27,336 0,015	81246 169015 34054 65007 7186 87355 4791 4791 425 108452 5,174 9,661 4,508 19,342 378195 89295

material setup performs better than the fixed material setup. While the upper limit and the number of parts
out are equal for both setups with an equivalent penalty, the queing behaviour is different. While queueing
occurs for the fixed material setup, no queuing occurs for the flexible material setup. That indicates that the
system performs better.

Table 8-7: Comparison of different part size setups - No waiting

Setting - No waiting	Unit	Investigation: Part size variation						
Serring - NO Mairing	onit	Two machines producing several part size combinations						
Investigation		Two identical AM systems will work in parallel. Each machine is dedicated to fabricate with one fixed type of material only. Standard cases and extreme spare part size setup are investigated.						
Part size - small		46 x 46 x 46 mm ³						
Part size - mid		100 x 100 mm ³						
Part size - big		145 x 145 x 145 mm²						

Setting

Percentage small parts	%	75	33	0	50	0	50	0	100
Percentage mid parts	%	20	33	50	0	0	50	100	0
Percentage big marts	%	5	33	50	50	100	0	0	0

Cost related responses

Total warehousing cost	€	90275	76559	75075	75201	75056	90227	90697	201283
Total AM cost	¢	161281	195676	226837	193128	300524	178079	250516	213543
Consumed material cost	£	58101	92354	120589	92386	181434	74446	135040	65914
Consumed energy cost	€	11102	17647	23042	17653	34658	14225	25804	12595
Operator cost	¢	10780	5389	4781	4795	4738	10794	10751	53915
Total maintenance cost	£	58816	58433	58536	58438	58575	58897	58908	59088
Total AM penalty	€	2875	2375	375	375	1583	83	375	2333

AM process related responses									
Consumed material	kg	726	1154	1507	1154	2267	930	1688	823
Consumed energy	kWh	185036	294123	384042	294224	577816	237092	430066	209918
System setup time	%	10,361	5,279	4,682	4,705	4,636	10,432	10,388	33,958
System utilization time	%	24,486	39,17	51,062	39,19	76,779	31,33	56,823	27,651
Systen cool down time	%	9,975	5,054	4,476	4,497	4,433	10,042	10,001	32,827
Total system utilization	%	44,822	49,503	60,22	48,391	85,848	51,804	77,212	94,437
Average building volume	mm ³	431063	1368484	2011654	1538840	3048625	550032	1000000	97336
Machine depreciation	€	60123	59731	59837	59736	59876	60206	60217	60401
Average time in queue	hr	21,271	8,648	1,988	1,823		1,806	3,401	8,269
Average number of parts in queue	pcs.	0,027	0,005	0,001	0	0,002	0	0,002	0,905
Number of parts in queue total	pcs.	10,333	5,033	0,867	0,75	3,1	1,083	4,267	944,6
AM parts out	pcs.	215,617	107,783	95,633	95,917	94,767	215,883	215,033	1078,317
Findings	indings The smaller the parts in the spare part mix are, the better the system can react on part requests. But the frequency of the real life spare part request is lower than the upper limit it should not be a								
	problem	n, since the sy	ystem is able	to handle t	he spare pa	rt requests.			

Table 8-8: Comparison of different part size setups - Waiting

Setting - Waiting	Unit	Investigation: Part size variation
Setting - waiting	Unit	Two machines producing several part size combinations
Investigation		Two identical AM systems will work in parallel. Each machine is dedicated to fabricate with one fixed type of material only. Standard cases and extreme spare part size setup are investigated.
Part size - small		46 x 46 x 46 mm³
Part size - mid		100 x 100 x 100 mm ³
Part size - big		145 x 145 x 145 mm³

Setting

Percentage small parts	%	75	33	0	50	0	50	0	100
Percentage mid parts	%	20	33	50	0	0	50	100	0
Percentage big marts	%	5	33	50	50	100	0	0	0

Cost related responses

Total warehousing cost	€	90648	76489	74836	75039	73685	90860	90886	219627
Total AM cost	£	161905	198649	230666	195556	279998	178438	254449	233128
Consumed material cost	€	57149	92622	121559	92866	163182	74156	134988	75166
Consumed energy cost	€	10920	17698	23227	17745	31181	14170	25794	14363
Operator cost	€	10783	5373	4765	4784	4261	10780	10747	61484
Total maintenance cost	€	58758	58497	58429	58433	58498	58841	58907	59085
Total AM penalty	€	4708	4958	3208	2250	3375	875	4375	3333

AM process related responses

Consumed material	kg	714	1157	1519	1160	2039	926	1687	939
Consumed energy	kWh	182003	294975	387131	295752	519688	236167	429900	239384
System setup time	%	10,362	5,256	4,673	4,692	4,181	10,42	10,381	30,124
System utilization time	%	24,107	39,241	51,564	39,397	69,146	31,238	56,801	31,534
Systen cool down time	%	9,978	5,033	4,468	4,486	3,992	10,039	9,997	29,113
Total system utilization	%	44,447	49,53	60,705	48,575	77,318	51,697	77,179	90,772
Average building volume	mm ³	423489	1378738	2033402	1550195	3048625	548455	1000000	97336
Machine depreciation	€	60064	59797	59728	59731	59798	60149	60217	60398
Average time in queue	hr	19,772	8,853	4,405	3,125		3,968	4,591	6,974
Average number of parts in queue	pcs.	0,031	0,009	0,001	0,001	0	0,004	0,015	0,822
Number of parts in queue total	pcs.	13,233	7,75	1,9	1,517	0,25	8,267	27,817	1017,067
AM parts out	pcs.	215,667	107,467	95,3	95,683	85,233	215,617	214,95	1229,683
Findings	For mos	t scenarios th	e waiting se	tup is worse	that the no	waiting setup	under the g	iven set of c	onditions. A
	daviatio	a accurs who	n and concell		advand time	a a diasta adu	antana of the		

For most scenarios the waiting setup is worse that the no waiting setup under the given set of conditions. A	t
deviation occurs when only small parts are produced. Here a sligth advantage of the waiting strategy	l
occurs. A smaller part size means realtively long setup and cool down times compared to the actual	l
production time. In consequence the smaller the part size the more interisting becomes batching of spare	l
part request.	L

8.1 COMPARISON OF TOTAL AM COST

One advantage of the established model is to enable direct comparisons between various setup and strategies against certain performance criteria efficiently, such as the relationship between part arrival rate and system operating cost. The total AM cost of all strategies with various mean arrival time are listed in Table 8-9. The high arrival times, low arrival times and the upper limit of the spare part requests are marked in red, green and yellow respectively. Waiting generally results in additional costs and lower efficiencies in the current setup and is not discussed in this section.

Looking at the fixed material strategies, the system performance does not improve with the number of machines. This is due to the previously described effects. More interesting to note is the flexible material strategy. Overall the system performance of this strategy improves with increasing number of machines. Further it can be said that the higher the number of machines, the closer the lower, and higher limit shift to the upper limit. This can mean that the more machines are used the better the system can react, since more machines are sharing the jobs. For example it is more likely to have a machine idle for direct production when three machines are used compared to using one machine. Then the system does not need to compensate for this uncertainty, what allows the system to work stable when the upper or lower is not exceeded. On the other hand, due to the high arrival rate of spare part request, a queue is created fast if no machine is idle for a while since spare part requests keep arriving and will most likely create penalties. But below the upper limit the system can be operated very stable.

Mean		Т	otal AM cos	t				
arrival	Base case	Two	Two	Three	Three			
		machines	machines	machines	machines			
		fixed	flexible	fixed	flexible			
hrs	€							
150	59772	95.849	96146	132381	133019			
140	62060	97.270	97749	133786	134876			
130	63917	98.913	99234	136044	136234			
120	66070	101.718	101237	138861	139073			
110	68717	103.993	103396	140477	140697			
100	73494	107.410	106276	144249	144310			
90	78178	111.450	109770	148389	147166			
80	84145	116.021	113943	152922	151932			
70	90898	124.050	118266	160813	158433			
60	104765	131.635	127048	169974	163877			
50	133290	149.389	136911	183340	174260			
40	199013	175.122	154963	207051	190719			
30	356010	246.337	188196	244715	214494			
20	1219129	482.313	339234	380022	274890			
10	1709967	2.461.622	2537724	1405475	2471954			

Table 8-9: Overview of different strategies - Upper limit search - No waiting

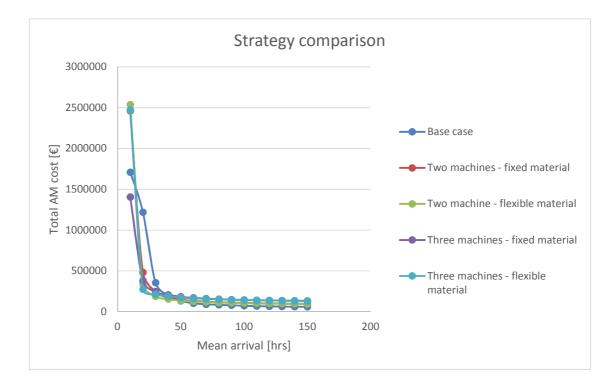


Figure 8-1: Strategy comparison

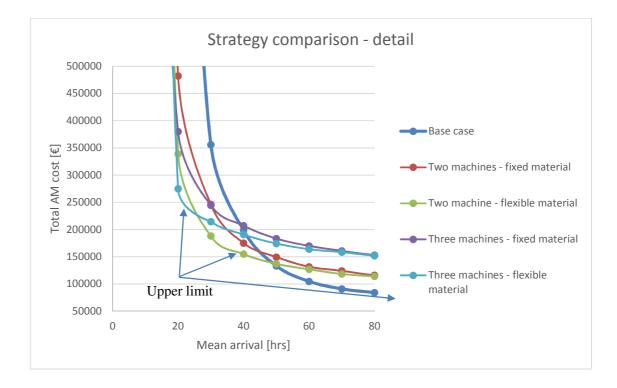


Figure 8-2: Strategy comparison - detail

Figure 8-1 and Figure 8-2 illustrate this effect. Focusing on the flexible material strategies and the base case the cost curve shows an approximately linear behavior before the upper limit is exceeded. (A lower mean arrival time results more spare part requests.) When the upper limit is exceeded the penalties become a strong cost driver the more the inter-arrival time of spare part requests increases. The base case reaches its upper limit early (100 hrs), but when the inter-arrival time of spare part requests further increases the cost increase due to penalties is relatively slow. This is due to the fact that the inter-arrival times of part requests are relatively low in the working range of a one machine setup. Since the one machine setup is the simplest approach it is logical that it works also at the lowest cost level.

If it becomes necessary the system performance can be increased by adding a second machine. This lifts the system cost to a new level and into a new working range. The illustration allows the assumption that this strategy is beneficial from a cost perspective in a working range with a mean arrival time between 28 and 50 hrs. When the upper limit is exceeded the impact of penalties is stronger than in the one machine solution. This is logical due to the higher inter-arrival times of part requests and the resulting higher number of parts in queue when queuing occurs. The equivalent principle is valid for the three machine with flexible material strategy. What can be learned from this graphic is that each strategy, one or multi machine, has its specific application and needs to be adjusted to the actual requirements. Also changing spare part parameters like part size can influence the decision for a strategy.

8.2 ADDITIONAL DISCUSSION

8.2.1 AM SPARE PART STRATEGY ANALYSIS FOR CASE STUDY

In this subsection the use of AM as a potential alternative for the spare part supply of a real-world setting was analyzed. A dataset of spare parts was provided by a manufacturing company and was analyzed as described in chapter 4. The following table presents a consumption profile of that specific spare parts set for further analysis.

A total of 3510 parts were consumed from the warehouse stock in the period of one year – neither a single AM machine is able to produce this amount of parts nor will two or three machines reach this output. The following table lists the output using the flexible material strategies and the base case. The content can also be illustrated in a graph, what enables an estimate to the required number of machines to reach a specific number of machines.

No. of	No. of	Total consumption	Value of total	Current stock
consumption	part types	[pcs.]	consumption [€]	value [€]
0 - 1	523	50	32,530	237,212
2 - 9	76	279	59,148	34,947
10 - 49	25	687	39,427	12,499
50 - 149	6	672	13,828	4,235
150 - 1,000	3	1,822	38,723	1,463
Total	633	3,510	183,656	290,356

Table 8-10: Consumption profile of spare part set¹⁰

Applying the function ten machines are needed to cover the total demand. This results in a heavy investment, which cannot be justified by further analysis without expensive tradeoffs. A check of the consumption of the specific spare parts helps it this situation. In the presented consumption profile, all values tend to follow an ABC distribution. 3 part types are consumed 1,822 times and represent a stock value of only 1,463 \in . On the other hand, there are types of 523 parts that are consumed a total of 50 times but represent a stock value of 237,212 \in . These parts clearly represent the more "valuable" and "critical" part sets. When only these high value-added parts are considered, AM appears to become a reasonable option in this case. The simulation model of the base case predicted an average output of 87 parts per year with an acceptable penalty. Since only 50 parts will be consumed in the real system, already the one-machine system would be sufficient from a service level perspective. Furthermore, the comparison of the base case and the real

¹⁰ "No. Of consumption" describes the range of consumption a specific type was consumed. Example row 1: 3 part different part types were consumed between 300 and 1000 times each. So these part types are consumed often. If the consumption of the different part types is summed up, 1822 parts are consumed in total with a value of consumption of $38,723 \in$ and a total stock value of $1,463 \in$. The data represents one year of data collection.

system shows that AM is a cost attractive solution for spare part supply under appropriate circumstances.

It should also be noted that the fact that the AM system is able to produce 87 parts at its upper limit implies that the system is capable of handling temporary supply surges of up to about 150% of the original rate. The output can be increased further by applying more machines if the investment is justifiable (red line indicates the trend).

	AM parts	# of
	out	machines
Three machines with flexible material - No waiting	431	3
Two machines with flexible material - No waiting	215	2
Base case - No waiting	87	1

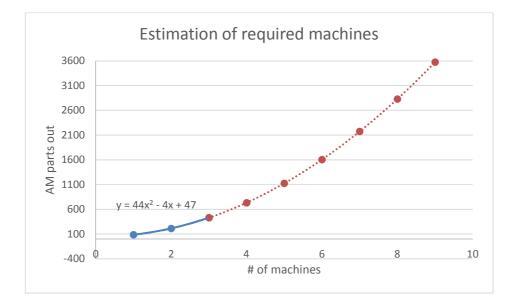


Table 8-11: AM parts out using two, three or the base case strategy with flexible material

8.2.2 INFLUENCE OF CO2 EMISSIONS

Many publications assume that AM is able to reduce CO₂ emission. This hypothesis cannot be proven by this thesis but two facts support the idea. The following results can be drawn based on the base case results for an upper limit of 150 hrs, which is a reasonable approximation of some of the actual warehouse situation with low turnover items. In this case the low turnover of parts indicates that approximation that 89 % of the part types are stored without any use. This consequently implies that the manufacturing and transport of unnecessary spare parts to the warehouse would result in unnecessary CO₂ emissions. Furthermore, these parts account for approximately 1,389 kg of materials which do not need to be manufactured in the first place. For AM strategy, both aspects would likely contribute to the reduction of CO₂ emissions compared to a warehouse. Referring to a study by the ALBA Group the CO₂ savings are estimated (ALBA Group, 2011). The study contains the following information presented in Table 8-12.

1.2 billion tons of steel were produced by primary and secondary¹¹ production in 2009. 13 % of the material was delivered by secondary production. When steel is recycled 0.97 ton CO₂ are produced for every ton of material. Compared to primary production processes recycling saves 64 % of the primary production process (ALBA Group, 2011). This would result in a mixed CO2 production (primary plus secondary production) of 1.45 ton for every ton of steel. Therefore, for the previously described spare part stock, approximately 2 tons of CO₂ would be produced as a result of over-stocking.

This calculation is not intended to be accurate, as it still lacks various details such as transportation and other process steps. However, it can be reasonably expected that with additional information the environmental benefits of adopting AM strategy can be further justified.

¹¹ Recycling

Table 8-12: Non-required part on stock

Low turnover parts only	Unit	Value (AM)	Warehouse
			data
Parts consumed (base case)	pcs.	5	9
Parts types in warehouse	pcs.	0	523
Consumed parts from warehouse	%		11
Unnecessary parts types in storage	pcs.	0	512
Unnecessary parts types in storage	%	0	89

Averaged values

Consumed material	kg	183	180
Consumed material per consumed part ¹²	kg	3	3
Total material in storage ¹³	kg	40	1569
Unnecessary material in storage (average)	kg	0	1389

 ¹² Consumed material by AM divided by the parts consumed.
 ¹³ Regarding AM - Material is assumed to be delivered in 80 kg bags and to be ordered just in time. This results in an average of 40 kg which can be assumed to always be on stock.

8.3 SPARE PARTS ON DEMAND – A SIMULATION BASED DECISION MAKING FRAMEWORK

This thesis demonstrated a practical way to analyze the application of AM for spare part supply. The following points summarize the executed steps in a general way and present a proceeding for application.

- 1. Analyze the spare part stock
 - a. Sort for specific process related parameters such as material, building volume or other specific properties, which prescribe a specific AM-process.
 - b. Define the value of each spare part type per piece.
 - c. Define the allowed time to manufacture for each spare part type.
 - d. Define the penalty of each spare part time if not delivered in time.
 - Based on the previous information create a general spare part set, representing the total stock including the total stock value. (In this thesis ABC-analysis showed a good approximation to the real stock – this is assumed to be typical for spare parts).
- 2. Analyze the AM process information:

a.	Process related	Building space volume, building speed,
		available material, energy consumption
b.	Cost related	Material price, machine purchase price,
		maintenance cost, operator cost, (depreciation time)

- 3. Set up and apply the simulation model
 - a. Identify the parameter of interest. For example Total cost of AM, Total AM penalty, "AM parts out" and the queueing behavior deliver a good performance feedback.

b. Follow the procedure by Kelton et. al (2010) for the simulation study setup.
 Analyze the results and draw conclusions

Execution of experiments – It is important to set limits for evaluation of the experiments. We identify in this dissertation the most important limit as a so called "upper limit." An upper limit is defined by the "accepted penalty" which should not exceed a defined value. In this work the accepted penalty is defined in the base case and represents the penalty at the breakeven point of warehousing and AM cost. It is also possible to pre-specify an "accepted penalty" that represents the monetary penalty cost paid for not being able to deliver the spare parts on time. In practice, the accepted penalty may vary depending on specific cases at hand, but it should remain as an important input parameter in the decision making framework. The point at which a system works at its upper limit defines the best strategy or system performance in the specific setup. Different strategies or setups will have different upper limits. Therefore the upper limit can be used as reference point to compare several strategies or setups against each other.

Analyzing the results - will be different for each case, depending on the issue of interest. For example for the base case it was appropriate to compare the Total AM cost against the Total warehousing cost over the utilization of the system. During technical investigations, it was better to compare the different strategies by the Total AM cost. The next section introduces several factor of interest helping to analyze the system.

Figure 8-3 illustrates the described process.

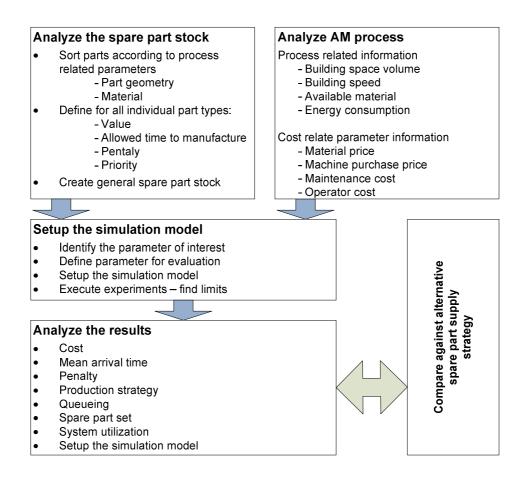


Figure 8-3: Spare parts on demand - a simulation based decision framework

8.4 FACTORS FOR EVALUATION

During simulation and analysis, the following factors are of major interest for the system performance:

Cost – Cost is the overall result of the simulation. It allows comparing different strategies to each other and a comparison of completely different concepts such as warehousing. One exception to this is that the cost of AM may only be a secondary factor in certain situations. For example on an air craft carrier storage space is very limited and therefore to be evaluated as extremely valuable. In consequence, only the parameters relating to system performance may be considered.

Mean arrival time – The mean arrival time between spare part requests is the direct input to the system and the most important control variable of the system. Additionally, the distribution type of the part arrivals is a factor, which can be considered here.

Penalty – Penalty is a cost driver and indicates the performance level of the system. Therefore, the accepted penalty, represented by the sum of charged penalties, is used to control the system. For spare part supply in particular, the penalty should be minimized to the accepted level, since a missing spare part might create unwanted or extended downtimes of facilities, machines or equipment.

Production strategy – The selected strategy is the key input for the overall service level of the entire system. It describes the setup of machines, for example two machines with a fixed material assignment operating in a waiting mode. Special care should be taken on this issue.

Queuing – Is a good indicator of system stress. When queuing occurs, manufacturing time increases rapidly and additive manufacturing is no longer an option for spare part supply due to increased penalties.

Spare parts set – The spare part size, the allowed time to manufacture and the actual mean arrival time of spare part requests may decide if a spare part set is interesting for the application. Knowledge about the spare part stock properties is the first important step for a good evaluation. Chapter 8.2.1 demonstrates an option to fit the spare part stock to the system properties and make AM work.

System utilization – Indicates at which level the system is able to operate in a stable state and how the system can be utilized with respect to the lower, upper and highest limit.

8.5 ADJUSTMENT OF DISTRIBUTION OF SPARE PARTS

PROCUREMENT

Referring back to the model by Pérès and Noyes (2006) for illustrational reasons several things can be learned from the applied simulation:

- In the "rapid spare part manufacturing" a "Time in queue" (h) should be considered before the actual production can start (This is an addition to the model by Pérès and Noyes (2006)). For a regular spare part production the waiting time in queue is essential for the success of a system. It should be the target to reach a waiting time in queue of zero for spare part on supply application. This will lead back to the original optimized assumption by Pérès and Noyes (2006).
- 2. To eliminate waiting time "Detection & diagnosis" (a) is a good starting point. The earlier the need for a spare part is known, the better the production run can be planned, since the allowed time to manufacture is extended by the prediction of failure. A well thought-out setup of maintenance strategies may help to reach this goal (preventive repairs, regular inspections or condition monitoring).

 "Manufacturing" (f) provides further potential for improvement. It can be considered to apply postponement strategies (for example form, assembly or manufacturing postponement).

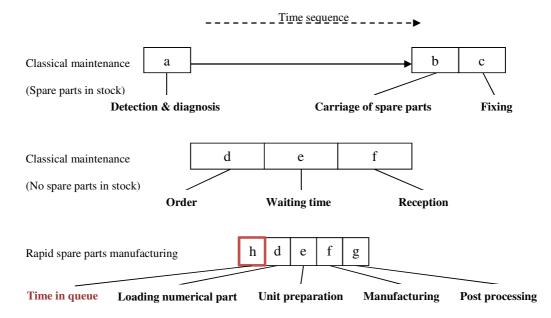


Figure 8-4. Comparison of time distribution for various strategies of spare parts procurement (Pérès & Noyes, 2006) – Waiting time added

9 CONCLUSION

This thesis analyzed some fundamental AM issues with respect to spare parts on demand. More importantly, it addresses the cost effective evaluation of using AM to make spare parts, compared to conventional warehousing, through the development of a simulation-based decision making framework. Although specific recommendations depend on particular scenarios where AM is an option, this thesis does offer some findings that are different from previously assumed deficits. In Chapter 2.2.2 several limitations were described. In respect to spare parts on demand the statements for AM process performance and cost can be modified.

AM process performance - It is stated that only a limited object size can be manufactured by AM. This can be an issue for regular production, but not for spare parts. It appears that the building space volume should be selected according to the biggest potential spare part since it will minimize the setup time. Therefore, in the spare part case, the performance of the system is not necessarily limited by the building space volume, but by the allowed time to manufacture. To meet the allowed time to manufacture, building speed, spare part size, system setup and cool down time are limiting, as already known, have potential to improve the process performance. Findings demonstrate that these parameters have a straightforward influence on the results. Further analysis of the available warehouse data did not show issues regarding part size. However, this needs to be evaluated individually for each spare part stock. For the presented simulation, the AM process performance was already performing equal to or better with the basic one machine solution than the actual warehouse, even without improving one of the process parameters. **Cost** – It is expensive to buy and maintain an AM machine. The same is true for a warehouse or workshop. The machine purchase price is therefore not as relevant a decision variable as considered by for example Neef et al (2005) from a spare part perspective. Also the material price is not necessarily too high. A cheaper price of machine and material will attract more customers, but the simulation model shows that the simulated AM process can already perform better than a warehouse under the given set of conditions, both from a cost and a performance perspective.

While the AM process performance parameters and cost issues are already in focus, the production strategy is not. As the results show the applied strategy of how and how many AM-machines will react on arriving spare part request has the most important impact. The selected strategy moves the total AM cost and the system performance to different levels. For further research, it can be of interest to focus more on the influence of several production strategies. As can be seen in the spare part size variation simulation, there is a correlation between the properties of the spare part stock and the selected production strategy. Consequently, more research in the area of spare part stock properties may allow to create smarter production strategies for a more efficient utilization of the AM machine.

As an example for a smarter production strategy, it is considered that adding parts to a production run might be beneficial. Adding parts to a production run can also be combined with a good building space packing strategy for parts, which is also an independent production strategy. Referring back to the waiting mode, waiting makes sense for a limited number of part combinations under the given set of conditions only. This is because the allowed time to manufacture can be exceeded for one or all parts in production, due to the longer production time. This can be equivalent to the adding part setup. But as it was shown for the waiting strategy for smaller parts this strategy can be beneficial. Another interesting strategy can be a machine with two building space volumes in which one is preparing the next production run while production is running in the other (similar to a two machine setup, but maintenance cost can reduce to a one machine setup). Also multi-material application in one production run (similar to the base case) can be of interest. Creative investigations might lead to further concepts.

As mentioned before the spare part stock takes a key role. When the target is making AM take part in spare part supply, it is important to take the whole set of aspects into consideration. This thesis starts to look at the process performance of AM with the spare part request arrival. This is a good stopping point for this simulation approach, since in a real life application the first point of interest would be maintenance. Well-considered and executed maintenance strategies reduce the number of unplanned arriving spare part requests. This means production becomes more plannable which in turn improves the AM system performance in terms of a possibly higher machine utilization.

Also spare part supply strategies can contribute to improving the system performance. One interesting topic is the issue of postponement strategies, such as form or assembly postponement. Also combinations with other supply strategies can improve the situation. For example when typically 5 parts of one type are stored due to their availability this number can be reduced. One part is stored and a new one will be produced if it is consumed. This could increase the allowed time to manufacture to a much more comfortable level, since the allowed time to manufacture is the most critical part attribute since it defines when the penalty is due.

In comparison to a classical warehousing of spare parts, AM for spare parts on demand is more complex. Due to the required production, the knowledge of the required parts must be more detailed than it is necessary when the parts are already available on stock. This makes it difficult to apply AM in every situation.

Already now AM is an option to reduce spare part stocks in an efficient way. It must be evaluated on an individual basis if the efforts are worth it to gain the spare part information and sufficient production strategy is available.

REFERENCES

- Adam, S. (1989). Optimierung der Anlageninstandhaltung. Berlin: Schmidt (Erich).
- Agarwala, M., Bourell, D., Beaman, J., Marcus, H., & Barlow, J. (1995). Direct selective laser sintering of metals. *Rapid Prototyping Journal*, *1*(1), 26 36.
- Agarwala, M., Bourell, D., Beaman, J., Marcus, H., & Barlow, J. (1995). Post-processing selective laser sintered metal parts. *Rapid Prototyping Journal*, *1*(2), 36 44.
- ALBA Group. (02 2011). www.alba.info. Von www.alba.info: https://www.alba.info/fileadmin/alba/pressemappe/recycling_fuer_den_klimaschutz/Recy cling_fuer_den_Klimaschutz.pdf abgerufen
- Alciatore, D. G., & Wohlers, T. T. (1996). Importing and reshaping digitized data for use in rapid prototyping: a system for sculpting polygonal mesh surfaces. *Rapid Prototyping Journal*, 2(1), 13 - 23.
- Alfredsson, P. (1997). Optimization of multi-echelon repairable item inventory systems with simultaneous location of repair facilities. *European Journal of Operational Research*, *99*, 584 595.
- Allen, S. G., & D'esopo, D. A. (1968). An ordring policy for repairable stock items. *Operations Research*, *16*(3), 482 - 489.

- Anderson, G., & Parker, G. (2002). The effect of learning on the make/buy decision. *Production* and Operations Management, 11(3), 313.
- Atzeni, E., Ippolito, R., Iuliano, L., & Gatto, A. (2003). Selective laser sintering: an evaluation of the performances of snad sintered products. *Proceedings of the 6th AITeM Conference -Enhancing the Science of Manufacturing*, (S. 492 - 505).
- Atzeni, E., Iuliano, L., Minetola, P., & Salmi, A. (2010). Redesign and cost estimation of rapid manufactured plastic parts. *Rapid Prototyping Journal*, 16(5), 308 - 317.
- Bassoli, E., & Atzeni, E. (2009). Direct metal rapid casting: mechanical optimization and tolerance calculation. *Rapid Prototyping Journal*, 15(4), 238 - 243.
- Boone, C. A., Craighead, C. W., & Hanna, J. B. (2007). Postponement: an evolving supply chain concept. *International Journal of Physical Distribution & Logistics Management*, 37(8), 594 - 611.
- Boothroyd, G., Dewhorst, P., & Knight, W. (1994). Product design for manufacture and assembly. New York: Marcel Dekker Inc.
- Bosnjakovic, M. (2010). *Multicriteria inventory model for spare parts*. Slavonski Brod: University of applied science Slavonski Brod.
- Brody, P., & Pureswaran, V. (2013). The new software-defined supply chain. Somers: IBM Corporation.
- Broll, W. (1997). Distributed virtual reality for everyone a framework for networked VR on the Internet. (S. 121 - 128). Los Alamitos: IEEE.
- Burbidge, J., Falster, P., Riis, J., & Svendsen, O. (1987). Integration in manufacturing. Computers in industry, 9(4), 297 - 305.

- Cansizoglu, O., Harryson, O. L., West II, H. A., Cormier, D. R., & Mahale, T. (2008). Applications of structural optimization in direct metal fabrication. *Rapid Prototyping Journal*, *14*(2), 114 - 122.
- Chen, Y., Zhou, C., & Lao, J. (2011). A layer-less additive manufacturing process based on CNC accumulation. *Rapid Prototyping Journal*, *17*(3), 218 227.
- Cheng, W., Fuh, J. Y., Nee, A. Y., Wong, Y. S., Loh, H. T., & Miyazawa, T. (1995). Multiobjective optimization of part-building orientation in stereolithography. *Rapid Prototyping Journal*, 1(4), 12 -23.
- Christensen, J., & Bandyopadhyay, A. (2000). Reverse engineering of clear solids using refractive index matching. *Rapid Prototyping Journal*, 6(2), 87 96.

Christopher, M. (1992). Logistics & Supply chain management. Pitman publishing.

- Cohen, M. A., Kleindorfer, P., & Lee, H. (1986). Optimal stocking policies for low usage items in multi-echelon inventory systems. *Naval Research Logistics Quarterly*, *33*, 17 38.
- Cohen, M., Agrawal, N., & Agraval, V. (2006). Achieving breakthrough service delivery through dynamic asset deployment strategies. *Inerfaces*, *36*(3), 259 271.
- Cohen, M., Kleindorfer, P. R., & Lee, H. (1992). Multi-item service constrained (s,S) Policies for spare parts logistics systems. *Naval Research Logistics*, *39*, 561 577.

Craig, B. (2005). Mobile Parts Hospital Update. AMPTIAC Quarterly, 9(2), 16.

- Crane, N. B., Tuckerman, J., & Nielson, G. N. (2011). Self-assembly in additive manufacturing: opportunities and obstacles. *Rapid Prototyping Journal*, 17(3), 211 - 217.
- Das, S., Beaman, J. J., Wohlert, M., & Bourel, D. L. (1998). Direct laser freeform fabrication of high performance metal components. *Rapid Prototyping Journal*, 4(3), 112 - 117.

- de Weck, O. L., & Simchi-Levi, D. (January 2006). Classes of Supply for Exploration Logistics. Abgerufen am 17. February 2012 von MIT Space logistics project: http://speacelogistics.mit.edu/hmp.htm
- de Weck, O. L., & Simchi-Levi, D. (2006). Commercial vs. Interplanetary Supply Chains. MIT Space Logistics Center. NASA. Abgerufen am 5. 1 2012 von http://spacelogistics.mit.edu/hmp.htm
- de Weck, O. L., & Simchi-Levi, D. (January 2006). *Interplanetary Supply Chain Management and Logistics*. Abgerufen am 17. February 2012 von MIT Space logistics project: http://spacelogistics.mit.edu/hmp.htm
- de Weck, O. L., & Simchi-Levi, D. (January 2006). *Measures of Effectiveness*. Abgerufen am 17. February 2012 von MIT Space logistics project: http://spacelogistics.mit.edu/hmp.htm
- de Weck, O. L., & Simchi-Levi, D. (January 2006). *Modeling Demand for Human Exploration*. Abgerufen am 17. February 2012 von MIT Space logistics project: http://spacelogistics.mit.edu/hmp.htm
- de Weck, O. L., & Simchi-Levi, D. (January 2006). Simulation. Abgerufen am 17. February 2012 von MIT Space Logistics Project: http://spacelogistics.mit.edu/hmp.htm
- de Weck, O. L., & Simchi-Levi, D. (2006). *The Haughton-Mars Project*. MIT Space Logistics Center. NASA. Abgerufen am 5. 1 2012 von http://spacelogistics.mit.edu/hmp.htm
- de Weck, O. L., & Simchi-Levi, D. (2006). U.S. Military Supply Chain and Logistics Analogies. MIT Space Logistics Center. NASA. Abgerufen am 5. 1 2012 von http://spacelogistics.mit.edu/hmp.htm

- de Weck, O., & Simchi-Levi, D. (2006). *Haughton-Mars Project Expedition 2005 Final Report*. Florida: Kennedy Sace Center.
- de Weck, O., & Simchi-Levi, D. (January 2006). *Lessons Learned*. Abgerufen am 17. February 2012 von MIT Space logistics project: http://spacelogistics.mit.edu/hmp.htm
- Denicoff, M., Fennell, J., Haber, S. E., Marlow, W. H., & Solomon, H. (1964). A polaris logistic model. Naval Research Logistics Quarterly, 11(4), 259 - 272.
- Dhakar, T., Schmidt, C., & Miller, D. (1994). Base stock level determination for higher cost low demand critical repairable spares. *Computers and Operations Research*, 21(4), 411 -420.
- Dimitrov, D., Schreve, K., & de Beer, N. (2006). Advances in three dimensional printing state of the art and future perspectives. *Rapid Prototyping Journal*, *12*(3), 136 147.
- Dimitrov, D., Schreve, K., Taylor, A., & Vincent, B. (2007). Rapid prototyping driven design and realization of large components. *Rapid Prototyping Journal*, *13*(2), 85 91.
- Dolenc, A., & Mäkelä, I. (1996). Rapid prototyping from a computer scientist`s point of view. *Rapid Prototyping Journal*, 2(2), 18 - 25.
- Drizo, A., & Pegna, J. (2006). Environmental impacts of rapid prototyping: an overview of research to date. *Rapid Prototyping Journal*, *12*(2), 64 71.
- Evans, M. A., & Campbell, R. I. (2003). A comparative evaluation of industrial design models produced using rapid prototyping and workshop-based fabrication techniques. *Rapid Prototyping Journal*, 9(5), 344 - 351.

- Filipini, R. (1997). Operations management research: some reflections on evolution, models and empirical studies in OM. *International Journal of Operations & Production Management*, 17(7), 655 - 670.
- Furrens, K. K. (1999). Standards for the RP industry. Rapid Prototyping Journal, 5(4), 169 178.
- Gajpal, P., Ganesh, L., & Rajendran, C. (1994). Crititcality analysis of spare parts using the analytic hierarchy process. *International Journal of Production Economics*, 35, 293 -298.
- Galluzzi, M., Zapata, E., Steele, M., & de Weck, O. (2006). Foundations of Supply Chain Management for Space Application. Massachusetts: Americal institute of Aeronautics and Astronautics.

Gebhardt, A. (2007). Generative Fertigungsverfahren (Bd. 3). München: Carl Hanser Verlag.

- Geraerds, M. (1992). The EUT maintenance model. *International Journal of Production Economics*, 24, 209 - 216.
- Ghany, K. A., & Moustafa, S. F. (2006). Comparison between the products of four RPM systems for metals. *Rapid Prototyping Journal*, 12(2), 86 - 94.
- Gibson, I., & Shi, D. (1997). Material properties and fabrication parameters in selective laser sintering process. *Rapid Prototyping Journal*, 3(4), 129 - 136.
- Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing. New York: Springer.
- Gibson, I., Rosen, D. W., & Stucker, B. (2010). Distinction between AM and CNC machining. InI. Gibson, D. W. Rosen, & B. Stucker, *Additive manufacturing technologies* (S. 9). NewYork Heidelberg Dordrecht London: Springer.

Gilmore, J. H., & Pine II, B. J. (May 2009). The four faces of mass customization. S. 91 - 101.

- Greulich, M., Greul, M., & Pintat, T. (1995). Fast, functional prototypes via multiphase jet solidification. *Rapid Prototyping Journal*, *1*(1), 20 -25.
- Grimaldi, D., & al., e. (1998). Java-based distributed measurement systems. *IEEE Transactions* on Instrumentation and Measurement, 47(1), 100 103.
- Gross, D., & Ince, J. F. (1978). Spares provisioning for repairable items: Cyclic queues in light traffic. *AIIE Transactions*, *10*(3), 307 315.
- Gross, D.; Pinkus, C. E.;. (1979). Designing a support system for repairable items. *Computers* and Operations research, 6(1), 59 68.
- Hague, R., Campbell, I., Dickens, P., & Reeves, P. (2001). Integration of solid freeform fabrication in design. *Paper presented at Solid Freeform Symposium*. Austin, Texas, USA.
- Hague, R., Mansour, S., & Saleh, N. (2004). Material and design considerations for rapid manufacturing. *International Journal of Production Research*, 42(22), 4691 - 4708.
- Halbeisen, M. (2007). *fmeainfocentre.com*. Abgerufen am 24. 08 2007 von www.fmecainfocenter.com/foreign%20language/halbeisen,pdf
- Hasan, S., & Rennie, A. (unknown). *The application of rapid manufacturing technologies in the spare parts industry*. Lancaster: Lancaster Product Development Unit.
- Hausman, W. D., & Scudder, G. D. (1982). Priority scheduling for repairable inventory systems. Management Science, 28(11), 1215-1232.
- Hedges, M. (kein Datum). Advanced Repairs for Aerospace and Defence. Von http://www.optomec.com. abgerufen

- Hoek, R. v. (1998). Logistics and virtual integration. Postponement, outsourcing and the flow of information. *International Journal of Physical Distribution and Logistics Management*, 28(7), 508 - 523.
- Holmström, J., Partanen, J., Tuomi, J., & Walter, M. (2010). Rapid manufacturing in the spare parts supply chain. *Journal of Manufacturing Technology Management*, 21(6), 687 697.
- Hopkinson, N., & Dickens, P. (2001). Rapid prototyping for direct manufacture. *Rapid Prototyping Journal*, 7(4), 197 - 202.
- Hopkinson, N., & Dickens, P. (2001). Rapid Prototyping for direct manufacture. *Rapid Prototyping Journal*, 7(4), 197 - 202.
- Hopkinson, N., & Dickens, P. (2003). Analysis of rapid manufacturing using layer manufacturing processes for production. *Proceedings of Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science*, 217(1), 31 - 39.
- Hopkinson, N., Hague, R., & Dickens, P. (2006). Rapid Manufacturing: An Industrial Revolution for the Digital Age. Wiley.
- Horngreen, C. T., Datar, S. M., & Foster, G. M. (2007). *Cost Accounting*. Englewood, NJ: Prentice-Hall.
- http://spacenet.mit.edu. (6. October 2009). Abgerufen am 03. January 2012 von SpaceNet: http://spacenet.mit.edu/spacenet_2-5.php
- Hull, C., Feygin, M., Baron, Y., Sanders, R., Sachs, E., Lightman, A., & Wohlers, T. (1995).
 Rapid Prototyping: current technology and future potential. *Rapid Prototyping Journal*, *1*(1), 11 19.

- Humphreys, P., Lo, V., & McIvor, R. (2000). A decision support framework for strategic purchasing. *Journal of Materials Processing Technology*, 107, 353 - 362.
- Ikhwan, M., & Burney, F. (1994). Maintenance in Saudi industry. International Journal of Operations and Production Management, 14(7), 70 - 80.
- Ippolito, R., Luliano, L., & Gatto, A. (1995). Benchmarking of rapid prototyping techniques in terms of dimensional accuracy and surface finish. *Annals of the CIRP*, 44, S. 157 160.
- Jedeck, S. (2007). Instandhaltungsstrategie zur Optimierung der Verfügbarkeit der Engpassanlage "Bandsäge" in der Aluminium-Barrenproduktion. Köln: Fachhochschule Köln.
- Kaio, N., & Osaki, S. (1978). Optimum planned maintenance policies with lead time for an operating unit in preventive maintenance. *IEEE Transactions on reliability*, 27, 270 -271.
- Kelton, W. D., Sadowski, P. R., & Swets, B. N. (2010). Simulation with Arena (Fifth edition Ausg.). New York: McGraw Hill.
- Kennedy, W. J., Patterson, J. W., & Fredendall, L. D. (2002). An overview of recent literature on spare parts inventories. *Interantional Jurnal Production Economics*, 76, 201 - 215.
- Kennedy, W. J., Patterson, J. W., & Fredendall, L. D. (2002). An overview of recent literature on spare parts inventories. *International Journal of Production Economics*, 76(2), 201 - 215.
- Kerbrat, O., Mognol, P., & Hascoet, J.-Y. (2010). Manufacturability analysis to combine additive and subtractive processes. *Rapid Prototyping Journal*, *16*(1), 63 72.
- Kilpi, J., & Vepsäläinen, A. (2004). Pooling of spare components between airlines. *Journal of Ai Transportation Management*, 10(2), 137 46.

- Kilpi, J., Töyli, J., & Vepsäläinen, A. (2009). Cooperative strategies for the availability of repairable aircraft components. *International Journal of Production Economics*, 117, 360 370.
- Kim, J., Shin, K., & Yu, H. (1996). Optimal algorithm to determine the spare inventory level for a repairable-item inventory system. *Computers and Operations Research*, 23(3), 289 - 297.
- Kispera-Moron, D., & Swierczek, A. (2010). The selected determinants of manufacturing postponement within supply chain context: An international study. *International journal* of production economics, 133, 192 - 200.
- Lampel, J., & Mintzberg, H. (1996). Customizing customization. *Sloan Management review*, *37*, 21 30.
- Lee, H. L. (2002). Aligning supply chain strategies with product uncertainties. *California Management Review*, 44(3), 105 - 119.
- Liou, F., Slattery, K., Kinsella, M., Newkirk, J., Chou, H.-N., & Landers, R. (2007). Applications of a hybrid manufacturing process for application of metallic structures. *Rapid Prototyping Journal*, 13(4), 236 - 244.
- Mars on Earth The Haughton-Mars Project. (2010). Von Mars on Earth The Haughton-Mars Project: http://marsonearth.org/ abgerufen
- Mason-Jones, R., & Towill, D. R. (1999). Using the Information Decoupling Point to Improve
 Supply Chain Performance. *The International Journal of Logistics Management*, 10(2),
 13 26.

- McCarthy, I., & Anagnostou, A. (2004). The impact of outsourcing on the transaction costs and boundaries of manufacturing. *International Journal of Production Economics*, 88(1), 61 71.
- McGrath, J. E. (1981). Dilemmatics. American Behavioral Scientist, 25(2), 179 210.
- Mello, C. H., Martins, R. C., Parra, B. R., Pamplona, E. d., Salgado, E. G., & Seguso, R. T. (2010). Systematic proposal to calculate price of prototypes manufactured through rapid prototyping and FDM 3D printer in a university lab. *Rapid Prototyping Journal*, *16*(6), 411 416.
- Mognol, P., Rivette, M., Jegou, L., & Lesprier, T. (2007). A first approach to choose between HSM, EDM and DMLS processes in hybrid rapid tooling. *Rapid Prototyping Journal*, *13*(1), 7 16.
- Moore, R. (1996). Establishing an inventory management program. *Plant Egineering*, *50*(3), 113 116.
- Neef, A., Burmeister, K., & Krempl, S. (2005). Vom Personal Computer zum Personal Fabricator. Hamburg: Murmann Verlag.
- Oeldorf, G., & Olfert, K. (2004). Materialwirtschaft (11 Ausg.). Herne: Kiehl.
- Pagh, J. D., & Cooper, M. C. (1998). Supply chain postponement and speculation strategies: how to choose the right strategy. *Journal of busness logistics*, 19(2), 13 - 30.
- Peng, L., Huang, S. H., Mokasdar, A., Zhou, H., & Hou, L. (4. May 2013). The impact of additive manufacturing in the aircraft spare part supply chain: supply chain operation reference (scor) model based analysis. *Production Planning & Control*, S. 1-13.

- Penrose, H. (2008). Physical Asset Management for the Executive. Success by design management, 116.
- Pérès, F., & Durand, J. (2002). Maintainability Improvement of Isolated Systems through the use of Rapid Prototyping Techniques: A Prospective approach. *Esreda Seminar* (S. 27 28).
 Madrid: Esreda Seminar.
- Pérès, F., & Grenouilleau, J.-C. (2002). Initial spare part supply of an orbital system. *Aircraft Engineering and Aerospace Technology*, 74(3), 252-262.
- Pérès, F., & Noyes, D. (2006). Envisioning e-logistics development: Making spare parts in situ and on demand - State of the art and guidelines for future developments. *Computers in industry*, 57, 490-503.
- Pérès, F., Grenouilleau, J. C., Housseini, O., & Martin, C. (2002). Isolated Missions Manufacturing spare parts throug rapid prototyping. *Air Force Journal of Logistics*, 26(2), 10 43.
- Pérès, F., Grenouilleau, J. C., Housseini, O., & Martin, C. (2002). Isolated Missions Manufacturing spare parts through rapid prototyping. *Air Force Journal of Logistics*, 26(2), 10 43.
- Rivette, M., Hascoet, J. Y., & Mognol, P. (2007). A based graph methodology for hybrid rapid design. *Journal of Engineering Manufacture*, 221(4), 685 - 697.
- Rosen, D. W. (2005). Direct digital manufacturing: issues and tools for making key decisions. *Proceedings SME rapid prototyping and manufacturing conference*. Dearborn.
- Rötzel, A. (2001). Instandhaltung eine betriebliche Herausforderung. Berlin, Offenbach: VDE Verlag.

- Ruffo, M., Tuck, C., & Hague, R. (2007). Make or buy analysis for rapid manufacturing. *Rapid Prototyping Journal*, *13*(1), 23 - 29.
- Ruffo, M., Tuck, C., & Hague, R. J. (2006). Cost estimation for rapid manufacturing laser sintering production for low to medium volumes. *Journal of Engineering Manufacture*, 220(9), 1417 - 1427.
- Schulte, C. (1999). *Logistik Wege zur Optimierung der Supply Chain* (Bd. 3). München: Franz Vahlen GmbH.
- Sharman, G. (1984). The rediscovery of logistics. Harvard Business Review, 62, 71 79.
- Shull, S. A., Gralla, E. L., de Weck, O. L., & Shishko, R. (2006). The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration.
- Siddiqi, A., & de Weck, O. L. (2006). Spare Parts Requirements for Space Missions with Reconfigurability and Commonality. Massachusetts: American Institute of Aeronautics and Astronautics.
- Simkin, Z., & Wang, A. (2014). Cost-Benefit Analyses for Final Production Parts. Wohlers associates. Inc.
- Simpson, V. P. (1978). Optimum solution structure for a rapairable inventory problem. *Operations Research*, *19*(2), 270 - 281.
- Skipworth, H., & Harrison, A. (15. May 2004). Implications of form postponement to manufacturing: a case study. *International Journal of Production Research*, 42(10), 2063 - 2081.

Smith, P. G. (1999). The business of RP. Rapid Prototyping Journal, 5(4), 179 - 185.

- Smith, P. G., & Reinertsen, D. G. (1998). Developing Products in Half Time: New rules, new tools. New York, NY: John Wiley & Sons.
- Sonmez, F. O., & Hahn, H. T. (1998). Thermo-mechanical analysis of the laminated objectmanufacturing (LOM) process. *Rapid Prototyping Journal*, 4(1), 26 - 36.
- Stölzl, S. (2000). Fehlertolerante Pedaleinheit für ein elektromagnetisches Bremssystem (Break by wire). Düsseldorf: VDI-Verlag.
- Storch, S., Nellessen, D., Schaefer, G., & Reiter, R. (2003). Selective laser sintering: qualifying analysis of metal based powder systems for automative applications. *Rapid Prototyping Journal*, 9(4), 240 - 251.
- Stucker, B., & Qu, X. (2003). A finish machining strategy for rapid manufactured parts. *Rapid Prototyping Journal*, 9(4), 194 - 200.
- Tay, F. E., Khanal, Y. P., Kwong, K. K., & Tan, K. C. (2001). Distributed rapid prototyping a framework for internet prototyping and manufacturing. *Intergrated Manufacturing Systems*, 12(6), 409 - 415.
- Tay, F., Khanal, Y., Kwong, K., & Tan, K. (2001). Distributed rapid prototyping a framework for internet prototyping and manufacturing. *Integrated Manufacturing Systems*, 12(6), 409 - 415.
- Tolochko, N. K., Mozzharov, S. E., Yadroitsev, I. A., Laoui, T., Froyen, L., Titov, V. I., & Ignatiev, M. B. (2004). Selective laser sintering and cladding of single-component metal powders. *Rapid Prototyping Journal*, 10(2), 88 - 97.

Twede, D., Clarke, R. H., & Tait, J. (2000). Packaging postponement: a global packaging strategy. *Packaging Technology and Sciences*, *13*(3), 105 - 15.

Unknown. (2007). Unknown. Instandhaltung - Technik, Management, Märkte(6/07), 16-20.

- Vallabhajosyula, P., & Bourell, D. L. (2011). Modeling and production of fully ferrous components by indirect selective laser sintering. *Rapid Prototyping Journal*, 17(4), 262 -268.
- van der Schueren, B., & Kruth, J. P. (1995). Powder deposition in selective metal powder sintering. *Rapid Prototyping Journal*, *1*(3), 23 31.
- van Hoek, R. I. (2000). The role of third party logistics providers in mass customization. International Journal of Logistics Management, 11(1), 37 - 46.
- Van Hoek, R. I., Commandeur, H. R., & Vos, B. (1998). Reconfiguring logistics systems through postponement strategies. *Journal of business logistics*, *19*(1), 33 53.
- van Hoek, R. I., Commandeur, H. R., & Vos, B. (1998). Reconfiguring loogistics systems through postponement strategies. *Journal of business logistics*, *19*(1), 33 54.
- van Hoek, R. L. (2001). The rediscovery of postponement a literature review and direktions for research. *Journal of Operations Management*, *19*(2), 161 84.

VDI-Richtlinie_2892. (2006). Ersatzteile in der Instandhaltung. 4.

- Walker, G., & Weber, D. (1984). A transaction cost approach to make or buy decisions. Administrative Science Quarterly, 29, 113 - 141.
- Walker, J. (1996). Agraphical aid for initial purchase of insurance type spares. *Journal of the Operational Research society*, 47, 1296 - 1300.

- Walter, M., Holmström, J., & Yrjölä, H. (2004). Rapid manufacturing and its impact on supply chain management. *Proceedings of the Logistics Research Network Annual Conference*.
- Wang, H. P., & Li, J. K. (1991). Computer aided process planning. Elsevier.
- Williams, J. D., & Deckard, C. R. (1998). Advances in modeling the effects of selected parameters on the SLS process. *Rapid Prototyping Journal*, 4(2), 90 - 100.
- Witter, A. (1995). Entwicklung eines Modells zur optimierten Nutzung des Wissenspotentials einer Prozess-FMEA. Düsseldorf: VDI-Verlag.
- Wohlers, T. (1995). Future potential of rapid prototyping and manufacturing around the world. *Rapid Prototyping Journal*, 1(1), 4 - 10.

Wohlers, T. (2008). State of the industry. Annual Worldwide Progress Report. Wohlers Report.

- Wohlers, T., & Grimm, T. (2001a). *Rapid production: key barriers to growth*. Von Perspectives: Time-compression technologies: www.wohlersassociates.com/Apr01TCT.htm abgerufen
- Wohlers, T., & Grimm, T. (March/ April 2002). The real cost of RP. *Time Compression Magazine*.
- Wysk, R. (July 2009). IMCRC newsletter. available at: www.lboro.ac.uk/eng/research/imcrc/pdf/Newsletter_July_2009.pdf.
- Xing, B., Gao, W.-J., Battle, K., Nelwamondo, F. V., & Marwala, T. (2011). e-Reverse Logistics for Remanufaturing-to-order: An Online Auction-based and Multi-Agent System Supported Solution. *The* (S. 78 - 83). Faculty of Engineering and the Buildt Environment.
- Xu, F., Loh, H. T., & Wong, Y. S. (1999). Considerations and selection of optimal orientation for different rapid prototyping systems. *Rapid Prototyping Journal*, 5(2), 54 - 60.

- Xu, F., Wong, Y. S., & Loh, H. T. (2000). Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. *Journal of Manufacturing Systems*, 19(5), 283 - 296.
- Xu, Z., Zhao, Z., & Baines, R. W. (2000). Constructing virtual environments for manufacturing simulation. *International Journal of Production Research*, 38(17), 4171-4191.
- Yang, B., & Burns, N. (2003). Implications of postponement for the supply chain. *International journal of production research*, 41(9), 2075 2090.
- Yang, B., Burns, N., & Backhouse, C. (2004a). Management of uncertainty through postponement. *International Journal of Production Research*, 42(6), 1049 - 64.
- Yuen, S. L. (2003). Postponement Strategies for Mobile Application Development A Framework. 16 th Bled eCommerce Conference eTransformation (S. 934 - 948). Bled, Slovenia: University of Hong Kong.
- Zäh, M. F. (2006). Wirtschaftliche Fertigung mit Rapid-Technologien. München: Carl Hanser Verlag.
- Zhang, G., Tsou, Y.-c., & Rosenberger, A. L. (2000). Reconstruction of the homunculus skull using a combined scanning and stereo-lithography process. *Rapid Prototyping Journal*, 6(4), 267 275.
- Zinn, W., & Bowersox, D. (1988). Planning physical distribution with the principle of postponement. *Journal of business logistics*, 9(2), 117 - 136.

APPENDIX

1 INTRRODUCTION TO APPLIED ARENA SIMULATION MODULES

Arena is a fully hierarchical high level simulation software which allows the user to use predefined modules and constructs. When necessary, it is possible to break the programming down to a low level where alternative programming languages such as Microsoft Visual Basic, C or other alternatives can be applied, which allows individual setups of a model. The work done in this study will use Arena as modeling tool and tries to use the predefined modules to keep a high programming level and provide transparency for the reader. To have an idea about the concept and the functionality of Arena this section provides an overview about the concepts and functions of the software. For more detail, refer to literature, which holds detailed information.¹⁴

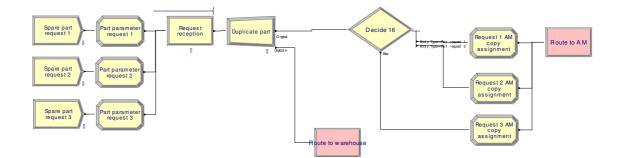


Figure 9-1: Graphical display of connected Arena modules

Figure 9-1 shows an extract of an Arena simulation model. It has great resemblance to a process flow chart and works very similarly. Entities, in this case spare part requests, are generated, enter the system, move through the process and leave the system when the process is finished. Arena allows to describe the way of an entity through a process in detail by use of attributes, variables, queues, resources and modules simulating logical actions. The following will introduce the most

¹⁴ "Simulation with Arena" Kelton et al. (2010)

important Arena information to enable the reader to understand further explanations in the scope of this work. It will start with the basic modules.

Create module - The first thing which happens in a simulation model is the creation of an entity. In the create module the name and type of an entity is defined by the user. Also the time between arrivals and number of arrivals can be edited by changing the settings. Different types of entities can be created by several create modules in one simulation model.

	Create	8 22
Create 1	Name:	Entity Type:
0	Create 1	Entity 1 👻
	Time Between Arrivals	
	Type: Value:	Units:
	Random (Expo) 🔽 1	Hours
	Entities per Arrival: Max Arrivals:	First Creation:
	1 Infinite	0.0
	ОК	Cancel Help

Figure 9-2: Create module

Assign module - The assign module allows to assign variables and attributes to an entity when it enters the module. It is also possible to change the entity type itself. The difference between variables and attributes must be explained. Both can be assigned to an entity and contain a specific value. A variable can be understood as a global variable that can be used or changed at every position in the model. An attribute is to understand as a local variable which is directly linked to an entity. While discussing variables it is important to know that there are two types of variables in Arena. The first type are user defined variables such as service time, building space, etc.. The other variables are Arena build-in variables which are automatically followed like number in queue, WIP, current simulation clock, etc.. According to Kelton et al (2010) variables can be used as trigger changing values over time and they can be useful to collect user defined statistics and metrics.

ର

	Assign	
Assign 1	Name: Assign 1 Assignments: Variable, Variable 1, 1 Attribute, Attribute 1, 1 Entity Type, Entity 1 <end list="" of=""></end>	Add Edit Delete
	OK Cancel	Help

Figure 9-3: Assign module

Process module - The process module allows to simulate a process. In the following model the process module is typically used in the setting "Seize Delay Release". When an entity enters the module a resource is seized, for example a person, machine or something else that is required to perform the task. The time the process takes is defined by delay, which can be set in the module directly, and can follow various distributions or a mathematical expression. When the process is finished, the resource is released again and is available for the next process.

Due to the delay of processing it is logical that queuing occurs when the entities have to wait for processing. Therefore a symbol for the queue is shown above the process module, where the entities are displayed while waiting.

It is possible to set rules for the queue. The predefined rules are First in first out, Last in first out, Lowest attribute value and Highest attribute value. The preset for each queue is First in first out, which can be changed when required. Queues can also appear on other modules, for example the hold module.

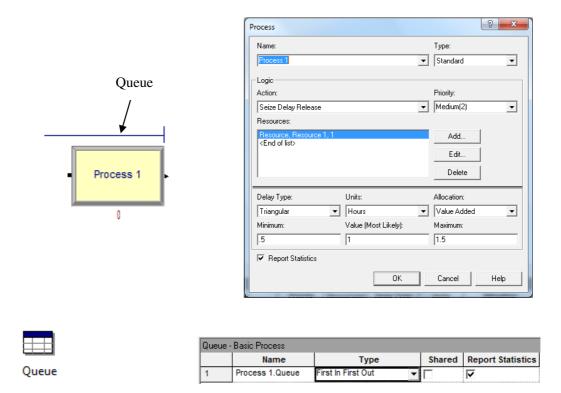


Figure 9-4: Process module and queue

Decide module - The decide module allows to direct entities by chance or condition to different paths through the process. For both, the decision can be 2-way or n-way.

The setup by chance follows assigned probabilities in percent. The proceeding is the same for nways. Figure 9-5 shows a fifty percent chance that the entity will follow the true path, as opposed to following the false path. The decide module is also very interesting in the condition based setup, since it can analyze variables or attributes of entities and direct the entity accordingly.

ĺ	Decide	8 ×
Decide 1	Name: Decide 1 Percent True (0-100): 50 💌 %	Type: Image: Comparison of the second sec

Figure 9-5: Decide module

Separate module - The separate module creates duplicates of entities or splits up arriving batches. The original entity will then follow the original path, while the duplicate will follow the duplicate path.

(Separate	? ×
Separate 1	Name: Type: Separate 1 Image: Duplicate Percent Cost to Duplicates (0.100): # of Duplicate 50 % 1	
() Duplicate	OK Can	cel Help

Figure 9-6: Separate module

Hold module - The hold module is able to hold entities in a queue until a specific condition or a signal occurs. Then the entities in queue can pass the hold module. The next arriving entities will then again be held until a condition or signal is set. When the setup is condition based, the module scans for example process or queue parameters like "number in queue equals zero". The signal setup waits for an arriving signal. When the signal occurs the hold module allows the entities to pass. A signal is generated by a signal module.

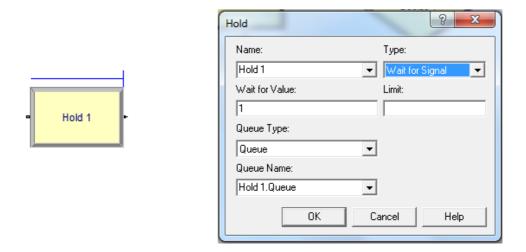


Figure 9-7: Hold module

Signal module - The signal module sends a signal to the whole model when an entity enters the module. In Figure 9-8 Signal 1 sends the value 1 as a signal. When for example a hold module, which waits for the signal 1, receives the signal, it will allow the queued entities to pass. The signal activates all modules which are waiting for signal 1.

Signal	8 ×
Name:	
Signal 1	•
Signal Value:	Limit:
1	
ОК	Cancel Help

Figure 9-8: Signal module

Route and Station module - The route and station module typically appear together. The route module allows to send entities to a station without having the modules connected directly. This is beneficial when modules become complex and a direct connection is messing the view. It should be said that modules are always connected to each other, to guide the entity through the process. This can be avoided by the route and station idea. In Figure 9-9 the Route 1 module will send an entity to Station 1.

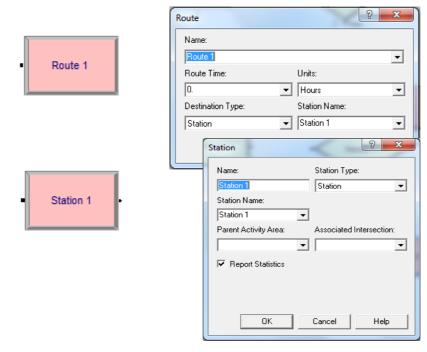


Figure 9-9: Route and Station module

Dispose module - Every created entity must leave the system. This happens by use of the dispose module. When an entity enters the module it is removed from the system.

	Dispose 2 X
	Name: Dispose 1
Dispose 1	Record Entity Statistics
0	OK Cancel Help

Figure 9-10: Dispose module

Data modules - Data modules are not placed in the model window and no entity will run through them. The data modules contain additional information to queues, entities etc. and allow to describe details on a lower level. The data modules are organized as lists and can be edited by the user. They allow direct access to objects, variables and attributes.

Figure 9-11: Data modules

By arranging the explained modules and data modules, it is possible to set up a simulation model. When the model is ready the simulation can start. But before the model can run the "run setup" should take place. Arena offers a context menu to set the replication parameters. The most important settings are the number of replications, warm up period, replication length. and the time units. Number of replications is important for statistical reasons. The more replications of the simulation are run, the more accurate will be the result. (For each replication a new set of random numbers is selected, which is the basis for the setup of the event calendar and generates randomized results.) A useful number of replication will be defined later. A warm up period is to apply when a system needs to be followed under continuous conditions. When an empty system begins to operate, processes and queues are all idle. The warm up period should be set until the system is in "balance". This assures a better accuracy of the results without the effect of an idle system. The replication length defines the time frame the system will actually simulate and record statistics. The base time unit is also an important setting which should be carefully followed throughout the whole model. Mistakes with this unit may lead to significant errors. After the run setup the model can run.

Number of Replications: Initialize Between Replications 1 If Statistics Start Date and Time: Image: Freitag 2. Mai 2014 19:02:04	Number of Replications: Initialize Between Replications I Imitialize Between Replications Start Date and Time: Imitialize Between Replications Imitialize Between Replications Imitialize Between Replications Start Date and Time: Imitialize Between Replications Imitialize Between Replications Imitialize Between Replications Start Date and Time: Imitialize Between Replications Imitialize Between Replications Imiti	Number of Replications: Initialize Between Replications I Initialize Between Replications Start Date and Time: If Statistics Image: Statistic statistics Image: Statistic statistics Start Date and Time: Image: Statistic statistics Image: Statistic statistic statistics Image: Statistic statistic statistics Image: Statistic		Run Control Reports Dication Parameters Array Sizes
Freitag 2 Mai 2014 19:02:04 Warm-up Period: Time Units: 0.0 Hours Replication Length: Time Units: 720 Hours Hours Per Day: Base Time Units: 24 Hours	Freitag 2 Mai 2014 19:02:04 Warm-up Period: Time Units: 0.0 Hours Replication Length: Time Units: 720 Hours Hours Per Day: Base Time Units: 24 Hours	Freitag 2 Mai 2014 19:02:04 Warm-up Period: Time Units: 0.0 Hours Replication Length: Time Units: 720 Hours Hours Per Day: Base Time Units: 24 Hours	Number of Replications:	Initialize Between Replications
Warm-up Period: Time Units: 0.0 Hours Replication Length: Time Units: 720 Hours Hours Image: Comparison of the Units: 24 Hours	Warm-up Period: Time Units: 0.0 Hours Replication Length: Time Units: 720 Hours Hours Image: Comparison of the Units: 24 Hours	Warm-up Period: Time Units: [0.0 Hours Replication Length: Time Units: [720 Hours Hours Image: Comparison of the Units: [24 Hours		
0.0 Hours Replication Length: Time Units: 720 Hours Hours Per Day: Base Time Units: 24 Hours	0.0 Hours Replication Length: Time Units: 720 Hours Hours Per Day: Base Time Units: 24 Hours	0.0 Hours Replication Length: Time Units: 720 Hours Hours Ime Units: 24 Base Time Units:	Freitag , 2. Mai	2014 19:02:04
Replication Length: Time Units: 720 Hours Hours Per Day: Base Time Units: 24 Hours	Replication Length: Time Units: 720 Hours Hours Per Day: Base Time Units: 24 Hours	Replication Length: Time Units: 720 Hours Hours Per Day: Base Time Units: 24 Hours	Warm-up Period:	Time Units:
720 Hours Hours Per Day: Base Time Units: 24 Hours	720 Hours Hours Per Day: Base Time Units: 24 Hours	720 Hours Hours Per Day: Base Time Units: 24 Hours	0.0	Hours
Hours Per Day: Base Time Units: 24 Hours View Company	Hours Per Day: Base Time Units: 24 Hours View Company	Hours Per Day: Base Time Units: 24 Hours View Company	Replication Length:	Time Units:
24 Hours 💌	24 Hours 💌	24 Hours 💌	720	Hours
			Hours Per Day:	Base Time Units:
Terminating Condition:	Terminating Condition:	Terminating Condition:	24	Hours
			Terminating Condition:	
			OK Abb	rechen Übernehmen Hilfe

Figure 9-12: Run setup

When the model starts to run it is important to be aware of the simulation clock and event calendar, which interact together. The simulation clock is a variable keeping track of time during simulation. Since Arena is an event driven simulation keeping track of time means keeping track

of events happening at times planned in the event calendar. This is due to the fact that between events nothing happens, so there is no need to follow this time.

Event is a key word in Arena. "An event is something that happens at an instant of (simulated) time that might change attributes, variables, or statistical accumulators." (Kelton et al, 2010). These events are planned in an event calendar to keep track of the simulation. Kelton et al describe the idea: "When the logic of the simulation calls for it, a record of information for a future event is placed on the event calendar. This event record contains identification of the entity involved, the event time, and the kind of event it will be. Arena places each newly scheduled event on the calendar so that the next (soonest) event is always at the top of the calendar. [...] When it is time to execute the next event, the top record is removed from the calendar and the information in this record used to execute the appropriate logic" (Kelton et al, 2010).

With this basic information it should be possible to follow the setup of the simulation model presented in this work.

RESULTS OF TWO MACHINES WITH FIXED MATERIAL

2.1

Table 9-1: Results of two machines with fixed material - Upper limit - No waiting

zation machine 1 machine 2 % % hrs pcs. hrs pcs.	zation machine 1 wachine 2 % % hrs pcs. hrs pcs. pcs. pcs. % % hrs pcs. hrs pcs. pcs. pcs. pcs. 5 2,76 11,46 0,001 0,001 374.601 58.784 1 5 2,94 12,13 0,001 0,001 374.601 58.784 1	zation machine 1 wachine 2 % % hrs pcs. hrs pcs. pcs. <th>zation machine 1 2 2 % % hrs pcs. hrs pcs. pcs.</th> <th>zation machine 1 2 2 % % hrs pcs. hrs pcs. pcs.</th> <th>zation machine 1 2 2 % % hrs pcs. hrs pcs. pcs.</th> <th>zation machine 1 wachine 2 % % hrs pcs. hrs pcs. pcs.<th>zation machine 1 achine 2 % % hrs pcs. hrs pcs. pcs.</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>zation mathine 1 machine 2 % % % hrs pcs. hrs pcs. pcs.</th><th>zation mathine 1 machine 2 $3''$ $\%$ hrs $pcs.$ hrs $pcs.$ $prs.$ $pcs.$ $pcs.$</th><th>zation mathine 1 machine 2 $3''$ $\%$ hrs $2''$ $2''$ $2''$ $2''$ $3''$ $\%$ hrs $pcs.$ hrs $pcs.$ $prs.$ $pcs.$ <</th><th>zation mathine 1 2 mathine 2 $3''$ $\%$ hrs pcs. hrs pcs. pc</th><th>attion machine 1 2 % % hrs pcs. hrs pcs. pcs.</th></th>	zation machine 1 2 2 % % hrs pcs. hrs pcs. pcs.	zation machine 1 2 2 % % hrs pcs. hrs pcs. pcs.	zation machine 1 2 2 % % hrs pcs. hrs pcs.	zation machine 1 wachine 2 % % hrs pcs. hrs pcs. pcs. <th>zation machine 1 achine 2 % % hrs pcs. hrs pcs. pcs.</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>zation mathine 1 machine 2 % % % hrs pcs. hrs pcs. pcs.</th> <th>zation mathine 1 machine 2 $3''$ $\%$ hrs $pcs.$ hrs $pcs.$ $prs.$ $pcs.$ $pcs.$</th> <th>zation mathine 1 machine 2 $3''$ $\%$ hrs $2''$ $2''$ $2''$ $2''$ $3''$ $\%$ hrs $pcs.$ hrs $pcs.$ $prs.$ $pcs.$ <</th> <th>zation mathine 1 2 mathine 2 $3''$ $\%$ hrs pcs. hrs pcs. pc</th> <th>attion machine 1 2 % % hrs pcs. hrs pcs. pcs.</th>	zation machine 1 achine 2 % % hrs pcs. hrs pcs. pcs.	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	zation mathine 1 machine 2 % % % hrs pcs. hrs pcs.	zation mathine 1 machine 2 $3''$ $\%$ hrs $pcs.$ hrs $pcs.$ $prs.$ $pcs.$	zation mathine 1 machine 2 $3''$ $\%$ hrs $2''$ $2''$ $2''$ $2''$ $3''$ $\%$ hrs $pcs.$ hrs $pcs.$ $prs.$ $pcs.$ <	zation mathine 1 2 mathine 2 $3''$ $\%$ hrs pcs. hrs pcs. pc	attion machine 1 2 % % hrs pcs. hrs pcs. pcs.
% hrs pcs. hrs pcs. mm ¹	1 2 1 % hrs pcs. hrs pcs. 76 11,46 0,001 0,001 374,601 54 12,13 0,001 0,001 369,158	1 2 1 2 % hrs pcs. hrs pcs. mm ³ 76 11,46 0,001 0,001 374.601 94 12,13 0,001 0,001 369.158 .16 13,07 0,002 0,002 369.511	1 2 2 2 % hrs pcs. hrs pcs. mm ³ 76 11,46 0,001 0,001 374.601 94 12,13 0,001 0,001 369.158 .16 13,07 0,002 0,003 369.158 .41 14,20 0,003 0,003 374.322	1 2 2 2 % hrs pcs. hrs pcs. mm ³ 76 11,46 0,001 0,001 374,601 94 12,13 0,001 0,001 369,158 16 13,07 0,002 0,003 374,601 71 14,20 0,003 0,003 374,322 72 15,54 0,004 0,005 376,865	1 2 2 % hrs pcs. hrs pct. 76 11,46 0,001 0,001 374,601 94 12,13 0,001 0,001 369,158 16 13,07 0,001 0,002 369,158 /41 14,20 0,003 0,003 374,322 /72 15,54 0,003 0,005 376,865 /08 17,14 0,005 0,005 376,865	1 2 2 7 1 2 76 11,46 0,001 0,001 374.601 94 12,13 0,001 0,001 369.158 14 13,07 0,001 0,001 369.158 14 13,07 0,002 0,002 369.158 74 14,20 0,003 374.322 374.322 74 14,20 0,003 374.322 375.855 78 17,14 0,003 374.322 375.855 78 17,14 0,003 374.322 375.855 78 17,14 0,003 374.322 375.855 375.855 78 17,14 0,003 0,006 387.659 375.855 375.855 375.855 375.855 375.855 375.855 375.855 375.855 375.855 375	1 2 2 7 1 2 76 hrs pcs. hrs pcs. mm ³ 76 11,46 0,001 0,001 374.601 74 12,13 0,001 0,001 369.158 16 13,07 0,001 0,003 374.601 741 14,20 0,003 374.322 20.003 374.322 731 15,54 0,003 374.322 20.003 374.322 731 15,54 0,003 374.322 20.003 374.322 731 15,54 0,003 374.322 20.003 376.695 731 19,07 0,006 0,006 381.669 271.45 271.45 271.45 271.45	1 2 2 7 1 2 76 hrs pcs. hrs pcs. mm ³ 76 11,46 0,001 0,001 374.601 94 12,13 0,001 0,001 369.158 14 14,20 0,003 369.511 369.511 72 15,54 0,003 374.665 380.669 73 15,54 0,003 374.865 376.665 73 15,54 0,003 374.865 376.695 73 15,54 0,003 374.865 376.695 73 15,54 0,003 374.865 376.695 73 15,54 0,003 374.865 376.695 73 15,70 43 0,010 378.495 378.495 77 24,46 39 0,013 378.455 377.455	1 2 2 7 1 2 76 hrs pcs. hrs pcs. mm ³ 74 11,46 0,001 0,001 374.601 74 12,13 0,001 0,001 369.158 74 14,20 0,001 0,002 369.511 74 14,20 0,003 369.512 374.665 72 15,54 0,003 374.322 378.465 73 15,54 0,003 374.322 378.455 53 17,14 0,003 378.455 378.455 53 17,14 0,003 378.455 378.455 53 21,20 43 0,010 38 0,013 378.455 77 24,46 39 0,013 378.323 378.455 378.455 73 24,52 39 0,013 <t< td=""><td>1 2 2 7 1 2 76 hrs pcs. hrs pcs. mm³ 74 11,46 0,001 0,001 374.601 74 12,13 0,001 0,001 369.158 74 11,40 0,001 0,003 369.511 74 14,20 0,003 369.512 369.511 72 15,54 0,003 374.322 374.322 73 15,54 0,003 374.322 374.322 73 15,54 0,003 374.322 374.322 73 21,907 0,003 381.459 399.874 73 21,50 43 0,013 389.874 399.874 72 24,46 39 0,013 382.459 399.874 70 28,23 30,013 382.450 399.874 399.874<td>1 2 2 7 1 2 76 hrs pcs. hrs pcs. mm³ 74 11,46 0,001 0,001 374.601 74 11,13 0,001 0,001 369.158 74 11,13 0,001 0,001 369.158 74 11,20 0,001 0,003 369.158 71 11,20 0,003 369.158 365.55 376.565 77 15,54 0,003 374.322 374.322 374.322 71 11,20 0,003 381.459 374.459 374.459 77 24,46 39 0,013 387.45 374.459 374.459 77 24,46 39 0,013 382.459 374.459 374.459 70 24,45 30 0,013 382.307 375.395 375.395</td><td>1 2 2 2 1 % hrs pcs. hrs pcs. mm³ 11,46 0,001 0,001 374.601 12,13 0,001 0,001 374.601 14,20 0,001 0,001 369.158 14,20 0,002 369.132 374.322 14,20 0,003 369.138 369.511 17,14 0,003 374.862 374.862 17,14 0,003 316.882 374.85 17,14 0,003 316.882 374.85 21,20 0,003 316.892 374.85 21,46 39 0,013 317.845 374.45 21,46 30 0,014 387.45 388.745 21,41 30 0,013 387.45 375.905 31,41 31 0,097 375.905</td><td>1 2 2 2 1 % hrs pcs. hrs pcs. mm¹ 11,46 0,001 0,001 374.601 12,13 0,001 0,001 374.601 13,07 0,001 0,001 369.158 14,20 0,001 0,003 369.511 15,54 0,003 369.512 375.865 17,14 0,003 374.869 376.865 17,14 0,003 316.895 376.865 17,14 0,003 316.895 374.850 24,45 0,003 317.855 338.745 24,45 0,003 316.895 338.745 33,64 0,003 316.895 338.745 34,46 0,003 317.825 345.905 34,41 </td></td></t<>	1 2 2 7 1 2 76 hrs pcs. hrs pcs. mm³ 74 11,46 0,001 0,001 374.601 74 12,13 0,001 0,001 369.158 74 11,40 0,001 0,003 369.511 74 14,20 0,003 369.512 369.511 72 15,54 0,003 374.322 374.322 73 15,54 0,003 374.322 374.322 73 15,54 0,003 374.322 374.322 73 21,907 0,003 381.459 399.874 73 21,50 43 0,013 389.874 399.874 72 24,46 39 0,013 382.459 399.874 70 28,23 30,013 382.450 399.874 399.874 <td>1 2 2 7 1 2 76 hrs pcs. hrs pcs. mm³ 74 11,46 0,001 0,001 374.601 74 11,13 0,001 0,001 369.158 74 11,13 0,001 0,001 369.158 74 11,20 0,001 0,003 369.158 71 11,20 0,003 369.158 365.55 376.565 77 15,54 0,003 374.322 374.322 374.322 71 11,20 0,003 381.459 374.459 374.459 77 24,46 39 0,013 387.45 374.459 374.459 77 24,46 39 0,013 382.459 374.459 374.459 70 24,45 30 0,013 382.307 375.395 375.395</td> <td>1 2 2 2 1 % hrs pcs. hrs pcs. mm³ 11,46 0,001 0,001 374.601 12,13 0,001 0,001 374.601 14,20 0,001 0,001 369.158 14,20 0,002 369.132 374.322 14,20 0,003 369.138 369.511 17,14 0,003 374.862 374.862 17,14 0,003 316.882 374.85 17,14 0,003 316.882 374.85 21,20 0,003 316.892 374.85 21,46 39 0,013 317.845 374.45 21,46 30 0,014 387.45 388.745 21,41 30 0,013 387.45 375.905 31,41 31 0,097 375.905</td> <td>1 2 2 2 1 % hrs pcs. hrs pcs. mm¹ 11,46 0,001 0,001 374.601 12,13 0,001 0,001 374.601 13,07 0,001 0,001 369.158 14,20 0,001 0,003 369.511 15,54 0,003 369.512 375.865 17,14 0,003 374.869 376.865 17,14 0,003 316.895 376.865 17,14 0,003 316.895 374.850 24,45 0,003 317.855 338.745 24,45 0,003 316.895 338.745 33,64 0,003 316.895 338.745 34,46 0,003 317.825 345.905 34,41 </td>	1 2 2 7 1 2 76 hrs pcs. hrs pcs. mm³ 74 11,46 0,001 0,001 374.601 74 11,13 0,001 0,001 369.158 74 11,13 0,001 0,001 369.158 74 11,20 0,001 0,003 369.158 71 11,20 0,003 369.158 365.55 376.565 77 15,54 0,003 374.322 374.322 374.322 71 11,20 0,003 381.459 374.459 374.459 77 24,46 39 0,013 387.45 374.459 374.459 77 24,46 39 0,013 382.459 374.459 374.459 70 24,45 30 0,013 382.307 375.395 375.395	1 2 2 2 1 % hrs pcs. hrs pcs. mm ³ 11,46 0,001 0,001 374.601 12,13 0,001 0,001 374.601 14,20 0,001 0,001 369.158 14,20 0,002 369.132 374.322 14,20 0,003 369.138 369.511 17,14 0,003 374.862 374.862 17,14 0,003 316.882 374.85 17,14 0,003 316.882 374.85 21,20 0,003 316.892 374.85 21,46 39 0,013 317.845 374.45 21,46 30 0,014 387.45 388.745 21,41 30 0,013 387.45 375.905 31,41 31 0,097 375.905	1 2 2 2 1 % hrs pcs. hrs pcs. mm ¹ 11,46 0,001 0,001 374.601 12,13 0,001 0,001 374.601 13,07 0,001 0,001 369.158 14,20 0,001 0,003 369.511 15,54 0,003 369.512 375.865 17,14 0,003 374.869 376.865 17,14 0,003 316.895 376.865 17,14 0,003 316.895 374.850 24,45 0,003 317.855 338.745 24,45 0,003 316.895 338.745 33,64 0,003 316.895 338.745 34,46 0,003 317.825 345.905 34,41
hrs pcs. hrs pcs.	hrs pcs. hrs pcs. 0,001 0,001 0,001 0,001	hrs pcs. hrs pcs. 0,001 0,001 0,001 0,001 0,002 0,002	hrs pcs. hrs pcs. 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,002 0,003 0,003	hrs pcs. hrs pcs. 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,003 0,003 0,003 0,004 0,005	hrs pcs. hrs pcs. 0,001 0,001 0,001 0,001 0,002 0,001 0,003 0,003 0,003 0,003 0,004 0,005 0,006 0,005 0,005 0,006	hrs pcs. hrs pcs.	hrs pcs. hrs pcs.	hrs pcs. hrs pcs.	hrs pcs. hrs pcs.	hrs pcs. hrs pcs.	hrs pcs. hrs pcs. 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,003 0,003 0,003 0,004 0,003 0,004 0,003 0,003 0,003 43 0,013 36 0,013 30 0,014 36 0,013 31 0,024 36 0,013 35 0,045 32 0,031 35 0,087 37 0,097	hrs pcs. hrs pcs. 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,001 0,003 0,003 0,003 0,005 0,004 0,005 0,006 0,006 43 0,010 38 0,013 30 0,045 35 0,013 35 0,045 37 0,055 38 0,207 38 0,024	hrs pcs. hrs pcs.
	11,46	11,46 12,13 13,07	11,46 12,13 13,07 14,20	11,46 12,13 13,07 14,20 15,54	11,46 12,13 13,07 14,20 15,54 17,14	11,46 12,13 13,07 14,20 15,54 17,14 17,14	11,46 12,13 13,07 14,20 15,54 17,14 19,07 21,20	11,46 12,13 13,07 14,20 15,54 15,54 15,54 15,54 17,14 17,14 21,20 21,20 24,46 24,46	11,46 12,13 13,07 14,20 15,54 17,14 17,14 17,14 21,20 21,20 24,46 24,46 24,46 24,46	11,46 12,13 13,07 14,20 15,54 17,24 17,24 21,20 21,07 21,20 28,22	11,46 12,13 13,07 14,20 15,54 15,54 17,24 21,20 21,07 21,20 24,46 24,46 24,46 28,22 28,22 28,22 28,22 24,12	11,46 12,13 13,07 14,20 15,54 17,14 17,14 19,07 21,20 24,120 28,22 28,22 28,22 28,22 28,22 28,22 28,22 28,22 28,22 28,22 28,22 28,22 24,07 21,07 21,07 21,07 24,0700000000000000000000000000000000000	11,46 12,13 13,07 14,20 15,54 17,14 17,14 19,07 21,20 24,42 33,64 33,64 41,12 54,04 54,04 54,04
	2,84 5,86 3,03 6,16	2,84 5,86 3,03 6,16 3,27 6,64	2,84 5,86 3,03 6,16 3,27 6,64 3,52 7,27	2,84 5,86 3,03 6,16 3,27 6,64 3,52 7,27 3,84 7,98	2,84 5,86 3,03 6,16 3,27 6,64 3,52 7,27 3,84 7,98 4,22 8,84	2,84 5,86 3,03 6,16 3,27 6,64 3,52 7,27 3,84 7,98 4,22 8,84 4,68 9,86	2,84 5,86 3,03 6,16 3,27 6,64 3,52 7,27 3,84 7,98 4,68 9,86 4,68 9,86 5,22 10,93	2.84 5.86 3,03 6,16 3,27 6,64 3,52 7,27 3,84 7,98 4,68 9,86 4,68 9,86 5,22 10,93 5,91 12,83	2.84 5.86 3.03 6.16 3.27 6.64 3.52 7.27 3.84 7.98 4.68 9.84 4.69 9.86 5.21 10.93 5.91 12.83 5.91 12.83	2.84 5.86 3.03 6.16 3.27 6.64 3.52 7.27 3.84 7.98 4.28 8.84 4.61 10.93 5.91 12.83 5.91 12.83 6.88 14.67 8.16 17,58	2.84 5.86 3.03 6.16 3.27 6.64 3.52 7.27 3.84 7.98 4.28 8.84 4.28 8.84 4.67 5.21 10.93 5.91 10.93 6.88 14.67 8.16 17.58 8.16 17.58 9.98 21,48	2.84 5.86 3.03 6.16 3.27 6.64 3.52 7.27 3.84 7.96 4.22 8.84 4.22 8.84 4.22 10.93 5.91 12,58 8.16 17,58 9.98 21,48 9.98 21,48	2.84 5.86 3.03 6.16 3.27 6.64 3.52 7.27 3.44 7.98 3.52 7.27 3.44 7.98 4.22 8.84 4.22 8.84 4.22 8.84 5.91 10.93 5.91 12.58 8.16 17.58 9.98 21.46 9.98 21.45 8.16 17.58 9.98 21.48 12.33 29.78 12.33 29.78 15.17 44.23 44.23 1
R	786 5,98 7 (36 5,98 7	286 5,98 x (05 6,33 6,33 (,29 6,85	286 5,98 7 (05 6,33 6,33 6,33 6,53 7,38 6,53 7,38 7,38 7,38 7,38 7,38 7,38 7,38 7,3	266 5,98 2,005 6,33 2,08 2,09 2,09 2,09 2,09 2,09 2,09 2,09 2,09	⁷⁰ (256 5,98 5,133 6,33 (229 6,85 6,33 7,38 5,13 8,11 5,138 5,138 5,13 8,11 5,138 5,138 5,11 5,138 5,138 5,138 5,11 5,138 5,138 5,11 5,138 5,138 5,11 5,138 5	26 5,98 7,000 1,00	7 7 5 9 (26) 5,98 5,98 5 (22) 6,83 6,83 5 (22) 6,85 3 5 (22) 6,85 8,11 5 (22) 8,11 8,88 5 (47) 10,05 11,13 5,28	7 7 5 1 1 5 5 5 1 1 1 5 5 2 1	n n n n (26) 5,98 5,98 5,98 5,98 5,98 5,13	% % % % (13) (13) (13) (13) (14) (15) (13) (11) (11) (11) (11) (11) (12) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (12) (14) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (12) (11) (11) (11)	% % % % (186) 5,98 5,98 5,98 (5,5) 6,33 6,83 6,83 (4,7) 8,88 8,11 8,11 (4,7) 10,05 11,13 11,13 (4,2) 11,13 11,13 21,75 (4,2) 11,13 11,13 11,13 (4,2) 11,13 11,13 11,13 (4,2) 11,13 11,13 11,13 (4,2) 11,13 11,13 11,13 (4,2) 11,13 21,75 11,005 (4,3) 11,13 21,76 21,76	26 7,98 7,998 2,99	36 7. 2.86 5.98 2.86 5.98 2.85 6.33 2.82 6.33 2.82 8.11 2.17 8.88 2.17 8.88 2.17 8.88 2.17 8.88 2.17 8.88 2.17 8.499 2.25 11,13 2.25 14,99 2.25 18,06 2.25 18,06 2.25 18,06 2.25 18,06 2.25 18,06 2.23 30,41 2.35 30,41
% %	% % % %	% % % % %	% % % % % % % % % % % % % % % % % % %	% % % % % % % % % % % % % % % % % % %	% % % % % % % % % % % % % % % % % % %	% % % % %	% % % % % % % % % % % % % % % % % % %	% % 3 2,74 2,274 2,92 2,92 3,14 3,14 3,14 3,14 3,14 4,13 4,13 4,13 4,13	% % 3 2,74 2,74 2,74 3,14 3,14 3,14 3,74 4,13 4,13 4,13 4,13 4,13 5,60 5,00 1 5,68 6,63 6,663 6,663	% % 3 2,74 2,274 2,274 3,14 3,14 3,14 3,14 4,13 3,74 4,13 4,13 4,13 4,13 5,01 5,01 5,01 5,01 5,01 5,01 5,01 5,01	% % 3 2,74 2,74 2,74 3,14 3,14 3,14 3,14 4,13 3,14 4,13 3,14 5,14 5,10 5,01 3,14 5,10 1,14 5,100 1,100 1,10	96 96 2,74 9 2,74 2,292 2,922 3,14 3,14 3,14 3,14 3,14 3,14 4,14 4,13 4,14 4,13 5,01 5,01 5,63 5,01 5,63 1,14 2,11 1,92 1 1,192 1 1,192 1 1,192 1 1	% 9% 2,74 2,74 2,74 2,74 2,74 2,74 2,14 2,14 2,14 2,14 2,14 2,14 2,14 2,1
^	9,01	x, 82 x,01 x,25	x,82 x,01 x,25 x,52	% (.82 (.01 (.25 (.52 (.52	% (.82 .82 .25 .52 .52 .52 .52 .52	% 282 % 252 % 252 % 252 % 252 % 252 % 252 % 252 % 252 % 252 % 252 % 252 % 252 % 252 % 255 \% % 255 % 255 % 255 % 255 % 255 % 255 % 255 \% 255 \% 255 \% 255 \% 25	% (82 %)))))))))))))))))))))))))))))))))))	% (82 %) (82 %) (31 %) (32 %)	% (82 %) (82 %) (82 %) (82 %) (82 %) (82 %) (85 %) (86 %) (86 %) (87 %) (87 %) (87 %) (87 %) (87 %) (87 %) (85 \%) (85 \%)	% 2.82 % 2.82 % 2.82 % 2.62 % 2.62 % 2.62 % 2.62 % 2.65 % 2.65 % 2.64 %	% % % % % % % % % % % % % % % % % % %	8 (1977) 1972 (19	282 282 282 282 282 282 282 282 282 282
			1					و و و و و و و و و و	U U U U U U U U U U U U U U U U	U U U U U U U U U U U U U U U U	U	U	U U U U U U U U U U U U U U U U U U U
ų		- -	-	-	1		2 11 12					- ~ •	
1	891												
l													5 7 7
	13.601	13.601 14.347 15.465	13.601 14.347 15.465 17.042	13.601 14.347 15.465 17.042 18.661	13.601 14.347 15.465 17.042 18.661 20.706	13.601 14.347 15.465 17.042 18.661 20.706 23.142 23.142	13.601 14.347 15.465 17.042 18.661 20.706 23.142 23.142 25.708	13.601 14.347 14.347 15.465 17.042 18.661 28.706 23.142 23.142 23.142 23.237	13.601 14.347 15.465 15.465 17.042 28.661 28.661 28.706 23.706 23.706 23.708 30.237 30.237	13.601 14.347 15.465 17.042 28.661 28.706 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 24.544 41.584	13.601 14.347 14.347 17.042 17.042 28.663 28.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 25.706 41.584 41.584 50.838	13.601 14.347 15.465 17.042 18.661 18.661 20.705 22.705 30.207 30.637 41.584 41.584 70.673	13.601 14.347 14.347 17.042 17.042 20.705 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 23.142 20.706 30.533 20.533 20.5093
	45.693	43.315 45.693 49.251	43.315 45.693 49.251 54.274	43.315 45.693 49.251 54.274 59.431	43.315 45.693 49.251 54.274 59.431 65.945	43.315 45.693 49.251 54.274 59.431 65.945 65.945 73.701	43.315 45.693 45.693 54.274 59.431 65.945 73.701 73.701 81.875	43.315 45.693 49.251 59.431 59.431 65.945 73.701 81.875 81.875 96.298	43.315 45.693 45.693 59.431 59.431 65.945 73.701 81.875 96.298 96.298	43.315 45.693 45.693 45.274 54.274 59.431 65.945 73.701 81.875 95.798 95.798 132.435	43.315 45.693 45.693 54.274 59.431 65.945 73.701 81.875 96.298 96.298 132.435 132.435	43.315 45.693 45.693 54.274 59.431 59.431 65.295 96.298 96.298 10.396 132.435 161.905 161.905	43.315 43.315 45.693 45.693 45.945 59.431 65.945 73.701 81.875 95.295 101.396 110.395 110.395 110.395 334,693 334,693
	179	179	1/0 179 193 213	1/0 179 213 233	1/0 179 213 213 233 233 258	1/1 179 193 213 233 233 289	1/0 179 213 233 233 238 289 321	1/0 179 213 233 233 233 231 321 377	1/0 179 193 213 233 233 233 233 237 377 433	1/0 179 193 213 213 213 213 213 213 321 321 321 32	1/0 179 133 213 213 213 233 233 233 233 321 321	1/0 179 139 213 213 289 289 331 331 331 519 519 519 519 519 518	1/0 179 133 213 213 213 289 289 321 289 331 433 635 635 635 635 633 1313
80 60 603											I II 🔜 II		
0.10													
12	12	12	12	12 12 12	12 12 12 12	12 12 12 12 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	0 00												
													4 8 4 4 4 4 4 4 <mark>4 4 4 4 4 4</mark>
0 150	0 140	0 130	0 140 0 130 0 120	0 140 0 130 0 120 0 120									
Upper limit 1.1	Upper limit 1.2	Upper limit 1.2 Upper limit 1.3	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5 Upper limit 1.5	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5 Upper limit 1.5 Upper limit 1.7	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5 Upper limit 1.5 Upper limit 1.8	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5 Upper limit 1.9 Upper limit 1.9 Upper limit 1.9	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5 Upper limit 1.9 Upper limit 1.9 Upper limit 1.9 Upper limit 1.9	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5 Upper limit 1.9 Upper limit 1.9 Upper limit 1.9 Upper limit 1.10 Upper limit 1.10	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5 Upper limit 1.9 Upper limit 1.9 Upper limit 1.9 Upper limit 1.10 Upper limit 1.12 Upper limit 1.12	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5 Upper limit 1.8 Upper limit 1.9 Upper limit 1.10 Upper limit 1.11 Upper limit 1.12 Upper limit 1.13	Upper limit 1.2 Upper limit 1.3 Upper limit 1.4 Upper limit 1.5 Upper limit 1.6 Upper limit 1.0 Upper limit 1.10 Upper limit 1.12 Upper limit 1.13 Upper limit 1.13 Upper limit 1.14

Table 9-2: Results of two machines with fixed material - Upper limit - Waiting 231

Parts in AM	queue parts	total out			pcs. pcs.	1 58	1 62	1 67	1 72	2 79	2 87	3 96	5 108	10 123	19 144	30 173	52 216	127 287	317 430	
ge Machine Parts in	ng depre-	ne ciation			, c	155 58.782	563 59.058	507 58.987	508 59.448	204 59.264	505 59.397	094 59.521	463 59.631	333 59.694	798 59.802	031 59.888	179 60.035	046 60.098	230 60.133	
ber Average	eue building	nine volume			s. mm ³	0,001 372.155	0,002 369.663	0,003 369.507	0,004 374.508	0,005 376.204	0,007 383.505	0,009 379.094	0,013 390.463	0,018 380.33	0,038 391.798	0,066 385.031	0,125 388.179	0,237 391.046	0,725 389-230	
Waiting Number	time in in queue	queue machine	machine 2	2	hrs pcs.	-	-	-		-	-	40 0	35 0	28 0	29 0	35 0	39 0	32 0	38 0	
Number Wa	in queue tim	machine qu	1 100		pcs.	0,001	0,001	0,002	0,003	0,004	0,006	0,008	0,011	0,015	0,029	0,057	0,105	0,238	0,710	
Waiting Ni	time in in in	dueue ma	machine	1	hrs		-	1		1	-	39	34	25	28	34	35	31	38	
Total	system .	-ilin	zation		se.	11,42	12,12	13,07	14,19	15,50	17,18	18,96	21,52	24,19	28,51	33,72	41,55	53,777	73,13	
System	cool	down			%	2,75	2,93	3,16	3,41	3,71	4,08	4,52	5,04	5,74	6,65	7,88	9,54	11,86	14,18	
System	utili-	zation			R	5,83	6,16	6,64	7,27	7,95	8,90	9,78	11,27	12,52	14,99	17,70	22,17	29,67	44,29	
System	settup		-		%	2,84	3,03	3,26	3,52	3,83	2,21	4,67	5,21	5,93	6,87	8,14	9,85	12,25	14,66	
Machine	cool	down	tracking 2		88	2,77	2,94	3,19	3,40	3,68	4,02	4,51	5,12	5,65	6,67	7,96	9,65	11,80	14,15	
Machine	utili-	zation 2			×	5,94	6,31	6,85	7,37	8,07	8,88	9,91	11,47	12,46	15,57	18,23	22,53	29,54	44,80	1
Machine	setup	tracking 2			8	2,86	3,04	3,29	3,52	3,80	4,15	4,66	5,29	5,84	6,89	8,22	9,97	12,19	14,62	
Machine	cool	down	tracking 1		×	1 2,74	1 2,92	3,14	5 3,41	\$ 3,75	4,14	4,53	5 4,97	7 5,83	1 6,63	8 7,80	1 9,42	11,92	8 14,22	1
Machine	utili-	zation 1			%	5,71	6,01	6,43	7,16	7,84	8,91	9,64	11,06	12,57	14,41	17,18	21,81	29,79	43,78	1
Machine	setup	tracking 1			*	2,83	3,02	3,24	3,52	3,87	4,27	4,67	5,13	6,02	6,85	8,05	9,73	12,31	14,70	1
Total AM	cost				J	95.740	97.350	900.06	101 841	104.047	107.631	111.379	117.586	122.822	135.623	153.051	185.107	250.711	508.942	
Total	penalty				J	83	125	EEE	375	666	1.000	1.583	2.833	3,666	8.291	16.458	33,458	74.166	283.833	
Total	mainte-	nance	cost		J	57.504	57.774	57.705	58.156	57.975	58.106	58.227	58.335	58.396	58.502	58.586	58.730	58.791	58.825	
Total	t operator	cost			J	2 2,888	3 3.092	3.329	3.615	3 3.929	3 4.326	4.806	4 5.402	6.172	7.183	8.642	7 10.775	5 14.340	3 21.489	
Consumed	energy cost				J	2.582	2.743	2.952	3.258	3.553	3.983	4.388	5.064	5.634	6.761	7.995	10.037	13.446	20.083	
Consumed	material	cast			J	13.513	14.357	15.451	17.051	18.597	20.845	22.964	26.506	29,487	35.384	41.840	52.528	70.368	105.102	-
Consumed	energy	-			kWh	43.037	45.724	49.208	54.304	59.226	66.387	73.134	84,414	93,907	112.688	133.250	167.288	224,105	334.720	1
Consumed (material				18	168	179	193	213	232	260	287	331	368	442	523	656	879	1.313	1
Total	ware-	housing	cost		J	69.601	70.291	70.873	71.635	72.555	73.831	75.193	76.578	78.402	80.856	85.257	90.594	100.068	117.891	
Elapse	time				hrs	8	8	00	8	8	8	8	8	8	8	8	8	8	8	a
Produc-	tion start	volume			%	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	010
Sum of	setup	pue	cool	down		12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Cool	down	ē.		_	hrs	4 8	4 8	4	4	4 8	4 8	4 8	4	4 8	4	4	4 8	4	4	a 10
Mean Machine	setup	base time			hrs	-	-		-	-	-	-	-		-	-		-	-	
ve Mean	or arrival	er.	P		ch hrs	1 150	1 140	1 130	1 120	1 110	1 100	1 90	1 80	1 70	1 60	1 50	1 40	1 30	1 20	1 10
Elapse	time or	volume	filled		Switch															
				Name		Upper limit 2.1	Upper limit 2.2	Upper limit 2.3	Upper limit 2.4	Upper limit 2.5	Upper limit 2.6	Upper limit 2.7	Upper limit 2.8	Upper limit 2.9	Upper limit 2.10	Upper limit 2.11	Upper limit 2.12	Upper limit 2.13	Upper limit 2.14	Illiner limit 2.15

RESULTS OF ADDITIVE STRATEGY INVESTIGATIONS

3

-	Waiting
	C
- 2	Ζ
	ı
	q
	down
	5
	IWOD
	_
	С
	C
	U U
	and cool
	F
	3
	eat
	ä
,	rehe
	ė
(ń
	G
	13

AM parts out	pcs.	66	66	66	67	67	67	67	67	67	67	67	67	143	143	144	144	144	144	144	144	144	144	144	144	425	426	427	426	426	428	428	429	429	430	431
perts in queue p total	pcs.	1	1	1	1	1	1	1	1	1	1	1	1	30	27	25		22	20	19	17	15	12	11	6	393	387	380	368	360	348	331	310	285	241	213
depre- ciation	J	58.980	58.972	58.971	58.976	58.993	58.986	59.017	58.995	59.028	59.053	59.046	59.052	59.871	59.868	59.822	59.818	59.829	59.877	59.814	59.854	59.875	59.777	59.765	59.800	60.084	60.108	60.161	60.104	60.158	60.152	60.188	60.168	60.216	60.170	60.202
Average building volume	mm3	369.616	370.158	371.097	370.908	368.927	368.890	369.636	369.636	369.511	370.283	373.226	370.328	384.320	382.398	378.831	377.154	382 323	376.987	389.392	384.200	382.907	387.570	385.319	390.728	386.274	386.353	390.392	382.641	394.896	389.324	381.254	381.805	389.408	380.614	387.065
Number in queue machine 2	pcs.	0,004	0,004	0,004	0,003	0,003	0,003	0,002	0,002	0,002	0,002	0,002	0,001	0,061	0,057	0,052	0,047	0,043	0,039	0,037	0,031	0,030	0,025	0,022	0,022	1,276	1,122	1,096	0,999	0,942	0,885	0,803	0,678	0,690	0,552	0,532
Waiting time in queue machine 2	hrs		1	1	1		1	1		1	1	1	1	35	36	33	33	31	30	30	27	30	33	32	36	55	50	49	47	45	43	41	37	39	38	42
Number in queue machine 1	pcs.	0,003	0,003	0,003	0,003	0,002	0,002	0,002	0,002	0,002	0,002	0,001	0,001	0,065	0,056	0,051	0,046	0,040	0,033	0,036	0,032	0,024	0,025	0,022	0,022	1,220	1,216	1,138	1,026	1,006	0,900	0,769	0,690	0,594	0,515	0,511
Weiting time in queue machine 1	hrs	100	1	1		100	1	1	101		1	1	1	36	35	36	34	32	30	31	31	30	31	34	39	23	53	51	47	48	44	40	38	37	37	41
lotal system utili- zation	R	22,51	21,35	20,19	19,02	17,79	16,61	15,44	14,26	13,07	11,91	10,78	9,54	47,76	45,25	42,75	40,27	38,02	35,34	33,37	30,73	28,22	25,93	23,31	21,06	92,09	91,30	89,76	87,74	86,42	83,90	80,68	77,76	74,08	68,90	64,22
oystem cool dawn	*		8,68	7,90	7,11	6,32	5,53	4,74	3,96		2,37	1,58	0,79	19,75	18,11	16,51	14,89	13,25	11,61	96'6	8,32	6,67	5,01	3,33	1,67	28,96	28,18	26,66	25,67	23,73	22,05	20,22	17,86	14,68	11,58	7,85
oystem utili- zation	ĸ		6,65	6,66	6,67	6,63	6,63	6,64	6,65	6,64	6,66	6,72	6,67	14,63	14,58	14,47	14,40	14,62	14,39	14,90	14,71	14,67		14,75	15,00		43,54	44,07	43,12	44,48	44,10	43,16	43,35	44,23	43,30	44,08
setup	%		2 6,02	1 5,63	5,24	7 4,84	4,45	8 4,06	3,66	3,27	9 2,87	3 2,48	2,08	13,38	5 12,56	5 11,77	3 10,97	10,15		5 8,51	5 7,71	6,88		5,22	4,39	9 19,66		9 19,04		8 18,21	17,76	17,30	5 16,56	15,17	2 14,02	7 12,30
cool cool down tracking 2	R			7,94	7,16	6,37	5,57	4,78	3,98			1,59	0,80	19,81	18,06	16,55	15,13	13,44	11,81	10,06	8,36	6,70		3,36	1,69	28,79		26,79	25,66	23,98	22,00	20,10	17,85	14,60	11,52	7,87
utili- utili- zation 2	×		6,84	6,88	6,90	6,83	6,83	6,86	6,86	6,85	6,91	7,00	6,88	14,66	14,62	14,67	14,74	14,96	14,94	15,30	14,76	14,99		14,74	15,29	43,86	42,73	43,83	43,11	44,16	44,37	43,66	43,27		43,86	43,93
setup tracking 2	R	6,42	6,04	5,66	5,27	4,88	4,48	4,08	3,69	3,29	2,89	2,49	2,09	13,42	12,53	11,80	11,15	10,30	9,51	8,60	7,74	6,92	6,05	5,26	4,44	19,54	19,85	19,13	18,93	18,40	17,72	17,21	16,55	15,09	13,95	12,32
down tracking 1	×	9,45	8,64	7,85	7,06	6,28	5,49	4,71	3,93	3,14	2,36	1,57	0,79	19,69	18,15	16,46	14,65	13,05	11,41	9,86	8,29	6,63	5,01	3,31	1,65	29,13	27,79	26,52	25,69	23,48	22,10	20,33	17,86	14,76	11,65	7,83
utili- zation 1	*	6,44	6,45	6,45	6,43	6,43	6,43	6,43	6,43	6,43	6,42	6,45	6,46	14,61	14,54	14,28	14,07	14,28	13,85	14,50	14,65	14,36	14,79	14,76	14,72	43,08	44,35	44,31	43,14	44,80	43,82	42,66	43,43	42,40	42,73	44,23
setup tracking 1	×	6,40	6,00	5,60	5,20	4,81	4,42	4,03	3,64	3,25	2,86	2,46	2,07	13,34	12,59	11,74	10,79	10,00	9,18	8,43	7,67	6,85	6,06	5,18	4,34	19,77	19,31	18,94	18,95	18,01	17,79	17,40	16,56	15,25	14,10	12,27
cost	ç	116.177	116.329	116.492	116.388	111.389	101.675	99.061	166.86	98.913	99.013	99.130	98.939	182.898	178.295	173.354	173.065	163.971	143.099	138.801	134.391	131.635	131.289	130.592	131.852	831.986	782.804	760.893	687.863	668.215	619.810	565.411	503.133	482.313	422.150	407.768
penalty	J	17.541	17.666	17.791	17.666	12.750	3.041	333	291	166	166	125	83	56.458	52.000	47.458	47.375	37.625	17.291	11.708	7.750	5.041	4.333	4.000	4.458	609.583	560.125	536.458	466.333	442.666	395.250	343.375	280.583	257.125	199.708	182.958
noran mainte- nance cost	J	57.698	57.690	57.689	57.694	57.710	57.704	57.734	57.713	57.745	57.769	57.762	57.768	58.570	58.567	58.521	58.518	58.528	58.575	58.514	58.553	58.573	58.478	58.466	58.500	58.778	58.801	58.853	58.797	58.850	58.845	58.890	58.860	58.907	58.862	58.893
operator cost	J	3.320	3.320	3.323	3.325	3.327	3.328	3,330	3.330	3.332	3.335	3.336	3.335	7.171	7.171	7.177	7.175	7.182	7.189	7.195	7.201	7.206	7.201	7.194	7.216	21.249	21.280	21.335	21.299	21.307	21.413	21.416	21,470	21.470	21.496	21.543
consumed energy cost	J	2.949	2.955	2.961	2.963	2.946	2.946	2.954	2.954	2.955	2.965	2.992	2.967	6.605	6.582	6.527	6.495	6.597	6.500	6.718	6.636	6.623	6.703	6.648	6.766	19.697	19.732	19.993	19.545	20.177	20.003	19.590	19.668	20.081	19.646	20.012
consumed uc material en cost	J	15.435	15.466	15,497	15.507	15.418	15,419	15,462	15.462	15.465	15.520	15.659	15.528	34.569	34.450	34,161	33,994	34.527	34.017	35.160	34.732	34.664	35.080	34,794	35.410	103.085	103.264	104.634	102.288	105.596	104.683	102.522	102.930	105.093	102.815	104.729
	kWh	49.156	49.254	49.354	49.386	49.103	49.106	49.245	49.245	49.251	49,428	49.871	49.453	110.093	109.716	108.795	108.262	109.960	108.337	111.976	110.611	110.396	1.721	110.809	112.771	328.297		333.231			333.386	326.503	327.804		327.438	333,533
al consumed			193 4	193 4	193 4	192 4	192 4	193 4	193 4		194	195 4	194 4	432 11	430 10	427 10	424 10	431 10	425 10	439 11	434 11	433 11		434 11	442 11	1.288 32		1.307 33	1.278 32	1.319 33	1.308 33	1.281 32	1.286 32	1.313 33	1.285 32	1.309 33
consumed material	kg	82	12	15	16	73	73	73	13		0																									
e rotar ware- housing cost				8 70.915	8 70.891	8 70.873	8 70.873	8 70.873	8 70.873	8 70.873	8 70.840	8 70.845	8 70.877	8 81.262	8 81.282	8 81.219	8 80.833	8 81.175	8 81.101	8 81.290	8 80.946	8 81.403	8 81.203	8 81.290	8 81.069	8 118.133	8 118.378	8 118.017	8 118.326	8 117.869	8 117.343	8 118.404	8 119.268	8 117.856	8 118.240	8 118.861
rt time e time	hrs	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Produc- tion start volume	2																																			
setup and cool down								2 18		8 12									4 21					4 6				0 30							6 9	
e cool	hrs			10 20	9 18	8 16	7 1.	6 12	5 10	4 8	3	2	1	12 24	11 22	10 20	9 18	8 16	7 14	6 12	5 10	4 8	6	2	1	12 24	11 22	10 20	9 18	8 16	7 14	6 12	5 10	4	3	2
Machine setup base time	hrs																																			
arrival	hrs			130	130	130	130	130	130		130		130		60		60		60									20							20	
tiapse time or volume filled	Switch	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Name		0-Preheat-Cooldown 1.1	0-Preheat-Cooldown 1.2	0-Preheat-Cooldown 1.3	0-Preheat-Cooldown 1.4	0-Preheat-Cooldown 1.5	0-Preheat-Cooldown 1.6	0-Preheat-Cooldown 1.7	0-Preheat-Cooldown 1.8	0-Preheat-Cooldown 1.9	0-Preheat-Cooldown 1.10	0-Preheat-Cooldown 1.11	0-Preheat-Cooldown 1.12	0-Preheat-Cooldown 2.1	0-Preheat-Cooldown 2.2	0-Preheat-Cooldown 2.3	0-Preheat-Cooldown 2.4	0-Preheat-Cooldown 2.5	0-Preheat-Cooldown 2.6	0-Preheat-Cooldown 2.7	0-Preheat-Cooldown 2.8	0-Preheat-Cooldown 2.9	0-Preheat-Cooldown 2.10	0-Preheat-Cooldown 2.11	0-Preheat-Cooldown 2.12	0-Preheat-Cooldown 3.1	0-Preheat-Cooldown 3.2	0-Preheat-Cooldown 3.3	0-Preheat-Cooldown 3.4	0-Preheat-Cooldown 3.5	0-Preheat-Cooldown 3.6	0-Preheat-Cooldown 3.7	0-Preheat-Cooldown 3.8	0-Preheat-Cooldown 3.9	0-Preheat-Cooldown 3.10	0-Preheat-Cooldown 3.11

Table 9-3: Results of two machines with fixed mater

232

Waiting
at and cool down -
d cool
eheat an
ial - Prel

AM parts out	DCS.	66	66		66	66	67	67	67	67	67	67	67	144	144	144	143	144	143	144	144			140				426		428		428	430	0.00
Parts in queue total	EG.		1	1 1	1	1	-	-	-		1	1	-			30				8 22				21	Ĩ				369	357	340			101
Machine depre- ciation	J		58.996	59.001	58.979	58.970			58.993	58.987		59.042	59.027	59.811	59.794	59.824				1			59.822	23.040		1		60.140		60.117	60.140	1	1	
Average building volume	"mu		369.419	370.764	370.780	370.470	369.021	368.957	369.544	369-507	370.104	369.823	370.342	381.438	397.926		377.175	383.311		395.551		- 1	378.121	200,600			384.953	388.096		387.166	384.042			
Number in queue machine 2	b.	0,005	0,004	0,004	0,004	£00/0	0,003	0,003	0,003	600/0	0,002	0,002	0,002	0,075	0,076	0,063	0,058	0,051	0,045	0,047	0,043	0,038	0,032	9000	1.303	1.194	1,126	1,054	1,013	0,908	0,843	0,759	0,725	
Waiting 1 time in ii queue n machine	~ su	1			1	1		1	1			1	1	34	37	35	37	34	35	35	30	29	28	8	32	22	25	48	47	44	42	39	38	2
Number in queue machine		0,003	0,003	0,003	0,003	0,002	0,002	0,002	0,002	0,002	0,002	0,001	0,001	0,074	0,069	0,065	0,054	0,050	0,045	0,041	0,033	0,029	0,027	0000	1 3 3 1	1,184	1,101	1,056	1,003	0,932	0,813	0,751	0,710	
Waiting N time in in queue m machine	L sh	1			1	1		1	1	-		1	1	33	36	36	36	36	34	32	29	28	29	97	23	22	49	48	47	44	41	39	38	1
System tir utili- q zation me		22,52	21,31	20,16	18,98	17,80	16,60	15,42	14,25	13,07	11,89	10,70	9,53	47,59	45,74	43,05	40,15	37,97	35,56	33,54	30,76	28,51	25,54	10 UC	91.16	89,96	88,50	86,84	84,75	82,41	79,23	76,44	73,13	
System T cool sy down u	*	9,46	8,67	7,89	7,10	6,32	5,53	4,74	3,95	3,16	2,37	1,58	791	19,69	18,03	16,49	14,83	13,22	11,56	9,92	8,29	6,65	5,00	t Lu u	28.49			24,78	22,99	21,38	19,37	17,07	14,18	
System S utili- zation o	8	6,66	6,63	6,65	6,65	6,65	6,62	6,63	6,64	6,64	6,65	6,65	6,66 0.	14,56	15,19	14,79	14,41	14,62	14,69	15,13	14,79	14,99	14,49	14 63	43.24	43.25	43,35	43,77	44,12	43,82	43,29	43,56	44,29	
System	*	6,41	6,01	5,62	5,23	4,84	4,45	4,05	3,66	3,26	2,87	2,47	2,08	13,34	12,51	11,76	10,92	10,13	9,31	8,49	7,68	6,87	6,05	77'C	10.33	1		18,29	17,64	17,21	16,57	15,82	14,66	
Machine cool down trackine 2	R	9,47	8,69	7,93	7,14	6,36	5,57	4,78	3,98	3,19	2,39	1,59	0.793	19,43	18,20	16,69	14,79	13,32	11,70	10,04	8,39	6,67	5,05	03 L	38.11	27,64	26,20	24,72	22,88	21,34	19,37	17,23	14,15	
Machine utili- zation 2 t	2	6,84	6,83	6,87	6,87	6,84	6,83	6,83	6,85	6,85	6,89	6,88	6,87 0	14,32	15,15	14,63	14,67	14,67	14,86	15,37	15,40	15,57	14,82	14 21	AA 37	43,27	43,75	43,89	44,66	43,72	43,40	43,24	44,80	
Machine N setup tracking 2 z	8	6,42	6,03	5,65	5,26	4,87	4,48	4,08	3,69	3,29	2,89	2,49	2,09	13,16	12,63	11,91	10,90	10,21	9,42	8,59	17,77	6,89	6,11	UV V	10.08	19.20	18,71	18,23	17,56	17,18	16,58	15,97	14,62	
Machine M cool tra down tra trackine 1	*	9,44	8,66	7,84	7,06	6,28	5,49	4,71	3,92	3,14	2,36	1,57	0.,788	19,95	17,87	16,30	14,86	13,12	11,43	9,81	8,20	6,63	4,95	1 67	28.86	27,48	26,49	24,85	23,10	21,41	19,37	16,90	14,22	
Machine M utili- zation 1 c tra	*	6,48	6,43	6,43	6,43	6,46	6,42	6,42	6,43	6,43	6,42	6,42	6,45 0.,	14,80	15,24	14,95	14,15	14,57	14,52	14,89	14,17	14,41	14,15	14.44	14 CP	43,23	42,95	43,64	43,58	43,93	43,18	43,88	43,78	
Machine Mi setup i tracking 1 za	~	6,40	6,00	5,59	5,20	4,81	4,41	4,02	3,63	3,24	2,85	2,46	2,07	13,52	12,39	11,62	10,95	10,05	9,19	8,38	7,59	6,85	5,99	02 V	19.50	19,10	18,91	18,34	17,72	17,25	16,57	15,66	14,70	
Cost Ma cost si trac		119.987	119.686	117.711	116.350	113.457	112.057	111 999	108.638	900.66	98.958	98.943	98.904	190.552	91 936	180.932	172.680	171.294	164.102	166.539	154.870	135.623	131.684	110.001	827 CA8	786.316	749.039	716.533	689.448	632.312	601.827	551.648	508.942	
Total Toti penalty c		208	21.041 1	19.000 11	17,666 1:	14.791 1			9.958 10	333	208	166	125	64.458 19	64.041 19	54.125 18	46.916 1		37.541 16	38.750 10			20 0	2 875 1				493.041 71	464.916 68	408.666 63	379.666 61	328.500 59		
	+	743	57.714 2	57.718 1	57.697 1	57.688 1				57.705	57.731	57.758	57.743	58.511 6	58.495 6		58.545 4	58.506 4	58.548 3				58.522	00.000	8			58.832 49	58.841 46	58.810 40	58.833 37	58.879 32		
tal Total ator mainte st nance cost	+	320	3.320 57	3.320 57	3.320 57	3.323 57			3.328 57	3.329 57	3.330 57	3.331 57	3.331 57	7.175 58	7.175 58	7.196 58	7.166 58	7.178 58		7.179 58			7.196 58	00 117./				21.318 58	21.345 58	21.387 58	21.329 58	21.395 58		
cost operator cost cost		2.962 3	2.947 3	2.957 3	2.957 3	2.955 3			2.952 3	2.952 3	2.958 3	2.957 3	2.960 3	6.561 7	6.854 7	6.670 7	6.503 7	6.594 7	6.629 7	6.827 7				0.020	ſ			19.849 21	20.010 21	19.868 21	19.634 21			
d Consumed energy cost	-																								ľ									
Consumed material cost	J	15.505	15.424	15.475	15.475	15,468	15.416	15.417	15,450	15.451	15.484	15.475	15.494	34,341	35.871	34.908			34,693	35.732	34,894	35,384	34.212	2/0/2	102.70	102.591	102.831	103.879	104.720	103.976	102.752	103.474		
Consumed energy	kwh	49.380	49.123	49.284	49.284	49.262	49.097	49.100	49.205	49.208	49.313	49.286	49.346	109.366	114.241	111.173	108.386	109.913	110.489	113.797	111.129	112.688	108.955	200 001	277 383	326.725	327.487	330.826	333.505	331.134	327.238	329.536	334.720	
Consumed Co material	, and the second	193	192	193	193	193	192	192	193	193	193	193	193	429	448	436	425	431	433	446	436	442	427	120	1 284	1.282	1.285	1.298	1.309	1.299	1.284	1.293	1.313	. 400
Total Con ware- mi sousing cost		70.967	70.958	70.914	70.914	70.858	70.876	70.873	70.873	70.873	70.833	70.836	70.826	80.873	80.902	81.761	81.483	80.852	80.739	81.035	80.982	80.856	80.924	200.05	117 000	118.452	118.834	116.921	118.312	117.647	118.504	118.273	117.891	
time w time of the	sul su	80		8 7	8 7				8	8 7	8 3	8 7		8 8		80	8		00	80	8			0 0	-	1		8 11	8 11	8 11	8 11	8 11	8 11	4
Produc- El tion start t volume	*	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	010	0.10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	
Sum of Pr setup tion and vo cool	down	36	33	30	27	24	21	18	15	12	6	9	m	36	33	30	27	24	21	18	15	12	6	D m	36	33	30	27	24	21	18	15	12	
Cool Si down s	5 L		22				14					4		24		20						00		* r		22						10		
Machine setup base time	şų	12	11	10	6	80	7	9	5	4	3	2	1	12	11	10	6	8	2	9	5	4	m	4 -	12	11	10	9	80	7	9	5	4	-
Mean arrival b:	ş	130	130	130	130	130	130	130	130	130	130	130	130	60	60	60	09	99	69	09	8	99	8	8 5	00	2 2	20	20	20	20	20	20	20	
Elapse time or volume filled	Switch	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1		1 -	-	-	-	1	1	1	1	1	1	
	T	in 1.1	in 1.2	in 1.3	in 1.4	in 1.5	vn 1.6	vn 1.7	vn 1.8	in 1.9	vn 1.10	n 1.11	vn 1.12	in 2.1	vn 2.2	vn 2.3	vn 2.4	vn 2.5	vn 2.6	un 2.7	vn 2.8	vn 2.9	vn 2.10	CI C ump	1 1 1	in 3.2	in 3.3	m 3.4	in 3.5	in 3.6	vn 3.7	vn 3.8	vn 3.9	
		-Preheat-Cooldown	1-Preheat-Cooldown 1.2	-Preheat-Cooldown 1.3	-Preheat-Cooldown 1.4	1-Preheat-Cooldown 1.5	-Preheat-Cooldown 1.6	I-Preheat-Cooldown 1.7	-Preheat-Cooldown 1.8	-Preheat-Cooldown 1.9	-Preheat-Cooldown 1.10	-Preheat-Cooldown 1.11	-Preheat-Cooldown 1.12	-Preheat-Cooldown 2.	-Preheat-Cooldown 2.2	1-Preheat-Cooldown 2.3	-Preheat-Cooldown 2.4	-Preheat-Cooldown 2.5	1-Preheat-Cooldown 2.6	1-Preheat-Cooldown 2.7	-Preheat-Cooldown 2.8	-Preheat-Cooldown 2.9	1-Preheat-Cooldown 2.10	Prohost-Cooldown 2.12	-Preheat-Cooldown 8	I-Preheat-Cooldown 3.2	1-Preheat-Cooldown 3.3	1-Preheat-Cooldown 3.4	-Preheat-Cooldown 3.5	1-Preheat-Cooldown 3.6	1-Preheat-Cooldown 3.7	-Preheat-Cooldown 3.8	-Preheat-Cooldown 3.9	
	Name	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehes	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehes	1 Drohoo	1-Drohees	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	1-Prehea	

Table 9-4: Results of two machines with fixed materia

	Elaps	Elapse Mean Machine	Machin	Cool	Sum of	Produc-	Elapse	Total	Consumed Co	Consumed Co	Consumed Co	Consumed	Total 1	Total	Total To	Total AM Ma	Machine Mar	Machine Mach	Machine Machine	tine Machine	ine Machine	ne System	m System	System	Total	Waiting N	Number V	Waiting N	Number Av	Average Ma	Machine Parts in	S in AM	_
	time or	or arrival	setup	down	setup	tion start	time	ware-	material	energy n	material ene	energy cost op	operator m	mainte-	penalty	cost se	ut at a nut	utili- cool	ol setup	util-	- cool	setup	ntil-	00	system	time in in	u dueue t	time in in	ananb	building de	depre- queue	ue parts	
	volume	e.	base time	ai.	pue	valume		housing			cast		r n	nance		trac	racking 1 zati	zation 1 down	wn tracking	ng 2 zation	n 2 down	-	zation	down	-ijto	ananb	machine	dueue m	machine vo	volume cia	ciation total	al out	
	filled	-			000			cost						cost				tracking	ing 1		tracking	5 2			zation	machine	1	machine	2				
Name					down																					1		2					_
	Switch	ch hrs	hrs	hrs		%	hrs	U	kg	kWh	J	J	J	J	J	¢	*	%	*	*	88	%	ĸ	%	æ	hrs	pcs.	hrs	pcs.	mm ³	C pcs.	5. pcs.	_
Start volume 1.1		1 60	0	4 8	3 12	1,00	8 0	81.118	437	111.557	35.029	6.693	7.184	58.516	8.833 1	135.762	6,83	14,10	6,62 (6,89 15,9	23	6,67 6,8	86 14,83	6,64	28,34	29	0,031	30	0,039 3E	87.930 5	59.816	19 144	_
Start volume 1.2		1 60	0	4 8	3 12	06'0	8	81.118	437	111.557	35.029	6.693	7.184	58.516	8,833 1	135.762	6,83	14,10	6,62 (6,89 15	15,57 6,	67 6	86 14,83	6,64	28,34	29	0,031	30	0,039 38	387.930 5	59.816	19 144	
Start volume 1.3		1 60	0	4	12	0,80	8	81.118	437	111.557	35.029	6.693	7.184	58.516	8.833 1	135.762	6,83	14,10	6,62 6	6,89 15,	57 6,	67 6,	86 14,83	6,64	28,34	29	0,031	30	0,039 38	387.930 5	59.816	19 144	
Start volume 1.4		1 60	0	4 00	3 12	0,70	8	81.118	437	111.557	35.029	6.693	7.184	58.516	8.833 1	135.762	6,83	14,10	6,62 (6,89 15,	57	6,67 6,8	86 14,83	6,64	28,34	29	0,031	30	0,039 38	87.930 5	59.816	19 144	
Start volume 1.5		1 60	0	4 8	3 12	09'0	8	81.118	437	111.557	35.029	6.693	7.184	58.516	8.833 1	135.762	6,83	14,10	6,62 (6,89 15	15,57 6,	6,67 6,8	86 14,83	6,64	28,34	29	0,031	30	0,039 38	387.930 5	59.816	19 144	
Start volume 1.6		1 60	0	4	3 12	0,50	8	81.118	437	111.557	35.029	6.693	7.184	58.516	8,833 1	135.762	6,83	14,10	6,62 6	6,89 15	15,57 6,	67 6,	86 14,83	6,64	28,34	29	0,031	30	0,039 38	387.930 5	59.816	19 144	
Start volume 1.7		1 60	0	4 8	12	0,40	8	81.118	437	111.557	35.029	6.693	7.184	58.516	8.833 1	135.762	6,83	14,10	6,62 6	6,89 15	15,57 6,	67 6,	86 14,83	6,64	28,34	29	0,031	30	0,039 38	387.930 5	59.816	19 144	
Start volume 1.8		1 60	0	4 8	3 12	0,30	8	81.118	437	111.557	35.029	6.693	7.184	58.516	8.833 1	135.762	6,83	14,10	6,62 (6,89 15	15,57 6,	6,67 6,8	86 14,83	6,64	28,34	29	0,031	30	0,039 38	387.930 5	59.816	19 144	
Start volume 1.9		1 60	0	4 8	3 12	0,20	8	81.118	437	111.557	35.029	6.693	7.184	58.516	8,833 1	135.762	6,83	14,10	6,62	6,89 15	15,57 6,	67 6,	86 14,83	6,64	28,34	29	0,031	30	0,039 38	387.930 5	59.816	19 144	
Start volume 1.10		1 60	0	4	12	0,10	8	80.856	442	112.688	35.384	6.761	7.183	58.502	8.291 1	135.623	6,85	14,41	6,63	6,89 15	15,57 6,	67 6,	87 14,99	6,65	28,51	28	0,029	29	0,038 35	391.798 5	59.802	19 144	
Start volume 1.11		1 60	0	4 8	8 12	00'0	8	80.996	442	112.624	35.364	6.757	7.189	58.558	6.916 1	134.305	6,81	14,56	6,59 (6,93 15,	38	6,71 6,8	87 14,97	6,65	28,49	29	0,026	29	0,037 39	391.545 5	59.860	18 144	_

Table 9-5: Results of two machines with fixed material - Start volume - Waiting

Table 9-6: Results of two machines with fixed material - Elapse time - Waiting

ू में ।		58,02	62,12	66,88	72,37	78,8	86,65	96,27	108,2	123,5	144,2	173	215,6	287,4	430,1	829.9
Parts in AM queue parts total out	pcs.	0 58	0 62	0 66	0 72	0 7	0 86	0 96	0 10	0 12	1,217 14	3,017	9,3 21	46,25 28	288,8 43	1268.4 82
2	pcs.	90065	59114	59122	59260	59317	59524	59618	59718	59697	59977 1.	59975 3,1	60083	60175 46	60222 28	59600 126
()	9	378652 5	377894 5	377660 5	377345 5	376304 5	376168 5	378985 5	379653 5	372004 5	384452 5	384379 5	393624 6	386703 6	384850 6	386716 5
er Average ts building ue volume	mm ^a	0 378	0 377	0 377	0 377	0 376	0 376	0 378	0 375	0 372	0,002 384	0,005 384	0,023 393	0,085 380	0,598 384	1.566 386
g Number of parts in queue	pcs.	1		1	1	-		1	1	-	0'(0'0				
Waiting time in queue	hrs	62	23	34	03	17	37	E	16	11	12		34 19,264	57 14,907	78 17,687	16 78.027
Total system utilization	%	11,579	12,423	13,334	14,403	15,647	17,137	19,073	21,446	24,341	29,042	35,029	44,194	58,457	84,078	99,446
System cool down	8	2,755	2,943	3,167	3,421	3,72	4,077	4,521	5,073	5,794	6,732	8,074	10,022	13,145	17,311	5,868
System utili- zation	%	5,871	6,305	6,752	7,296	7,923	8,682	9,703	10,915	12,195	14,654	17,543	22,386	29,268	43,599	85.483
System setup	3K	2,954	3,175	3,415	3,687	4,004	4,378	4,85	5,458	6,352	7,657	9,412	11,786	16,044	23,168	8.095
Machine cool down tracking 2	38	2,728	2,949	3,217	3,492	3,775	4,115	4,547	5,109	5,868	6,707	8,172	9,995	13,181	17,375	5.916
<i>a</i> 1	%	5,999	6,505	6,904	7,555	8,153	8,858	9,935	11,347	12,497	14,845	17,888	22,594	29,045	43,203	85.395
Machine Machine setup utili- tracking 2 zation 2	%	2,925	3,178	3,459	3,75	4,049	4,408	4,869	5,482	6,427	7,635	9,497	11,715	16,067	23,25	8.138
Machine cool down tracking 1	%	2,781	2,936	3,116	3,349	3,665	4,039	4,494	5,038	5,721	6,756	7,977	10,048	13,108	17,247	5.819
Machine utili- utili- 1 zation 1	%	5,743	6,105	6,6	7,036	7,693	8,506	9,47	10,483	11,893	14,462	17,198	22,179	29,491	43,996	85.572
Machine setup tracking 1	*	2,983	3,171	3,371	3,623	3,958	4,349	4,831	5,434	6,277	7,679	9,327	11,857	16,021	23,085	8,052
cost Machine cost setup tracking	6	96146	97749	99234	101237	103396	106276	109770	113943	118266	127048	136911	154963	188196	339234	2179000 2537724
Total penalty	6	0	0	0	0	0	0	0	0	0	291	583	2583	12541	115750	
Total mainte- nance cost	9	57723	57829	57837	57971	58028	58230	58322	58420	58399	58673	58671	58777	58866	58913	58304
Total operator cost	9	2900	3105	3344	3618	3940	4332	4813	5409	6176	7208	8647	10778	14370	21503	41495
Consumed energy cost		2611	2813	3011	3260	3543	3899	4362	4915	5490	6628	7933	10144	13282	19801	38420
Consumed material cost		13669	14724	15761	17062	18542	20405	22830	25724	28733	34688	41518	53087	69512	103628	201068
Consumed CC energy m	9	43532	46892	50196	54339	59053	64984	72710	81925	91508	110473	132223	169069	221375	330027	640346
	kg	170	184	197	213	231	255	285	321	359	433	518	663	868	1295	2513
- Consumed mg	ke	70168	70644	71356	72062	73008	74108	75354	76697	79230	81601	85260	90498	100304	117911	173380
se Total ware- housing cost	9	8 70	8 70	8 71	8 72	8 73	8 74	8 75	8 76	8 79	8 81	85	8 90	8 100	8 117	8 173
uc- Elapse time me	hrs	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0.10
ial Produc- e tion start volume	35	5	S	5	5 0	5 0	s 0	5 0	5	5 0	s 0	5 0	5	5 0	5 0	S
n Material change up time	u	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Cool Sum down of setup and cool	s hrs	00	80	00	80	00	80	80	00	00	80	80	80	00	80	00
	hrs	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	hrs	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
	Switch hrs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ellapse time o volum filled	Swi															
			2		4	5	9	2		6	10	11	12	13	14	15
s	ae	Ipper limit 1.1	pper limit 1.2	Ipper limit 1.3	pper limit 1.4	Ipper limit 1.5	Jpper limit 1.6	Ipper limit 1.7	Ipper limit 1.8	Upper limit 1.9	pper limit 1.10	Ipper limit 1.11	Jpper limit 1.12	Ipper limit 1.13	Upper limit 1.14	Upper limit 1.15
	Name	ddn	ddn	Upp	ddn	ddn	ddn	Upp	ddn	ddn	ddn	Upp	ddn	ddn	Upp	Upp

AM parts out		yi	57,95	62,07	66,78	72,3	78,7	86,55	96,22	107,8	123,3	143,9	172,7	216	287,2	429,5	822,8
E e		r. DC:	0 5	0	0 6	0	0	0 8	0	0 1	1 1	1,617 1	3,6 1	15,2	77,217 2	335,13 4	1261.5 8
Machine Parts depre- depre- total		pcs.	58937	59079	59109	59279	59290	59508	59612	59706	59798	59937 1	59984	60101	60178 77	60240 33	59398 12
Average Mi building de volume cia		n² €	382405	381125	378000	377651	376382	376490	383020	381270	370109	388278	385994	389858	382057	382680	384103
umber parts queue		s. mm ^a	0	0	0	0	0	0	0	0	0,001	0,003	0,008	0,03	0,126	0,718	1.525
Waiting Nu time in of queue in		hrs pcs.		1	1	ł		1	1			1	17,171	15,902	13,753	18,353	71,231
m		Ŧ	11,674	12,448	13,322	14,39	15,632	17,129	19,181	21,479	24,341	29,32	35,094	44,231	58,94	82,728	99,238
System Total cool syste down utiliz:		%	2,755	2,942	3,163	3,416	3,717	4,073	4,519	5,058	5,773	6,724	8,057	10,018	13,083	16,768	6,222
System S utili- o zation d		8 8	5,952	6,329	6,749	7,292	7,916	8,682	9'796	10,9	12,095	14,786	17,593	22,228	28,87	43,265	84,402
System setup		%	2,967	3,177	3,411	3,682	3,999	4,374	4,866	5,522	6,473	7,81	9,444	11,985	16,988	22,695	8.614
Machine 5 cool s down	tracking 2	8	2,736	2,95	3,216	3,488	3,769	4,112	4,51	5,145	5,813	6,774	8,024	10,133	12,947	16,697	6,105
		8	6,149	6,42	6,907	7,55	8,14	8,863	9,862	11,115	12,047	15,048	17,654	22,055	28,944	43,331	84,685
Machine Machine setup utili- tracking 2 zation 2		%	2,938	3,18	3,455	3,744	4,04	4,402	4,848	5,608	6,511	7,849	9,393	12,091	16,794	22,572	8,465
Machine I cool s down t	tracking 1	56 9	2,775	2,934	3,11	3,345	3,665	4,034	4,529	4,97	5,732	6,674	8,09	9,904	13,219	16,839	6,339
Machine I utili- zation 1 o		%	5,755	6,238	6,59	7,034	7,692	8,501	9,73	10,684	12,143	14,523	17,531	22,401	28,795	43,2	84,119
		%	2,996	3,175	3,366	3,62	3,958	4,345	4,883	5,436	6,436	7,771	9,495	11,878	17,181	22,818	8,763
Total AM Machine cost setup tracking 1		ę	96696	98576	100077	102295	104546	107452	111514	115453	120773	132704	144353	165857	214434	378359	2427780
Total penalty		÷	6 750	4 833	4 875	0 1041	1 1208	4 1208	6 1500	8 1583	8 2625	4 5666	0 7875	5 13875	9 39916	1 155791	58107 2073625
Total mainte- nance	cost	ę	37 57656	3 57794	9 57824	15 57990	58001	27 58214	0 58316	1 58408	58498	58634	32 58680	37 58795	58869	4 58931	
t operator cost		٩	3 2897	0 3103	0 3339	9 3615	0 3935	7 4327	3 4810	9 5391	2 6163	3 7195	8632	3 10797	1 14358	5 21474	7 41138
Consumed energy cost		,	2643	2820	3010	3259	3540	3897	4403	4909	5452	6683	7958	10073	13101	19655	37787
Consumed material cost			13833	14759	15752	17058	18527	20398	23044	25690	28534	34979	41647	52717	68564	102863	197753
Consumed Co energy m		ę	44054	47005	50168	S4326	59004	64964	73391	81817	90874	111398	132634	167890	218358	327590	629789
8		kg	172	184	196	213	231	254	288	321	356	437	520	658	857	1285	2471
. 10	**	kg	70158	70598	71306	72062	73008	74108	75355	77027	78751	81296	84755	90621	00403	117681	173816
Elapse Total time ware- housi	cost	پ د	8	80	00	90	80	80	00	60	8	80	00	80	8 10	8 11	8 17
òn	volume	hrs	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
rial ge	valı	%	5	5	5	5	s	5	5	S	5	5	5	S	S	5	5
			12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
-	and cool down	s hrs	80	80	00	60	00	00	00	60	80	00	00	60	00	00	00
Machine Cool setup down base time		s hrs	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Mean Mi arrival set ba:		hrs hrs	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
	filled	Switch	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Name		Upper limit 2.1	Upper limit 2.2	Upper limit 2.3	Upper limit 2.4	Upper limit 2.5	Upper limit 2.6	Upper limit 2.7	Upper limit 2.8	Upper limit 2.9	Upper limit 2.10	Upper limit 2.11	Upper limit 2.12	Upper limit 2.13	Upper limit 2.14	Upper limit 2.15

RESULTS OF TWO MACHINES WITH FLEXIBLE MATERIAL 2.2

Table 9-7: Results of two machines with flexible material - Upper limit - No waiting

Table 9-8: Results of two machines with flexible material - Upper limit - Waiting

waiting
No
1
t and cool down
cool
and
reheat
- Pre
terial

parts out	pcs.	72,17	72,2	72,22	72,22		72,28	72,32	72,35	72,37	72,42	72,42	72,48	214,8	215,1	215,4	215	215,4	215,3	215,2	215,5	215,6	215,8	216,2	216,4	426,3	427,1	427,8	428,2	428,3	429,2	430,3	428,6	430,1	429,6	430,4
queue total	pcs.	0	0	0	0	0	0	0	0	0	0	0	0	63,133	52,283	44,483	32,617	25,8	16,417	12,7	10,233	9,3	7,433	7,05	5,65	577,08	567,62	S50,82	531,17	488,97	441,87	401,12	342,1	288,8	239,05	60276 188,73
depre- ciation	e	59318	59310	59308	59287	59276	59280	59271	59273	59260	59283	59262	59256	60170	60165	60149	60134	60147	60073	60108	60064	60083	60039	60088	60077	60114	60110	60150	60185	60186	60254	60210	60184	60222	60265	60276
volume o	mm ²	378027	377842	377804	377804	377896	377678	377567	377424	377345	377342	377342	376410	384394	384013	388582	387634	395419	387215	382003	386087	393624	390166	394871	395626	385016	394151	385719	395469	388344	385779	391132	388784	384850	389825	391150
of parts b	pcs. n	0	0	0	0	0	0	0	0	0	0	0	0	0,125	0,093	0,075	0,054	0,047	0,033	0,029	0,024	0,023	0,015	0,016	0,012	2,017	1,909	1,679	1,561	1,299	1,103	0,953	0,753	0,598	0,506	0,374
queue ir	hrs p	1	1	1	1	1	1		1	1	1		1	16,589	15,21	13,843	13,658	14,99	16,282	19,327	18,368	19,264	16,009	18,394	16,868	30,04	28,918	26,204	25,255	22,815	21,429	20,34	18,873	17,687	17,991	16,752
Ę	Ŧ	24,584	23,318	22,043	20,772	19,502	18,23	16,957	15,68	14,403	13,125	11,846	10,557	74,232	70,624	67,108	62,988	59,507	55,231	50,984	47,486	44,194	40,355	36,857	33,148	98,474	98,332	98,045	97,665	96,747	94,894	92,794	88,86	84,078	78,29	72,28
-	%	10,223	9,377	8,527	7,677	6,826	5,977	5,126	4,274	3,421	2,566	1,711	0,86	29,502	27,204	24,788	22,341	19,89	17,478	14,975	2,513	10,022	7,539	5,029	2,519	30,935	29,787	29,634	28,206	27,463	25,813	23,419	20,625	17,311	13,283	9,158
zation down	*	7,28 10	7,282	7,283 8	7,285		7,291	7,293	7,294	7,296	7,299	7,301	7,293	21,76 25	21,764 2	22,052 2/	21,942 27	22,433	22,004 1	21,687 1/	1,925 1	22,386 10	22,243	22,532	22,587	43,322 30	44,434 25	43,525 25	44,65 20	43,808 27	43,583 21	44,347 2	43,921 20	43,599 1	44,04 1	44,256
setup uti	%	7,081	6,659	6,234	5,81	5,385	4,962	4,538	4,112	3,687	3,26	2,833	2,407	22,969	21,656 2	20,267 2	18,705 2	17,184 2	15,749 2	14,322 2	13,049 2	11,786 2	10,573 2	9,297 2	8,042 2	24,218 4	24,112 4	24,886 4	24,809	25,476 4	25,497 4	25,028 4	24,315 4	23,168 4	20,967	18,866 4
ding 2	2	10,443	9,579	8,709	7,841	6,972	6,103	5,233	4,362	3,492	2,62	1,747	0,87	29,334	27,483	24,909	22,302	19,986	17,582	14,973	12,592	9,995	7,543	5,034	2,543	30,938	29,586	29,865	28,386	27,414	25,906	23,423	20,635	17,375	13,229	9,186
	%	7,542	7,543	7,543	7,545	7,548	7,549	7,552	7,554	7,555	7,561	7,564	7,546	22,306	21,331	21,717	22,143	22,12	21,714	21,445	21,848	22,594	22,406	22,677	22,539	43,323	44,761	43,123	44,309	43,953	43,431	44,252	43,947	43,203	44,207	44,441
8 2	%	7,219	6,788	6,354	5,92	5,487	5,053	4,618	4,184	3,75	3,314	2,879	2,444	22,811	21,815	20,333	18,701	17,255	15,852	14,287	13,1	11,715		9,266	8,095	24,216	23,954		24,989	25,396	25,578	25,01	24,275	23,25		18,848
2 tu	%	10,003	9,175	8,344	7,512	6,681	5,851	5,019	4,185	3,349	2,513	1,676	0,84	29,67 2	26,925	24,668 2	22,38	19,794	17,374	14,978	12,433	10,048	7,534 3	5,024	2,495	30,932	29,987		28,027 2	27,512 2	25,72 2	23,415		17,247	13,336 2	9,13
	%	7,018 1	7,02	7,023	7,025	7,033	7,034	7,035	7,034	7,036		7,039	7,039	21,215	22,196 2	22,387 2	21,741	22,746 1	22,294 1	21,929 1	22,001 1	22,179 1	22,079	22,387	22,634	43,321 3	44,107 2		44,991 2	43,663 2	43,735	44,443 2	43,895 2	43,996 1	43,874 1	44,071
ng 1 zation 1	%	6,942 7	6,53	6,115 7	5,699 7	5,284 7	4,871 7	4,457	4,041	3,623 7		2,788 7	2,371 7	23,128 21	21,497 22	20,202 22	18,71 21	17,113 22	15,647 22	14,356 21	12,997 21	11,857 22	10,595 22	9,327 22	7,99 22	24,219 43	24,269 44	24,693 43	24,63 44	25,555 43	25,416 43	25,045 44	24,354 43		21,045 43	18,884 44
setup tracking 1	*											_									21 12															
y cost	£	41 119319	75 119146	119103	33 119076	66 113909	3333 104586	791 102037	0 101252	0 101237	0 101285	0 101258	0 101224	75 226145	33 220115	75 218954	91 213505	16 205058	41 178291	33 162269	08 1533	2583 154963	2333 154208	1875 154708	1041 154014	50 747396	41 726354	50 643167	91 605524	63 530889	58 483960	16 442485	16 382097	50 339234	33 318674	00 286042
penalty	÷	18041	11 17875	17833	8 17833	8 12666			22	11	14	4	.00	52 75375	57 69333	11 67375	7 62291	9 52416	57 27041	11833 11833	8 27					8 525250	33 S01041		16 379291	77 307083	14 260458	216916	5 157916	-	-	60500
nainte- nance cost	e	8 58029	0 58021	0 58019	0 57998	L	4 57991	5 57983	7 57985	8 57971	X0 57995	0 57974	4 57968	0 58862	3 58857	9 58841	9 58827	9 58839	6 58767	9 58802	2 58758	8 58777		0 58781	1 58771	3 58808	5 58803		9 58876	5 58877	0 58944	2 58901	8 58875	3 58913	7 58955	1 58966
operator	e	3608	3610	3610	3610	3611	3614	3615	3617	3618	3620	3620	3624	3 10740	10753	3 10769	10749	10769	10766	10759	1077	10778		10810	3 10821	21313	21355		21409	21415	1 21460	21512	3 21428	21503	21477	21521
energy cost		3256	3256	3256	3256	3258	3259	3259	3260	3260	3262	3262	3258	9873	9874	10003	9951	10174	9966	9830	9929	10144	10070	10210	10233	19639	20141	19743	20265	19874	19804	20136	19933	19801	20014	20117
erial	e	17041	17043	17044	17044	17054	17057	17059	17061	17062	17075	17075	17050	51672	51677	52351	52077	53245	52160	51444	51965	53087	52703	53435	53554	102782	105409	103326	106056	104011	103643	105383	104317	103628	104742	105281
2	e	54270	54277	54280	54280	54313	54323	54330	54336	54339	54379	54379	54302	164562	164578	166723	165851	169572	166115	163835	165494	169069	167844	170177	170557	327333	335699	329064	337758	331246	330076	335616	332222	330027	333575	335291
energy	kg	213	213	213	213	213	213	213	213	213	213	213	213	645 16	645 16	654 1(650 1(665 16	652 16	643 1(649 1(663 10	658 16	667 13	669 1	1284 33	1317 30	1291 33	1325 33	1300 33	1295 33	1317 3:	1303 33	1295 33	1309 33	1316 33
material	kg																				Ĵ						13	12	13					12	13	
ware- housing cost	£	72062	72062	72062	72062	72062	72062	72062	72062	72062	72059	72059	72120	90639	90727	91382	90863	90832	90450	90856	90533	90498	91065	91289	91075	117791	118680	118588	118547	118499	118625	118142	118088	117911	118968	118682
time	hrs	80	00	90	00	00	90	90	00	80	90	90	00	80	80	00	90	90	00	00	80	80	80	00	00	00	90	00	60	00	90	80	80	00	90	00
tion start volume	%	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
time time		5	5	S	5	5	5	S	5	5	2	5	5	5	5	2	5	ŝ	5	5	5	S	5	5	5	5	S	s	5	5	S	5	5	5	S	5
of df setup ti and cool down	hrs	36	33	30	27	24	21	18	15	12	6	9	m	36	33	30	27	24	21	18	15	12	6	9	m	36	33	30	27	24	21	18	15	12	0	9
down	hrs	24	22	20	18	16	14	12	10	80	9	4	2	24	22	20	18	16	14	12	10	80	9	4	2	24	22	20	18	16	14	12	10	00	9	4
setup base time		12	11	10	m	00	7	9	s	4	en	2	"	12	11	10	o,	00	7	9	s	4	m	2	1	12	11	10	6	00	7	9	0	4	m	~
arrival sel ba	hrs hrs	120	120	120	120	120	120	120	120	120	120	120	120	40	40	40	40	40	40	40	40	40	40	40	40	20	20	20	20	20	20	20	20	20	20	20
time or a volume filled	Switch h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	<u>~1</u>	1.1	12	13	1.4	15	1.6	1.7	1.8	1.9	1.10	1.11	1.12	2.1	22	23	2.4	2.5	2.6	2.7	2.8	2.9	2.10	2.11	2.12	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	3.10	3.11
		0-Preheat-Cooldown 1	0-Preheat-Cooldown 1	0-Preheat-Cooldown 1	0-Preheat-Cooldown 1.4	0-Preheat-Cooldown 1.5	0-Preheat-Cooldown 1.6	0-Preheat-Cooldown 1.7	0-Preheat-Cooldown 1.8	0-Preheat-Cooldown 1.9	0-Preheat-Cooldown 1.10	0-Preheat-Cooldown 1.11	0-Preheat-Cooldown 1.12	0-Preheat-Cooldown 2	0-Preheat-Cooldown 2.2	0-Preheat-Cooldown 2.3	0-Preheat-Cooldown	0-Preheat-Cooldown 2.5	0-Preheat-Cooldown 2.6	0-Preheat-Cooldown 2.7	>Preheat-Cooldown 2.8	0-Preheat-Cooldown 2.9	0-Preheat-Cooldown 2.10	0-Preheat-Cooldown 2.11	0-Preheat-Cooldown 2	0-Preheat-Cooldown 3	0-Preheat-Cooldown 3.2	0-Preheat-Cooldown 3.	0-Preheat-Cooldown 3.4	0-Preheat-Cooldown	0-Preheat-Cooldown 3.6	0-Preheat-Cooldown 3	0-Preheat-Cooldown 3	0-Preheat-Cooldown	0-Preheat-Cooldown 3.10	0-Preheat-Cooldown 3.11
		at-Co	at-Co	at-Co	at-Co	eat-Co	sat-Co	pat-Co	eat-Co	eat-Co	eat-Co	pat-Co	nat-Co	pat-Co	eat-Co	eat-Co	sat-Co	hat-Co	eat-Co	eat-Co	sat-Co	at-Co	at-Co	at-Co	sat-Co	eat-Co	sat-Co	at-Co	eat-Co	eat-Co	at-Co	eat-Co	eat-Co	sat-Co	hat-Co	Pat-Co

Table 9-9: Results of two machines with flexible mate

ool down - Waiting	
erial - Preheat and cool down - W	

AM parts out	DCS.	72,1	72,15	72,17	72,18	72,2	72,22	72,22	72,25	72,3	72,35	72,35	72,38	123	123,4	123,2	123,3	123,3	123,1	123,2	123,2	123,3	123,2	123,5	123,4	426,2	426,8	426,1	427,5	428,4	427,8	429,4	428,6	429,5	430,7	429,7
- c 2			0	0	0	0	0	0	0	0	0		0	1,533	1,183		1,317	1,1	1,15	1,45	1	1		0	-	580,97	_	\$55,35	540,08	513,1	477,02	439,03			296,75	255,45
Machine Pa depre- ciation to	pcs.	59357	59342	59332	59316	59303	59300	59279	59276	59279	59287	59266	59271	59866	59883	59836	59849	59839	59779	59776	59852	59798	59755	59827	59796	60152 5	60095 5	60135 5	60213 5	60191	60225 4	60247 4	60206 3	60240 3	60279 2	60252 2
a i e	mm ²	376635	377851	378027	377949	377842	377804	377804	377815	377651	377424	377424	377458	385179	379406	393092	388576	387293	376280	400353	382625	370109	379930	378882	379299	390000	386218	383226	386317	382249	387386	389732	384726	382680	385172	387584
arts ureue		0	0	0	0	0	0	0	0	0	0	0	0	0,005	0,003	0,004	0,003	0,002	0,002	0,003	0,001	0,001	0,001	0	0	2,032	1,864	1,691	1,541	1,353	1,183	1,033	0,854	0,718	0,617	0,489
a a	s pcs.	1	1	1	-	1	1		1	1	1	1	***	19,4	13,741	16,131	14,03		-	1	-		4,094	1	1	30,108	28,091	26,177	24,507	22,665	21,289	20,225	18,973	18,353	17,654	16,298
a tion	24	24,517	23,286	22,023	20,754	19,484	18,208	16,935	15,664	14,39	13,113	11,835	10,557	42,34	39,972	38,185	35,978	33,815	31,207	29,876	26,985	24,341	22,453	20,17	17,988	98,004	97,71	97,246	96,621	95,281	93,389	91,005	87,312	82,728	77,937	72,205
e	*	10,207	9,365	8,517	7,669	6,821	5,969	5,118	4,268	3,416	2,564	1,71	0,86	17,268	15,865	14,41	12,98	11,54	10,089	8,656	7,207	5,773	4,329	2,891	1,444	30,398	29,97	29,471	28,265	27,042	25,021	22,692	20,099	16,768	13,018	8,929
E c	20		7,271	7,278	7,281	7,283	7,284	7,286	7,291	7,292	7,292	7,295	7,298	12,58 1	12,348 1		12,654	12,663	12,28 1	13,098	12,483	2,095	12,421		12,398	43,762 3		43,045 2	43,491 2	43,159 2	43,662 2	44,039 2				43,83
system syste setup utili- zatio	8		6,65	6,227	5,804	5,381	4,955	4,531	4,106	3,682	3,256	2,83	2,403	12,492	11,76 1		10,344 1	9,612 1	8,838	8,122 1	7,295 1	6,473 1	5,703 1		4,146 1	23,844 4	_	24,729 4	24,865 4	25,08 4	24,706 4	24,274 4			~	19,446
actime ool seking 2		10,415	9,553	8,701	7,833	6,967	6,097	5,228	4,358	3,488	2,617	1,745	0,87	17,378	15,88	14,454	13,033	11,644	10,166	8,682	7,261	5,813	4,367	2,975	1,463	30,349	_		28,173	27,234	25,028	22,536	-			8,966
	1	7,478	7,509	7,54	7,542	7,544	7,543	7,546	7,549	7,55	7,552	7,555	7,559	12,574	12,302	12,656	12,597	12,776	12,583	13,64	12,541	12,047	12,528	12,865	12,513	43,904	43,297	43,44	43,655	42,734	43,637	44,363	43,315	43,331	43,539	43,48
macume macune setup utili- tracking 2 zation 2	8	7,199	6,769	6,346	5,913	5,481	5,046	4,613	4,178	3,744	3,309	2,874	2,438	12,574	11,761	11,099	10,389	9,684	8,884	8,098	7,345	6,511	5,738	5,026	4,185	23,783	24,332	24,57	24,782	25,237	24,699	24,028	23,766	22,572	21,277	19,476
mecrime me cool set down tra tracking 1	28	9,999	9,177	8,334	7,506	6,674	5,842	5,009	4,177	3,345	2,511	1,674	0,84	17,159	15,85	14,367	12,927	11,436	10,011	8,63	7,152	5,732	4,291	2,806	1,425	30,447	29,835	29,653	28,357	26,85	25,014	22,849	20,081	16,839	13,007	8,892
utili- co zation 1 do tr	28	7,005	7,033	7,017	7,019	7,021	7,024	7,026	7,033	7,034	7,033	7,035	7,037	12,585	12,394	12,785	12,711	12,55	11,977	12,556	12,425	12,143	12,314	11,88	12,283	43,62	43,709	42,651	43,328	43,585	43,688	43,714	43,531	43,2	43,834	44,18
	*	6,938	6,531	6,108	5,695	5,28	4,865	4,449	4,034	3,62	3,204	2,787	2,369	12,41	11,758	11,008	10,299	9,539	8,793	8,147	7,245	6,436	5,669	4,788	4,107	23,906	24,142	24,888	24,948	24,922	24,712	24,521	23,813	22,818	21,188	19,415
cost setup tracking	*	122774	122959	120212	119319	116887	115427	115025	110536	102295	102062	101243	101265	160045	157407	156020	155201	150953	145844	148344	137610	120773	120861	119005	119023	757439	701902	644041	592105	546118	500427	467518	420286	378359	347907	294244
penalty co	Y	21541	21666	18916	18041	15625	14166	13791	9291	1041	791	0	0	40416	38375	36041	35375	31125	27208	27416	18250	2625	1875	0	0	533958	479291	422625	369083		276875	242750			123958	70041
mainte- pance cost	ų	58067	58052	58042	58027	58014	58011	57991	57988	57990	57998	57978	57982	58564	58581	58535	58548	58538	58479	58477	58551	58498	58456	58526	58496	58844	58789	58827	58904	58883	58915	58938	58897	58931	58969	58942
operator n cost cost	-	3605	3607	3608	3609	3610	3610	3610	3612	3615	3617	3617	3619	6151	6167	6157	6164	6164	6152	6158	6160	6163	6158	6174	6167	21310	21341	21305	21376	21419	21391	21468	21428	21474	21533	21482
energy cost of	Ű	3241	3253	3256	3256	3256	3256	3256	3259	3259	3260	3260	3262	5677	5575	5739	5711	5713	5536	5903	5636	5452	5596	5582	5592	19846	19713	19519	19749	19589	19829	20007	19711	19655	19859	19913
erial	Ÿ	16963	17028	17041	17042	17043	17044	17044	17055	17058	17061	17061	17073	29712	29180	30034	29887	29899	28973	30896	29496	28534	29289	29212	29268	103865	103169	102153	103356	102515	103776	104707	103157	102863	103930	104216
2	-	54022	54229	54270	54274	54277	54280	54280	54317	54326	54336	54336	54373	94626	92931	95652	95183	95221	92273	98395	93936	90874	93279	93034	93210	330780	328565	325329	329159	326483	330499	333463	328528	327590	330987	331898
	ki.	212	212	213	213	213	213	213	213	213	213	213	213	371	364	375	373	373	362	386	368	356	366		365	1298 3		1276 3	1291 3		1297 3	1308 3				1302 3
	ke	66	51	62	62	62	62	62	62	62	69	65	65	124	131	59	170	03	45	50	193	51	47	84	38											
ware- housing cost			8 72051	8 72062	8 72062	8 72062	8 72062	8 72062	8 72062	8 72062	8 72059	8 72059	8 72059	8 78424	8 78831	8 78959	8 78870	8 78703	8 78845	8 78450	8 78493	8 787	8 79147		8 79038	8 118625	8 117711	8 119165	8 117701	8 118045	8 117741	8 118049	8 118187	8 117681		8 117761
	ŗ	2	10	10	10	10	10	10	10	01	10	10	10	10	10	10	10	10	10	10	10	10	10	9	5	10	10	10	10	10	10	10	10	10	10	10
-	*	5 0,10		5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10	5 0,10		5 0,10	5 0,10		5 0,10	5 0,10		5 0,10	5 0,10				S 0,10
change time		9	33	30	27	4	21	18	5	2	6	9	6	36	33	30	2	4	21	18	5	12	0	9	m	36	33	30	2	24	1	90	15	12	6	9
	Ë								0 15								8 27	6 24					9						8 27		4 21	2 18				
down	Ë	24				16		12					2		22		18			12							22				2.77		10		-	4
up e time		12	11	10	9	00	7	6	S	4	m	2	1	12	11	10	6	00	7	9	5	4	m	2	1	12	11	10	σ,	00	7	9	S	4	m	2
an an	hrs hrs	120	120	120	120	120	120	120	120	120	120	120	120	70	70	70	70	70	70	70	70	70	70	20	70	20	20	20	20	20	20	20	20	20	20	20
L 0	Switch H	1	1	1	1	1	1	1	-	1	-1	-	1	1	1	1	1	1	1	1	1	1		-1	-1	1	1		1	1	1	-	1	1		F
	1	Wn 1.1	wn 1.2	wn 1.3	wn 1.4	wn 1.5	wn 1.6	wn 1.7	wn 1.8	wn 1.9	wn 1.10	wn 1.11	wn 1.12	wn 2.1	wn 2.2	wn 2.3	wn 2.4	wn 2.5	wn 2.6	Wn 2.7	wn 2.8	own 2.9	wn 2.10	wn 2.11	wn 2.12	wn 3.1	wn 3.2	wn 3.3	wn 3.4	wn 3.5	wn 3.6	WI 3.7	wn 3.8	wn 3.9	wn 3.10	Wn 3.11
		1-Preheat-Cooldown	-Preheat-Cooldown 1.2	L-Preheat-Cooldown 1.3	1-Preheat-Cooldown 1.4	-Preheat-Cooldown 1.5	1-Preheat-Cooldown 1.6	1-Preheat-Cooldown 1.7	1-Preheat-Cooldown 1.8	-Preheat-Cooldown 1.9	-Preheat-Cooldown 1.10	I-Preheat-Cooldown 1.11	1-Preheat-Cooldown 1.12	1-Preheat-Cooldown 2.1	L-Preheat-Cooldown 2.2	1-Preheat-Cooldown 2.3	1-Preheat-Cooldown 2.4	1-Preheat-Cooldown 2.5	1-Preheat-Cooldown 2.6	L-Preheat-Cooldown 2.7	-Preheat-Cooldown 2.8	-Preheat-Cooldov	L-Preheat-Cooldown 2.10	I-Preheat-Cooldown 2.11	L-Preheat-Cooldown 2.12	L-Preheat-Cooldown 3.1	LPreheat-Cooldown 3.2	1-Preheat-Cooldown 3.3	1-Preheat-Cooldown 3.4	-Preheat-Cooldown 3.5	1-Preheat-Cooldown 3.6	1-Preheat-Cooldown 3.7	-Preheat-Cooldown 3.8	L-Preheat-Cooldown 3.9	1-Preheat-Cooldown 3.10	1-Preheat-Cooldown 3.11

Table 9-10: Results of two machines with flexible mater

Waiting
volume -
l - Start
ateria

AM				vi	123,3	123,3	123,3	123,3	123,3	123,3	123,3	123,3	123,3	123,3	123,3
Parts in AM				s. pcs.	1	1	1	1	1	1	1	1	1	1	1
Machine Pa denre- ou	_			pcs.	59845	59845	59845	59845	59845	59845	59845	59845	59845	59798	59750
Average Mi building de				n ²	372761	372761	372761	372761	372761	372761	372761	372761	372761	370109	378191
	62			mm ³	0,001 3	0,001 3	0,001 3	0,001 3	0,001 3	0,001 3	0,001 3	0,001 3	0,001 3	0,001 3	0,001 3
N Jo				pcs.		-	-	-			-				4,06 0
F	L.			hrs	24,424	24,424	24,424	24,424	24,424	24,424	24,424	24,424	24,424	24,341	24,476
em Total sostem				28	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,773	5,778
System System utili- cool				*	12,179	12,179	12,179	12,179	12,179	12,179	12,179	12,179	12,179	12,095 5	12,273 5,
c				8	6,475 12	6,475 12	6,475 12	6,475 12	6,475 12	6,475 12	6,475 12	6,475 12	6,475 12	6,473 12	6,425 12
hine		tracking 2		8	5,791 6	5,791 6	5,791 6	5,791 6	5,791 6	5,791 6	5,791 6	5,791 6	5,791 6	5,813 6	5,594 6
		trad		8	12,127	12,127	12,127	12,127	12,127	12,127	12,127	12,127	12,127	12,047	12,58
ne Machine utili-	tracking 2 zation 2	1		8	6,49 12	6,49 12	6,49 12	6,49 12	6,49 12	6,49 12	6,49 12	6,49 12	6,49 12	6,511 12	6,167 1
e Machine	trackin	11		*											
Machine	down	tracking 1		%	1 5,749	1 5,749	1 5,749	1 5,749	1 5,749	1 5,749	1 5,749	1 5,749	1 5,749	3 5,732	5 5,962
Machine utili-	zation 1			*	12,231	12,231	12,231	12,231	12,231	12,231	12,231	12,231	12,231	12,143	11,965
æ	ng 1			*	6,46	6,46	6,46	6,46	6,46	6,46	6,46	6,46	6,46	6,436	6,683
Total AM Machin cost setup					122109	122109	122109	122109	122109	122109	122109	122109	122109	120773	120229
Total T nenalty c				9	3625	3625	3625	3625	3625	3625	3625	3625	3625	2625	1666
Total To mainte- n		cost		e	58544	58544	58544	58544	58544	58544	58544	58544	58544	58498	58451
Total To onerator m		ő		ę	6165	6165	6165	6165	6165	6165	6165	6165	6165	6163	6164
Consumed To energy cost on				ę	5496	5496	5496	5496	5496	5496	5496	5496	5496	5452	5528
Consumed Cor material and				ę	28763	28763	28763	28763	28763	28763	28763	28763	28763	28534	28934
				e	91603	91603	91603	91603	91603	91603	91603	91603	91603	90874	92148
ed Consumed				kg	359	359	359	359	359	359	359	359	359	356	361
Consumed material				kg		10	10	10	10	10	10	100	10		-
Total ware-	housing	cost		ę	8 78746	8 78746	8 78746	8 78746	8 78746	8 78746	8 78746	8 78746	8 78746	8 78751	8 78957
Elapse time				hrs	1 8										
Produc- tion	start	volume		*	5	5 0,90	5 0,80	5 0,70	5 0,60	5 0,50	5 0,40	5 0,30	5 0,20	5 0,10	5 0,00
Material	time														
Sum of	setup	and	down	hrs	8 12	8 12	8 12	8 12	8 12	8 12	8 12	8 12	8 12	8 12	8 12
e Cool down				hrs	4	4	4	4	4	4	4	4	4	4	4
Mean Machine arrival setun				hrs	70	70	70	70	70	70	70	70	70	0	70
e Mean or arrival				h hrs	1	1	1 7	1 3	1	1	1	1 7	1	1	1
Elapse time or	volume	filled		Switch											
			Name		Start volume 1.1	Start volume 1.2	Start volume 1.3	Start volume 1.4	Start volume 1.5	Start volume 1.6	Start volume 1.7	Start volume 1.8	Start volume 1.9	Start volume 1.10	Start volume 1.11

Table 9-12: Results of two machines with flexible material - Elapse time - Waiting

$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	AM parts	ť	pcs.	123,1	123,2	123,3	123,2	123,3	123,4	123,3	123,2	123,4	123,4	123,4	123,5	123,6
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	eue pa				1 1	1 1	1 1	1 1	1 1	1 1	1 1	0 1			0 1	0 1
Notice field Total Cotal Total	₹.		a		59824	59911	59836	59798	59861	59810	59759	59766	59680	59784	59801	59717
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $				400099	385888	381935	378446	370109	377883	376270	380066	379858	373626	373839	375655	373541
		ananb		0,002	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0	0	0	0	0
				-	-		6,688	-				2,939			1	-
Image of consumed for the material production featore material for the material production from the material for the ma	fotal ystem	utilization		25,469	24,946	24,776	24,622	24,341	24,552	24,482	24,623	24,596	24,41	24,341	24,408	24,406
Image Cool Summaterial Productor Elaboration Cotal Total Total Total Total Total Total Total Total Machine Machine <td></td> <td>-</td> <td></td> <td></td> <td>5,77</td> <td></td> <td>5,766</td> <td>5,773</td> <td>5,772</td> <td>5,771</td> <td>5,772</td> <td>5,781</td> <td>5,791</td> <td>5,779</td> <td>5,785</td> <td>5,794</td>		-			5,77		5,766	5,773	5,772	5,771	5,772	5,781	5,791	5,779	5,785	5,794
Image Cool Sum Material Produc Elastic material Consumed Consumed Total Total Total Total Total Total Machine Machine<	System utili-	zation	8		12,592	12,46	12,348	12,095	12,307	12,279	12,423	12,401	12,229	12,207	12,282	12,259
ImageCoolSumMaterialProductElapseTotalConstantedTotalTotalTotalTotalMachinefootkeupviuumkeupviuumkeupviumkeupviumkeupviumkeupviumkeupviumkeupviumkeupview				6,629	6,585	6,551	6,507	6,473	6,473	6,433	6,428	6,414	6,39	6,355	6,342	6,352
meCoolSumMaterialFordureElayeTotalConsumedTotalTotalTotalTotalTotalMachineMachi		20				5,853	'n							5,87	5,86	5,859
Image Consumed Consumed Consumed Consumed Consumed Consumed Consumed Consumed Consumed Total Total Total Total Total Total Machine Ma	Machine utili-	zation 2	×												12,737	12,543
me Cool Sum Material Total Total Total Total Total Total Total Machine <	Machine setup		%												6,415	6,418
Inc Cold Sum Material Product Elapse Total Total Total Total Total Total Total Total Material Material Material Material Material Total Total Total Total Total Material Material Material Material Material Total Total Total Material Materia	Machine cool	22	%												5,71	5,73
Inc Cool Sum Material Froduc. Elapse Total Material Total Total Total Total Total Material Material Material Total Total Total Total Material	Machine utili-	zation 1	%												11,827	11,976
	Machine setup	tracking 1	%		6,52		6,50					6,4			6,268	6,286
Inc Cool Sum Material Froduc. Elase Total Consumed Consumed Total	Total AM cost		9			-	-			-	-		-	-	118704	118490
Inc. Constanted Fordured Total Total Total Total down of change tion time ware- material constanted Total material imade textup time start hueating material energy cost operator nand imade textup time start hueating energy cost operator nand imade textup time start hueating energy cost operator nand imade textup time start hueating material energy cost operator nand imade textup time start hueating energy cost operator cost operator cost	Total penalty		ę												1 0	9 0
Inc Cool Sum Material Froduc- Elapse Total Consumed Const Const Const <		nance cost	9												6 58501	8 58419
Ine Cool Sum Material Product Elapse Total Consumed Const Consumed Const		cost	9												6176	1 6178
	Consumed energy cost		,					545						550	5538	5521
Ine Cool Sum Material Product Elapse Total Consurmed down of change tion time ware- material energy and of change tion time ware- material energy and cool start volume time ware- material energy hrs hrs hrs ps time start oot start down ps time volume ps start oot start partial d B 12 5 0.10 12 78595 385 93821 d B 12 5 0.10 12 78595 363 93821 d B 12 5 0.10 12 78867 368 93821 d B 12 5 0.10 13 79247 368 92563		cost		30868	29742	29459	29158	28534	29065	28974	29294	29242	28789	28801	28987	28898
Ine Cool Sum Material Produc- Elapse Total Consumed down of change tion time ware- material imad and cool start busing time material imad and cool start busing material imad bran ycolume start busing material imad down ycolume start busing material imaterial and ycolume start busing material imaterial start ycolume start start busing imaterial down ycolume start start start imaterial down ycolume imaterial start start start imaterial down ycolume imaterial start start start start imaterial imaterial imaterial imateri				98306	94719	93821	92862	90874	92563	92275	93293	93127	91685	91724	92315	92032
Ine Cool Sum Material Product Elapse Total down of change tion time ware- and start start housing ware- and cool start housing ware- hrs hrs start start start down of cool y hrs start 4 8 12 5 0,10 12 78596 4 8 12 5 0,10 12 78596 4 8 12 5 0,10 12 78596 4 8 12 5 0,10 7 79577 4 8 12 5 0,10 7 79277 4 8 12 5 0,10 7 79277 4 8 12 5 0,10 7 79277 4 8 <td></td> <td></td> <td></td> <td>385</td> <td>371</td> <td>368</td> <td>364</td> <td>356</td> <td>363</td> <td>362</td> <td>366</td> <td>365</td> <td>359</td> <td>360</td> <td>362</td> <td>361</td>				385	371	368	364	356	363	362	366	365	359	360	362	361
Ine Cool Sum bown Material Product Elapse time down of change time start time and cool start time start time hrs hrs start y hrs start 4 8 12 5 0,10 11 4 8 12 5 0,10 10 4 8 12 5 0,10 10 4 8 12 5 0,10 7 4 8 12 5 0,10 7 4 8 12 5 0,10 7 4 8 12 5 0,10 6 4 8 12 5 0,10 6 4 8 12 5 0,10 6 4 8 12 5 0,10 3		ousing		78595	78596	78867	78963	78751	79277	79156	79120	79161	79095	79183	79111	79503
Ine Cool Sum and cool Material change Productano ime and cool change tion hrs ime start hrs hrs rs outon hrs hrs start outon 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10 4 8 12 5 0.10		10		12	11	10	6	80	2	9	5	4	3	2	1	0
Ine Cool Sum Material ime down of change ime setup time and cool time hrs hrs 12 5 4 8 12 5 5 4 8 12 5 5 4 8 12 5 5 4 8 12 5 5 4 8 12 5 5 5 4 8 12 5 5 5 5 4 8 12 5 5 5 5 5 4 8 12 5		olume		0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Ine Cool Sum down of setup and cool and hrs hrs 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12			2	5	5	s	5	5	5	S	s	5	5	S	50	5
Tree Cool ima down ima 4 4 4 4 8 4 8 4 8 4 8 4 8 4 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 5 8 6 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			hrs		12	12	12	12	12	12	12	12	12	12	12	12
<u>8</u>	-						00	00		80	00	00	00	60	80	80
	Machine setup	base time	hrs				4			4	4	4	4	4	4	4
Mean arriving			hrs	70	70	70	70	70	70	70	70	70	70	70	1 70	1 70
Elapse time or volume filled Swritch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Elapse time or	filled	Switch		-	1	1		1	-	-	-	1	-	-	1
Name Elapse time 1.1 Elapse time 1.2 Elapse time 1.4 Elapse time 1.4 Elapse time 1.6 Elapse time 1.9 Elapse time 1.0 Elapse time 1.0			le	se time 1.1	tse time 1.2	se time 1.3	se time 1.4	se time 1.5	tse time 1.6	se time 1.7	se time 1.8	se time 1.9	tse time 1.10	se time 1.11	Elapse time 1-12	Elapse time 1.13

Table 9-11: Results of two machines with flexible ma

238

Waiting
1
over time
over
Change (
aterial

Elapse	e Mean	Machin	% C00	Sum	Material	Produc-	Elapse	Total Co	Consumed Cor	Consumed Co	Consumed Cor	Consumed To	Total To	Total Total	-	Total AM Machine	thine Machine	vine Machine	ine Machine	ine Machine	e Machine	he System	n System	System	Total	Waiting 1	Number A	Average Ma	Machine Par	Parts in AM
time or	r arrival	setup	down	of	change	tion	time	ware- mi	material enc	energy m	material en	energy cost op	operator m	mainte- pen	penalty cost	st setup	b diji	COO	setup	utili-	cool	setup	utili-	cool	system	time in	of parts bu	building depre-		queue parts
	5	base time	əF	setup	time	start		housing		8	cost	0	cost na	nance		trac	tracking 1 zation 1	n 1 down	-	tracking 2 zation 2	2 down		zation	down	utilization	dueue	in queue vo	volume cia	ciation total	al out
	filled			and		volume		cost					ő	cost				tracking 1	ing 1		tracking 2	82								
1	1 121	0	4			0.10		72062	213	54326	17058	3259	3615	57989	458 1	101711	3,488 7	7,035 3	3,345 3,	3,629 7,	7,55 3,4	3,488 3,558	58 7,292	2 3,416	14,266	1	0	377651	59278	0 72.3
1	1 120	0		8 12			00	72062	213	54326	17058	3259	3615	57990		102044										1	0	377651	59278	0 72,3
	1 120	0	4	8 12	~	0,10	90	72062	213	54326	17058	3259	3615	57990	791 1	102045	3,554 7	7,034 3	3,345 3,	686	7,55 3,4	,488 3,1	3,62 7,292	2 3,416	5 14,328	1	0	377651	59278	
	1 12	0		8 12		0,10	90	72062	213	54326	17058	3259	3615	57990	875 1	102128	3,587 7	7,034 3	3,345 3,	3,715 7,	7,55 3,4	3,488 3,651	51 7,292	2 3,416	5 14,359		0	377651	59279	0 72,3
	1 120	0	4	8 12	5	0,10	80	72062	213	54326	17058	3259	3615	57990	1041 1	102295	3,62 7	7,034 3	3,345 3,	3,744 7,	7,55 3,4	3,488 3,682	82 7,292	2 3,416	5 14,39	1	0	377651	59279	0 72,3
	1 12	0	4	8 12		0,10	00	72062	213	54326	17058	3259	3615	57990	1041 1	102295	3,653 7	7,034 3	3,345 3,	3,773 7,	7,55 3,4	3,488 3,713	13 7,292	2 3,416	5 14,421	1	0	377651	59279	0 72,3
	1 12	0	4	8 12		0,10	90	72062	213	54326	17058	3259	3615	57990	1041 1	102296	3,686 7	7,034 3	3,345 3,	3,801 7,	55 3,	,488 3,743	43 7,292	2 3,416	5 14,452	-	0	377651	59279	0 72,3
	1 120	0	4	8 12		0,10	90	72062	213	S4326	17058	3259	3615	57991	1041 1	102296	3,719 7	7,034 3	3,345 3	3,83 7,	7,55 3,4	488 3,774	74 7,292	2 3,416	5 14,483		0	377651	59279	0 72,3
	1 12	0		8 12	6	0,10	80	72062	213	54326	17058	3259	3615	57991	1041	102296	3,751 7	7,034 3	3,345 3,	3,859 7,	7,55 3,4	488 3,805	05 7,292	2 3,416	5 14,513	1	0	377651	59279	0 72,3
	1 120	0	4	8 12		0,10	80	72062	213	54326	17058	3259	3615	57991	1041 1	102296	3,784 7	7,034 3	3,345 3,	3,888 7,5	7,549 3,4	3,488 3,836	36 7,292	2 3,416	5 14,544	1	0	377651	59280	0 72,3
	1	0	4	8 12		0,10	00	78986	358	91349	28683	5480	6162	58515	625 1	118973	6,035 12	12,072 5	5,744 6,	6,089 12,234	5	798 6,062	62 12,153	3 5,771	1 23,986	1	0,001	371950	59816 0	0,617 123,3
	1 70	0	4	8 12	2	0,10	00	78981	356	90942	28556	5456	6168	58517	1916 1	120120		12,024 5	5,733 6,	6,211 12,175		5,819 6,168	68 12,099	9 5,776	5 24,044	1	0,001	370090	59817 0	0,633 123,4
	1 7(0		8 12		0,10	90	78914	356	90897	28541	5453	6165	58523	1791 1	119984		12,189 5	5,721 0	6,32 11,997		5,824 6,267	67 12,093	3 5,772	24,133	1	0,001	369863	59824 0	0,667 123,3
	1 7	0		8 12		0,10		78861	356	90899	28542	5453	6163	58509	2208 1	120380		12,203 5	5,729 6,	6,415 11,986		5,814 6,368	68 12,095	5,772	24,234		0,001	370250	59809	0,65 123,3
	1	0		8 12	5	0,10	00	78751	356	90874	28534	5452	6163	58498	2625 1	120773	6,436 12	12,143 5	5,732 6,	6,511 12,047		5,813 6,473	73 12,095	5,773	3 24,341	1	0,001	370109	59798	0,65 123,3
	1 7(0				0,10	00	78827	358	91273	28659	5476	6166	58494	2750 1	121045		12,193 5	5,744 6,	6,612 12,105		5,808 6,585	85 12,149	9 5,776	5 24,51	1	0,001	371428	59794 0	0,667 123,3
	1 7(70	44	8 12	7	0,10	90	79014	359	91717	28799	5503	6168	58543	2625 1	121153	6,665 12	12,175 5	5,757 6,	6,708 12,218		5,789 6,686	86 12,196	6 5,773	3 24,655	****	0,001	373195	59844	0,7 123,4
	1 7	0	4	8 12		0,10		79101	360	91968	28878	5518	6168	58562	2666 1	121315	6,768 12	12,232 5	5,761 6,	6,813 12,217		5,781 6,791	91 12,225	5,771	1 24,786		0,001	374328	59864	0,7 123,4
	1 7	0	4	8 12	9	0,10	80	79206	363	92555	29062	5553	6167	58588	2750 1	121651	6,871 12	12,255 5	5,753 6,	6,926 12,	12,34 5,7	5,783 6,898	98 12,297	7 5,768	3 24,964	1	0,001	376679	59890	0,75 123,4
	1 7	0	4	8 12	10	0,10	80	79125	360	91722	28800	5503	6169	58590	2625 1	21218	6,928 12	12,106 5	5,728 7,	7,055 12,267		5,811 6,992	92 12,187	7 5,77	24,948	1	0,001	372873	59892	0,75 12
	1 2	0	4	8 12	1	0,10	00	118504	1299	331023	103941	19861	21475	58946 11	119500 3	343373 1	18,694 44	44,325 17	17,038 18,	18,975 43,088		17,31 18,835	35 43,706	5 17,174	4 79,715	18,051	0,651	387134	60256 30	308,82 429,5
	1 2	20	4	8 12	2	0,10	90	118586	1278	325665	102259	19539	21438	58937 12	124083 3	345904 1	19,922 43	43,222 17	17,166 20,	20,008 42,791		17,236 19,965	65 43,007	7 17,201	1 80,173	17,73	0,639	380959	60247 30	307,97 428,8
	1 2(0	44	8 12	3	0,10	90	118777	1303	331990	104245	19919	21451	58892 14	144875 3	369015 2	20,699 44	44,142 16	16,853 20	20,82 43,605	505 16,957	957 20,759	59 43,874	4 16,905	81,538	18,515	0,706	388299	60201 32	325,58 429
	1 2	0		8 12		0,10	80	117582	1293	329541	103476	19772	21561	58944 15	150708 3	374111 2	21,853 43	43,634 16	16,927 21,	21,738 43,395		16,873 21,796	96 43,514	4 16,9	9 82,21	18,295	0,707	383477	60254 33	331,28 431,2
	1 2	0	4	8 12	5	0,10	00	117681	1285	327590	102863	19655	21474	58931 15	155791 3	378359 2	22,818	43,2 16	16,839 22,	22,572 43,331	331 16,697	697 22,695	95 43,265	5 16,768	82,728	18,353	0,718	382680	60240 33	335,13 429,5
	1 2(0	4	8 12		0,10	00	117968	1308	333384	104682	20003	21494	58950 16	161583 3	386363 2	23,625 43	43,766 16	16,671 23,	23,309 44,271	271 16,453	453 23,467	67 44,019	9 16,562	2 84,048	18,517	0,764	388854	60260 35	352,28 429,9
	1 2	0	4	8 12	7	0,10	90	118012	1286	327867	102950	19672	21436	58931 15	157500 3	380135	24,76 42	42,997 16	16,688 24,	24,357 43,606		16,453 24,559	59 43,301	1 16,571	1 84,431	18,361	0,759	384205	60241 35	353,27 428,
	1 2	0	4	8 12		0,10	00	118649	1292	329203	103369	19752	21417	58926 16	168041 3	391150 2	25,427 4	43,41 16	16,293 25	25,17 43,553	553 16,231	231 25,299	99 43,481	1 16,262	85,042	18,897	0,801	385278	60235 3	363,7 428,4
	1 2(20	4	8 12	6			119207	1318	335873	105464	20152	21507	58905 18	186333 4	411999 2	25,845 44	44,585 16	16,057 25,	25,979 44,176	176 16,106	106 25,912	12 44,38	8 16,082	2 86,374	19,215	0,86	391943	60214 38	384,27 430,
	-	9	Y	0 13		010	00	117471	1793	329526	103471	10771	DIACO	E 0033	177704	C OMMAN	2K 7A4 A2	A2 765 46	16 000 01	77 010 43 207		16.08 26.88	RR 43 536	16.061	86.467	10 122	0 007	200100	60333 36	9Ch 85.58F

ihi Ę 5

Table 9-14: Results of two machines	of two m	achine		WILLI LICATOLC IIIAICITAL - CHARGE OVEL UILLE - INO WALLING	IC IIIUN		0				ſ																			
				Sum	-	'n	æ		2	bed	8					Total AM Machine		Machine	e.	ei e	hine	e	ε	£	Waiting		Average	æ	_	
- 3	ume or arrival	al setup hasa time	uwop ou	OF	time t	tion ti	ome wa	ware- ma	material ene	energy mate	ELISI	energy cost oper	ator	mainte- penaity	ty cost	setup tracking 1	1 mation 1	doum	setup utili- tracking 3 ration 3		cool drawn	secup utili-	utili- cool vation down	system intilization	time in	or parts	unding .	depre-	treal part	parts
5 GE	filled		2			volume	: 8	cost		3		3		1 T		-		tracking 1	1 9 10 10 10		tracking 2	-								
	1			000									}								0									
Name				down																				_	_					
S	Switch hrs	hrs	hrs	hrs	-	4 X	hrs	kg	s kg	ų	ų	ų	ų	ę	9	*	*	24	%	8	8	%	8	28	hrs	pcs.	mma		pcs. pcs.	
0-Change over time 1.1	0 1	120	4 8		1	0,10	00	72062	213	54339	17062	3260	3618	57971	0 101236	3,492	92 7,037	3,349	3,634	7,556	3,492	3,563	7,296 3,	3,421 1	14,28	-	0 377345	59259	0	72,37
0-Change over time 1.2	0 1	120	4	8 12	2	0,10	90	72062	213	54339	17062	3260	3618	57971	0 101236	236 3,524	24 7,037	3,349	3,663	7,556	3,492	3,594	7,296 3,	3,421 1	14,31	-	0 377345	59259	0	72,37
0-Change over time 1.3	0 1	120	4	8 12	e	0,10	90	72062	213	54339	17062	3260	3618	17971	0 101236	3,557	57 7,036	6 3,349	3,692	7,556	3,492	3,625	7,296 3,	3,421 14	14,341		0 377345	59259	0	72,37
0-Change over time 1.4		120	4 8	8 12	4	0,10	80	72062	213	54339	17062	3260	3618	57971	0 101236	3,59	59 7,036	6 3,349	3,721	7,556	3,492	3,656	7,296 3,	3,421 14	14,372	-	0 377345	59259	0	72,37
0-Change over time 1.5	0 1	120	4	8 12	5	0,10	00	72062	213	54339	17062	3260	3618	57971	0 101237	237 3,623	23 7,036	6 3,349	3,75	7,555	3,492	3,687	7,296 3,	3,421 14	14,403	-	0 377345	59260	0	72,37
0-Change over time 1.6	0 1	120	4		9	0,10	90	72062	213	54339	17062	3260	3618	17971	0 101237	3,656	56 7,036	6 3,349	3,778	7,555	3,492	3,717	7,296 3,	3,421 14	14,434	-	0 377345	59260	0	72,37
0-Change over time 1.7		120	4	8 12	~	0,10	90	72062	213	54339	17062	3260	3618	57972	0 101237	37 3,689	89 7,036	6 3,349	3,807	7,555	3,492	3,748	7,296 3,	3,421 14	14,465		0 377345	59260	0	72,37
0-Change over time 1.8	0 1	120	4 8		80	0,10	80	72062	213	54339	17062	3260	3618	57972	0 101237	3,722	22 7,036	5 3,349	3,836	7,555	3,492	3,779	7,296 3,	3,421 14	14,496	-	0 377345	59260	0	72,37
0-Change over time 1.9		120	4		6	0,10	00	72062	213	54339	17062	3260	3618	57972	416 101654	L	55 7,036	6 3,349	3,865	7,555	3,492	3,81	7,296 3,	3,421 14	14,527	-	0 377345	59260	0	72,37
0-Change over time 1.10	0 1	120	4 8		10	0,10	00	72062	213	54339	17062	3260	3618	57972	791 102029	3,788	88 7,036	6 3,349	3,894	7,555	3,492	3,841	7,296	3,42 14	14,557	-	0 377345	59260	0	72,37
0-Change over time 2.1	0	70	4 6		1	0,10	00	79317	365	93143	29247	5588	6173	58479	83 119064	5,935	35 12,087	7 5,676	6,154	12,704	5,892	6,045 1	12,395 5,	5,784 24	24,224	-	0 379020	59778	0,233	123,5
0-Change over time 2.2	0	70	4		2	0,10	90	79319	366	93330	29305	5599	6179	58421	0 118980	80 6,05	05 12,151	1 5,712	6,219	12,714	5,879	6,134 1	12,433 5,	5,795 24	24,362	-	175975 0	59719	0,283 1	123,6
0-Change over time 2.3		70	4		e	0,10	90	79315	362	92343	28995	5540	6181	58424	0 118617	517 6,161	61 12,104	4 5,752	6,255	12,494	5,842	6,208 1:	12,299 5,	5,797 24	24,304		0 375176	59722	0,283 1	123,6
0-Change over time 2.4		70	4		4	0,10	80	79415	361	92222	28957	5533	6180	58424	0 118570	570 6,217	17 12,102	2 5,739	6,344	12,465	5,852	6,281 1	12,284 5,	5,795 2	24,36	-	0 374540	59722	0,3	123,6
0-Change over time 2.5	0	70	4 6	8 12	5	0,10	00	79230	359	91508	28733	5490	6176	58399	0 118266	266 6,277	77 11,893	3 5,721	6,427	12,497	5,868	6,352 1	12,195 5,	5,794 24	24,341	-	0 372004	26965	0,333	123,5
0-Change over time 2.6	0	70	4 6		9	0,10	90	79408	361	92084	28914	5525	6183	58422	0 118519	519 6,327	27 11,87	7 5,712	6,517	12,665	5,885	6,422 1	12,268 5,	5,799 24	24,488		0 373442	59720	0,317	123,7
0-Change over time 2.7	0	70	4		7	0,10	90	79463	363	92571	29067	5554	6184	58434	0 118718	718 6,433	33 11,947	7 5,73	6,572	12,711	5,867	6,502 1:	12,329 5,	5,798 2	24,63		0 375410	59732	0,4	123,7
0-Change over time 2.8		70	4	8 12	00	0,10	80	79453	364	92792	29136	5567	6179	58426	0 118785	785 6,495	95 12,021	1 5,712	6,656	12,705	5,878	6,576 1	12,363 5,	5,795 24	24,734	-	0 377026	59724	0,433	123,6
0-Change over time 2.9	0	70	4 6		6	0,10	90	79630	363	92585	29071	5555	6180	58425	416 119124	124 6,548	48 12,111	1 5,69	6,769	12,561	5,901	6,659 1	12,336 5,	5,796 2	24,79	-	0 376455	59724	0,483	123,6
0-Change over time 2.10		70	4 E		10	0,10	80	79568	361	92003	28889	5520	6175	58443 1	416 1199	26 6,6	27 12,05	5,696	6,812	12,453	5,883	6,719 1	2,254	5,79 24,	763	-	0 374388	59742	0,467	3,5
0-Change over time 3.1		20	4 8		1	0,10	00	117919	1309	333666	104771	20019	21462	58900 95	95875 320663	563 19,269	69 44,031	1 17,659	19,25	44,153	17,628	19,259 4	44,092 17,	17,644 80	80,995 17,454	4 0,533	3 390361	60209	258,15	429,3
0-Change over time 3.2		20	4		2	0,10	90	117508	1295	330083	103646	19804	21515	58946 97	97125 320686	586 20,43	43 43,228	8 17,739	20,113	43,942	17,491	20,272 4	43,585 17,	17,615 81	81,471 17,312	2 0,532		60256	262,05	430,3
0-Change over time 3.3	0	20	4	8 12	m	0,10	00	118065	1298	330851	103887	19851	21465	58943 99	99541 323337	337 21,109	09 43,657	7 17,427	21,194	43,72	17,515	21,152 4	43,688 17,	17,471 82	82,311 17,643	3 0,56	5 386640	60253	270,4	429,3
0-Change over time 3.4		20	4		4	0,10	00	117382	1299	331100	103965	19866	21501	58950 109	109833 333767	767 22,348	48 43,131	1 17,543	21,855	44,304	17,193	22,102 4	43,717 17,	17,368 83	83,187 17,799	9 0,588	8 386307	60260	279,4	430
0-Change over time 3.5	0	20	4 6		5	0,10	00	117911	1295	330027	103628	19801	21503	58913 115	115750 339234	23,085	85 43,996	6 17,247	23,25	43,203	17,375	23,168 4	43,599 17,	17,311 84	84,078 17,687	0,598	384850	60222	288,8	430,1
0-Change over time 3.6	0	20	8		9	0,10	90	117868	1293	329669	103516	19780	21507	58977 121	121666 345107	107 24,082	82 43,321	1 17,206	23,931	43,694	17,095	24,006 4	43,508 1	17,15 84	84,664 18,207	0,624	4 384430	60288	294 4	430,2
0-Change over time 3.7	0	20	4		7	0,10	80	117928	1275	324887	102014	19493	21469	58906 118	118458 339978	378 25,226	26 42,605	5 17,269	24,89	43,254	17,003	25,058	42,93 17,	17,136 85	85,123 18,328	8 0,637	379989	60215	295,68	429,4
0-Change over time 3.8		20	4 8		80	0,10	00	118373	1311	334169	104929	20050	21485	58928 132	132833 357870	370 25,409	09 44,55	5 16,662	25,94	43,722	16,986	25,675 4	44,136 16,	16,824 86	86,635 18,453	3 0,692	2 389832	60238	319,97	429,7
0-Change over time 3.9	0	20	4	8 12	6	0,10	00	118636	1293	329666	103515	19780			100					43,657	16,764							60234		430,3
0-Change over time 3.10		20	4 6		10	0,10	90	118474	1291	328952	103290	19737	21475	58909 153	153750 376798	198 27,094	94 43,936	6 16,484	27,725	43,019	16,834	27,409 4	43,477 16,	16,659 87	87,546 19,038	8 0,735	384365	60218	330,32 4	429,5
																														1

Table 9-14: Results of two machines with flexible

AM	c la	ont			pcs.	58	62	67	72	79	87	96	106	123	144	173	216	287	431	852
-	anonb	total			pcs.	0	1	1	1	1	-1	2	2	UN	9	17	57	33	190	722
Machine Annual	avia.	clation			6	16/98	86999	87485	87964	87542	87906	88276	88661	88910	89225	89391	89598	89918	90080	90228
Average	Summe	volume			mm1	372421	366214	366354	371087	371409	179775	378169	381780	395455	993399	384995	387772	381820	381669	666T8E
Number /	ananb	machine	~			0'000	0,001	0,001	0,001	0,002	0,002	0,003	0,005	0,007	0,013	0,020	0,045	0,075	0,258	1,436
Waiting	u aun	dueue	machine	m		***	-	-	***	-	***		-		27,923	28,360	37,190	33,844	33,372	51,181
Number	ananb u	machine	2		pcs.	00000	0/000	0,001	100/0	0,001	0,002	0,003	0,003	0,006	0,013	0,022	0,042	0,089	0,231	1,585
Waiting 1		dueue 1	machine	2	hrs	1,688	2,358	3,855	6,133	8,732	12,936	16,346	20,457	22,278	28,398	30,599	38,414	35,529	31,073	55,118
Number	monh	machine	-		pcs.	0,000	0,000	0,001	0,001	0,002	0,002	0,003	0,005	0,008	0,011	0,020	0,040	0,074	0,221	1,443
Waiting 1	-	dueue n	machine	1	hrs	***	-	1		1			1		28,047	31,121	35,735	33,400	30,941	51,393
-	ayacem	-into	zation =		%	7,76	8,22	8,82	9,57	10,47	11,57	12,82	14,31	16,57	19,30	22,75	28,32	36,81	52,98	84,58
System	000	down			*	1,86	1,99	2,13	2,30	2,52	2,76	3,05	3,40	3,87	4,51	5,36	6,61	8,56	11,78	13,32
System	ġ	zation			*	3,97	4,18	4,48	4,90	5,36	5,96	6,61	7,40	8,70	10,13	11,86	14,88	19,42	29,03	57,44
e System	within		-		*	6 1,92	1 2,06	6 2,20	2 2,38	2 2,60	5 2,85	1 3,15	2 3,51	7 4,00	8 4,65	6 5,53	6,83	7 8,84	8 12,17	8 13,82
Machine		down	tracking 3		*	5 1,86	2,01	2,16	7 2,32	5 2,52	3 2,75	3,01	3,42	3,97	5 4,48	3 5,36	4 6,66	8,57	11,68	5 13,38
Machine		zation 3			*	3,96	4,27	4,63	4,97	5,45	5,89	6,45	7,61	16'8	10,15	11,83	15,04	19,31	30,01	56,85
Machine	druge	tracking 3			*	1,92	2,07	2,23	2,40	2,60	2,84	3,10	3,53	4,10	4,63	5,54	6,88	8,85	12,07	13,88
Machine	1000	down	tracking 2		5	1,84	1,94	2,07	2,24	2,47	2,71	3,02	3,39	3,76	4,56	5,44	65'9	8,53	11,91	13,07
Machine		zation 2			26	3,97	4,08	4,36	4,73	5,26	56'5	6,74	7,39	8,29	10,26	11.97	14,64	19,93	29,23	58,60
Machine	dinter	tracking 2			*	1,90	2,00	2,14	2,31	2,55	2,80	3,12	3,51	3,89	4,70	5,63	6,81	8,81	12,30	13,56
Machine	1000	down	tracking 1		26	1,89	2,02	2,17	2,35	2,56	2,81	3,13	3,39	3,88	4,49	5,27	659	8,57	11,75	13,50
Machine	-	zation 1			*	3,97	4,18	4,45	4,98	5,37	6,03	6,65	7,21	8,84	99,99	11,76	14,95	19,01	27,85	56,88
Machine	dinaw	tracking 1			*	1,95	2,09	2,24	2,43	2,65	2,91	3,23	3,50	4,01	4,63	5,44	6,81	8,85	12,14	14,01
Total AM	Total				5	132381	133786	136044	138861	140477	144249	148389	152922	160813	169974	183340	207051	244715	380022	1405475
Total	bunners				¢	83	125	166	250	291	625	1000	1041	2291	3875	8291	16750	31000	118041	1001541
Total	-WILLING	nance	cost		•	84904	85108	85584	86052	85639	85995	86357	86734	86978	87285	87448	87651	87964	88122	88267
	8	cost			•	2891	3094	3333	3614	3933	4329	4809	5394	6170	7211	8633	10782	14366	21558	42624
Consumed	wmengy cost				٤.	2598	2741	2957	3250	3540	3952	4401	4947	5836	6819	7992	10050	13165	19720	39083
-		cost			•	13601	14347	15475	17010	18526	20682	23035	25892	30544	35687	41825	52600	68898	103204	204536
τ	within the				kg	43315	45693	49284	54173	59000	65867	73362	82461	97275	113655	133202	167516	219421	328677	651390
Consumed Comparing	_				kg	170	179	193	212	231	258	287	323	381	446	522	657	861	1290	2556
		Dursing	cost		5	69652	70277	70873	71627	72672	73840	75279	76238	75037	81454	84699	90584	99682	117537	173652
Elapse		-			hrs	80	8	8	80	8	80	8	8	00	8	80	88	8	8	80
Produc-	tion	start	volume		*	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	10	0.1	0.1	0.1	0.1	0.1
	dinaw	and	cool	down	hrs	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
te Cool		ar			hrs	4	4 8	4 8	4 8	4 8	4	4 8	4 8	4 8	4 8	4 8	4 8	4 8	4 8	4 00
-	_	base time			hrs	0	0	0	0	0	0	06	08	8	8	8	09	30	00	10
	-	2	-		ch hrs	0 150	0 140	0 130	0 120	0 110	0 100	0	0 8	K O	0 6	0 5	0	0 3	0 2	0 10
Elapse visco or	Number of Street	volume	filled		Switch															
				Name		Upper limit 1.1	Upper limit 1.2	Upper limit 1.3	Upper limit 1.4	Upper limit 1.5	Upper limit 1.6	Upper limit 1.7	Upper limit 1.8	Upper limit 1.9	Upper limit 1.10	Upper limit 1.11	Upper limit 1.12	Upper limit 1.13	Upper limit 1.14	Upper limit 1.15

Table 9-16: Results of three machines with fixed material - Upper limit - Waiting

AM	out			pcs	58	62	67	72	79	87	96	106	123	144	178	215	287	430	852
	total			pcs.	0	1	=	-	1	-	2	3	1	Ħ	19	33	87	226	730
Machine Parts in depre- gueue	_				86819	87075	87534	88044	87561	87956	88418	88672	88809	89166	89276	89655	89896	90168	90090
Average building	volume			mm ¹	370411	365605	366389	371185	371609	382482	377518	380940	386172	389143	385175	386413	379543	383055	381329
Number In queue	machine	~			0,000	0,001	0,001	0,001	0,002	0,003	0,004	0,005	600'0	0,014	0,025	0,055	0,102	0,282	1,606
Waiting	ananb	machine	m			1	1		-			1	32,151		\$3,919	41,795	29,204	\$2,297	55.213
Number in cuoue	machine	2		pcs.	00000	0/000	0,001	0,001	0/001	0,002	0,004	0,004	0,008	0,018	0,030	0'020	0,108	0,276	1439
Waiting time in	duene	machine	2	hrs	1,648	3,102	4,832	7,594	10,335	14,202	18,527	22,989	-	29,575	37,390	38,654	29,728	30,796	50,456
Number in queue	machine	1		pcs.	000'0	0,000	0,001	0,001	0,002	0,003	0,003	0,005	0,007	0,012	0,024	0,048	0,093	0,280	1,480
Waiting time in	queue	machine	1	hrs		-	-		1	-		1	20,728	25,097	34,886	37,718	28,421	31,776	51.841
m Total	-iţţı	zation		×	86 7,77	.99 8,21	2,13 8,80	2,30 9,57	2,51 10,46	2,75 11,62	3,04 12,75	3,40 14,29	88 16,40	49 19,11	5,35 22,75	6,57 28,12	8,46 36,54	11,49 52,39	60 83.02
m System	0			*	3,94 I.	4,17 1	1,47 2	89 2	5,36 2	6,02 2,	6,57 3	7,37 3.	8,51 3,	9,98 4	11,68 5,	14,77 6.	19,34 8		35 12.60
em System us utili-	P4		_	*	1,92 3,	2,05 4,	2,20 4,	2,37 4,	2,59 5,	2,84 6,	3,14 6,	3,51 7,	4,01 8,	4,64 9,	5,52 11.	6,79 14,	8,74 19,	11,87 29,03	13.07 57.35
hine System of setup		ng 3			1,86 1	2,01 2	2,16 2	2,32 2	2,52 2	2,75 2	3,03 3	3,43 3	3,87 4	4,48 4	5,32 5	6,64 6	8,43 8	11,39 11	12.25 13
Machine Machine utili- cool	m	tracking		×	3,96	4,31	4,62	4,97	5,44	5,96	6,52	7,61	8,37	9,94	11,81	15,11	19,54	28,73 1:	58.97 13
Machine Mach	tracking 3 zation			*	1,93	2,07	2,23	2,40	2,60	2,84	3,13	3,54	4,00	4,63	5,50 1	6,86 1	8,71 1	11,76 2	12.73 5
achine Mar cool se	-	acking 2		26	1,83	1,94	2,07	2,23	2,46	2,69	2,97	3,39	3,90	4,62	5,39	6,44	8,57	11,64	12.97
Machine Ma utili- c	zation 2 di	trac		26	3,89	4,04	4,35	4,73	5,27	5,97	6,56	7,24	8,73	10,26	12,23	14,53	19,50	29,16	55.92
Machine Ma setup	N			*	1,89	2,00	2,13	2,30	2,54	2,78	3,06	3,50	4,03	4,78	5,57	6,65	8,84	12,02	13.45
Machine M cool	-	racking 1		26	1,89	2,02	2,17	2,35	2,56	2,82	3,12	3,39	3,86	4,37	5,33	6,63	8,38	11,45	12.57
Machine N utili-	zation 1	#		25	3,97	4,15	4,45	4,99	5,36	6,13	6,64	7,27	8,44	9,74	11,59	14,65	18,99	29,21	57.16
Total AM Machine 1 cost setup	tracking 1			*	1,95	2,008	2,24	2,43	2,64	2,91	3,22	3,50	3,98	4,51	5,50	6,84	8,66	11,82	13.05
Total AM cost				÷	132329	5 133903	136172	139018	140618	5 144610	148522	153038	3 159855	5 169690	185044	210038	254663	409459	1014875 1417829
Total				÷	125	166	250	162 0	416	666	5 1083	1250	2333	4375	5 10125	5 20083	41291	8 147291	
Total mainte-	mance	cost		÷	84931	28182	85632	t 86130	85657	86044	86496	86745	5 86878	87228	87335	87705	87942	88208	88131
Total coerator				•	2888	3092	4 3330	2 3614	3930	3 4325	1 4800	9 S400	6165	9 7186	6 8625	10771	4 14369	1 21483	42590
Consumed energy cost				v	2578	2738	2054	3252	3539	3993	4381	4929	5698	6709	7996	9965	13114	19744	38960
Consumed	_			÷	13494	14329	15461	17019	18521	20898	22929	25797	29820	35114	41850	52255	68631	103328	203895
				kg	42977	45634	49241	54203	58987	66556	73023	82158	17649	111829	135282	166419	218570	329071	649347
Consumed Consumed material anerov				kg	168	179	193	212	231	261	286	322	372	438	523	653	857	1291	2548
Total Con ware- mi	14	cost		Ŷ	69610	70320	70873	71625	72672	73829	75175	76755	78614	80950	84927	90881	99471	120076	174410
Elapse time	-			hrs	00	8	8	80	8	00	80	8	00	80	8	00	80	8 1	00
Produc- tion	start	volume		*	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1	0.1
Sum of setup	pup	cool	down	hrs	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
e Cool				hrs	4	4 8	4 8	4 8	4 8	4 8	4 8	4 8	4 8	4 8	4 8	4 8	4 8	4 8	100
Elapse Mean Machine Cool time or arrival setue down	0			hrs															
r Mean				hrs	1 150	1 140	1 130	1 120	1 110	1 100	1 90	1 80	1 70	1 60	1 50	1 40	1 30	1 20	1 10
Elapse time or	volume	filled		Switch															
			Vame		pper limit 2.1	pper limit 2.2	pper Emit 2.3	pper limit 2.4	pper limit 2.5	Ipper limit 2.6	pper limit 2.7	pper limit 2.8	pper limit 2.9	pper limit 2.10	pper limit 2.11	pper limit 2.12	pper limit 2.13	Ipper limit 2.14	Inner limit 2 15

RESULTS OF THREE MACHINES WITH FIXED MATERIAL 2.3

Table 9-15: Results of three machines with fixed material - Upper limit - No waiting

ad
aiting
wa
No
1
lown
op
loc
5
5
cheat and cool
It
Ğ
ų.
Ľ,
щ
1
al
· 🗖
Ð

AM parts out	pcs.	99	66	67	67	67	67	67	67	67	67	67	67	144	143	144	144	144	144	144	144	144	144	144	144	427	428	428	428	429	430	429	430	431	430	430	481
Parts in / queue p total o	pcs.	-	-	1	1	-	=	1	1	**	6	1	1	19	16	15	14	14	13	13	11	10	00	~	9	325	314	300	284	270	254	236	217	190	160	133	117
Machine P depre- clation	Ű	87489	87476	87480	87538	87563	87546	87534	87502	87485	87523	87537	87541	89148	89102	89160	89208	05168	89368	89042	89152	89225	89215	89033	88925	90050	90162	90116	90093	90199	90162	90154	90127	90080	90143	90124	10000
Average building volume	"mm	365225	365953	366900	366972	366434	366389	366473	366473	366354	367211	370385	368469	381024	377978	377067	380607	383294	384435	387112	378971	893399	388692	384077	386445	383276	382025	384839	\$83126	384331	383182	\$83844	388122	381669	387532	384852	386624
Number A in queue b machine v 3		0,002	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,026	0,021	0,023	0,019	0,018	0,015	0,014	E10/0	0,013	0,010	600/0	0,008	0,552	0,510	0,457	0,414	665,0	0,357	0,314	0,273	0,258	0,225	0,190	0,168
Waiting N time in in queue machine 3	-		1	-			1	***	-	1		-		35,735		-	-		1	28,071	26,340	27,923	31,036	27,086	1	43,709	41,421	39,278	37,845	36,590	35,611	33,396	31,984	33,372	35,552	36,044	36,414
Number M in queue ti machine q 2 m	pcs.	0,001	100/0	0,001	0,001	100/0	0,001	0,001	0,001	0,001	0,000	0/000	0,000	0,026	0,022	0,021	0,019	0,016	0,017	0,015	0,013	0,013	0,010	0,007	0,007	0,542	0,501	0,465	0,426	0,356	0,335	0,310	0,277	0,231	0,199	0,198	0.190
8000	hrs	8,073	7,556	7,039	068'5	5,440	4,990	4,540	4,090	3,855	3,355	2,980	2,588	1	33,928	34,730	32,089	27,678	30,123	i	i	28,398	1	25,500	25,986	43,123	41,409	39,208	38,563	35,054	33,900	33,342	32,349	31,073	31,500	1997 E	40,084
Number V In queue t machine 1 1 m	ġ	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000	0,000	0,027	0,027	0,021	0,020	0,018	0,015	0,013	0,013	0,011	0,011	0,012	0,011	0,564	0,500	0,460	0,422	0,388	0,351	0,300	0,272	0,221	0,236	0,187	0,171
2002	5 H	1	1	1	-	-		***	-	1		-		38,354	39,126	32,513	31,597	30,543	29,846	25,113	32,252	28,047	26,275	33,792	1	44,016	40,784	39,527	37,567	36,137	35,284	32,966	32,488	30,941	37,148	35,551	37,556
Total V system 1 util- zation n		15,15	14,38	13,59	12,80	11,99	11,20	10,41	19/6	8,82	8,03	7,27	6,44	32,36	30,48	28,84	27,24	25,71	23,99	22,44	20,56	19,30	17,45	15,63	14,01	76,42	74,05	72,22	69,47	66,93	63,80	60,49	57,23	52,98	49,13	44,64	40,49
System cool down	×		5,85		4,79	4,26	3,73	3,20	2,67	2,13	1,60	1,07	0,53	13,43	12,28	11,19	10,07	8,98	7,83	6,74	5,62	4,51				28,30	26,66	25,17	23,33	21,44	19,25	16,93	14,43	11,78	8,90		3,04
System utili- zation	×	4,45	6 4,47	4,48	4,48	5 4,47	4,47	4,48	4,48	4,48	4,49	4,53	4,50	9,82	9,67	9,67	9,75	9,84	9,86	9,95	9,74	10,13	9,98		9,92	28,93	28,87	5 29,09	28,93	29,05	29,07	29,07	29,44	29,03	39,46	29,19	29,46
e System setup	×		4,06	3,79	5 3,53	1 3,26	3,00	3 2,73	0 2,47	6 2,20	1,94	8 1,67	4 1,40	1 9,10	1 8,52	0 7,98	1 7,42	6,89	2 6,30	8 5,76	5,21	8 4,65	6 4,09		5 2,97	8 19,20	8 18,52	6 17,96	6 17,20	16,44	2 15,49	1 14,49	3 13,37	8 12,17	1 10,78		8,00
Machine cool down tracking 3	×	9 6,43	0 5,90	3 5,37	3 4,85	2 4,31	3,77	2 3,23	3 2,70	3 2,16	6 1,62	8 1,08	2 0,54	1 13,61	9 12,01	5 11,20	4 10,21	9 9,05	8 7,92	0 6,78	5,65	5 4,48	5,36		7 1.15	3 28,18	3 26,68	3 25,16	8 23,16	5 21,42	3 19,12	1 17,11	5 14,53	1 11,68	2 8,81		3,04
Machine utili- zation 3	~		4,60	4,63	4,63	0 4,62	4,62	6 4,62	4,63	4,63	6 4,66	4,68	4,62	10,11	9,29	9,85	9,64	10,09	9,88	9,90	9,75	10,15			10,07	29,33	29,13	5 29,13	\$ 28,88	29,45	29,13	29,31	29,75	30,01	29,57		29,18
Machine setup tracking 3	"		4,09		3,57	3,30	3,03	2,76	2,50	2,23	1,96	1,69	1,42	9,22	8,33	7,98	7,52	6,94	6,37	5,80	5,23	4,63			3,02	19,12	18,53	17,95	17,08	16,42	15,39	14,65	13,47	12,07	10,67		7,99
Machine cool down tracking 2	×			5,19	4,66		3,61		5 2,58						12,33	1 11.14		8,94		6,83	5,64	4,56							23,30		19,34		14,42		9,14	6,02	
Machine utili- zation 2	×		4,35	4,37	4,35	6 4,35	4,35	4,36	4,36	4,36	4,39	4,49	5 4,41	9766	15'6	9,74	9,87	5 9,67		10,20	39/6	10,26			9,56	28,49	28,54	29,36	11,29,11	28,13	7 28,68	29,01	29,59	29,23	28,61		1 29.78
Machine setup tracking 2	×		3,96	3,71	3,44	3,16		2,65		2,14	1,88	1,63	1,36	9,03	8,55	7,95	7,43	6,86		5,84		4,70	4,05		2,96	19,24	18,51	18,11	17,18	16,37	15,57	14,52	13,36	12,30	11,07		8,03
Machine cool down tracking 1	~		5,95		4,86			3,26		2,17		1,06		13,37		11,24		8,96		6,60		4,49				28,34		24,97	23,52		19,28		14,33		8,75	6,10	
Machine utili- zation 1	°.		4,46	4,44	4,45	4,45		4,45	4,45	4,45	4,44	4,43	4,46	9'69	10,22	9,41	9,75	6,77		9,75						28,98		28,78	28,82	29,56	29,39	28,90	29,00	27,85	30,19	29,52	
Machine setup tracking 1	ŕ			3,85	3,58			2,79	2,52	2,24	1,97	1,69	1,43	90/6	89/88	8,02	7,31	6,86	6,11	5,64	5,15	4,63	4,15	3,44	2,92	19,23	18,52	17,82	17,34	16,53	15,52	14,29	13,28	12,14	10,60	9,55	7,98
Total AM cost			153094		153229	143665	138896	136186	136145	136044	136121	136306	136112	213712	208349	207554	208907	195999	177968	171334	169277	169974	168092		166933	673903	636493	597265	571364	524986	484322	441312	412043	390022	365109		339542
Total penalty			17291		17291	12708	2958	250	250	166	125	125	83	49083	44458	43583	44458	31333	12833	6375	4958	3875			2291	412625	375125	335083	309916	262750	222041	179041	148250		101208		75750
Total mainte- nance cost			85574	85578	85635	55660	85643	85631	85599	85584	5 85621	85634	5638	87210	87165	87222	87269	87192	87425	87106	87214	87285	87275		86992	88092	88202	88157	88135	88238	5 88202	1 88194	88168		88184	_	5 88132
Total operator cost	-		3322	3325	3327	1 3329	1 3330	3331	5 3331	3333	3335	1 3337	3336	3 7187	7 7165	5 7180	3 7176	7185	9 7180	7183	2 719	9 7211			_	21349	21403	21395	21390	21438	21495	21464	21498	21558	21523	_	1 21545
Consumed anergy cost	J	2940	2948	2954	2956	2954	2954	2956	2956	2957	2962	2994	2969	6603	6497	6496	6563	6613	6639	6679	6552	6819	6714	6609	6651	19647	19630	17791	19659	19756	19762	19766	20011	19720	20021	19840	20011
Consumed material cost	v	15389	15432	15463	15473	15460	15461	15473	15473	15475	15530	15670	15538	34558	34005	33997	34349	34610	34746	34954	34289	35687	35137	165%E	34809	102823	102731	103471	102883	103390	103421	103446	104725	103204	104777	103834	104726
consumed C	kg	49011	49146	49246	49278	49238	49241	49278	49278	49284	49461	49905	49486	110057	108298	106273	109394	110223	110659	111321	109202	113655	111901	110162	110858	327464	327171	329525	327655	329269	329367	329448	333521	328677	333687	330681	333523
Consumed Con material e	kg	192	192	193	193	193	193	193	193	193	194	195	194	431	425	424	429	432	434	436	428	446	439	432	435	1285	1284	1293	1286	1292	1292	1293	1309	1290	1309	1297	1309
		70985	20585	N0968	70904	70873	N0873	70873	70873	70873	70840	70845	70877	81207	81158	81417	80714	81057	81267	80862	609	81454	81339	81583	81391	118461	119003	117554	117879	118050	118588	117570	118334	117537	118739	118810	118496
Elapse Total time ware- housing cost	hrs e	8 7	8	8 N	8 7	8 N	8 N	8 7	8 N	8 N	8 7	8 N	8 7	8 8	80	8 8	8 8	8	8 8	8 8	8 8	8 8	88	80	8	8 11	8 119	8 11	8 11	8 118	8 118	8 11	8 11	8 11	8 111	8 114	8 111
Produc- Elo tion ti start volume	*	0.1	01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
×	54	36	33	30	27	24	21	18	15	12	6	9	m	36	33	30	27	24	21	18	15	12	6	9	m	36	33	30	27	24	21	18	15	12	6	9	8
cool Su down se down down	ĥ	24	22	20			14				9	4	2	24					14			8	9	4	2	24		20				12		80	ø	4	~
Machine setup base time	hrs	12	11	10	6	80	7	9	5	4	m	2	1					80			5			2			11					9	5	4		2	1
Mean	ĥ		0 130		0 130		0 130		130		0 130																						0 20				
Elapse time or volume filled	Switch	0	-	3	5	0		3	0	3	-	0	2		3	0	3	3	0	3		0		-	-	2	2	3	-	-	0		3	2	-	-	0
		wm 1.1	Wn 1.2	wm 1.3	wn 1.4	wn 1.5	wm 1.6	Wm 1.7	wn 1.8	wm 1.9	wm 1.10	wm 1.11	wm 1.12	wm 2.1	Wn 2.2	wm 2.3	wm 2.4	Wn 2.5	wm 2.6	wm 2.7	Wn 2.8	wm 2.9	wm 2.10	Wn 2.11	wn 2.12	wm 3.1	wm 3.2	Wn 3.3	wm 3.4	wn 3.5	Wm 3.6	wm 3.7	wn 3.8	Wm 3.9	wm 3.10	Wm 3.11	wm 3.12
		Preheat-Cooldown 1.1	-Preheat-Cooldown 1.2	-Preheat-Cooldown 1.3	Preheat-Cooldown 1.4	Preheat-Cooldown 1.5	Preheat-Cooldown 1.6	Preheat-Cooldown 1.7	Preheat-Cooldown 1.8	Preheat-Cookdown 1.9	Preheat-Cooldown 1.10	Preheat-Cooldown 1.11	Preheat-Cooldown 1.12	Preheat-Cooldown 2.1	Preheat-Cooldown 2.2	Preheat-Cooldown 2.3	Preheat-Cookdown 2.4	Preheat-Cooldown 2.5	Preheat-Cooldown 2.6	Preheat-Cooldown 2.7	heat-Cooldown 2.8	Preheat-Cooldown 2.9	Preheat-Cooldown 2.10	-Preheat-Cooldown 2.11	Preheat-Cooldown 2.12	Preheat-Cooldown 3.1	Preheat-Cooldown 3.2	Preheat-Cooldown 3.3	Preheat-Cooldown 3.4	Preheat-Cooldown 3.5	Preheat-Cooldown 3.6	Preheat-Cooldown 3.7	Preheat-Cooldown 3.8	-Preheat-Cooldown 3.9	Preheat-Cookdown 3.10	D-Preheat-Cooldown 3.11	>Preheat-Cooldown 3.12
Name		O-Preh.	0-Preh	0-Preh	0-Prehr	0-Preh	O-Preh	0-Preh	0-Preh	0-Preh	O-Preh	0-Preh	O-Preha	0-Preh	O-Preh	0-Preh	0-Preh	0-Preh	0-Preh	O-Preha	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	0-Preh	O-Preh	C-Pre-

Table 9-17: Results of three machines with fixed mat

Waiting
- I
down
cool
and
Preheat
- I
_
terial

Image Image <th< th=""><th>Machine Parts in AM depre- queue parts cistion total out</th><th>¢ pc.</th><th>87469 1</th><th>87516 1 66 87502 1 66</th><th>87494 1</th><th>87477 1</th><th>87513 1 67 87539 1 67</th><th>87551 1</th><th>87534 1</th><th>87537 1</th><th>87517 1</th><th>00000</th><th>89146 20</th><th>89111 19</th><th>17 19198</th><th>89272 14</th><th>89232 15</th><th>891/6 14 144 89169 13 144</th><th>89166 13</th><th>88986</th><th>89283 10</th><th>6 67768</th><th>90121 335 428</th><th>070 JTTTO</th><th>90163 302</th><th>90083 286</th><th>90049 272</th><th>253</th><th></th><th>90168 226</th></th<>	Machine Parts in AM depre- queue parts cistion total out	¢ pc.	87469 1	87516 1 66 87502 1 66	87494 1	87477 1	87513 1 67 87539 1 67	87551 1	87534 1	87537 1	87517 1	00000	89146 20	89111 19	17 19198	89272 14	89232 15	891/6 14 144 89169 13 144	89166 13	88986	89283 10	6 67768	90121 335 428	070 JTTTO	90163 302	90083 286	90049 272	253		90168 226
Matrix Matrix<	in queue machine 8	<i>m</i>		0,002	0,002							TINNIN	0,029	0,030	0,026		0,018			0,013	0,013	TIN'N	0,609	24.9	0,461	0,411	0,371	0,347	0,302	0,282
The state Mare		-	100/0			0,001	0,001	0,001	0,001	0,001	0,001		L			0,020		0.016	0,018											
Mere Mere <th< td=""><td>Waiting time in queue mechine</td><td>-</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></th<>	Waiting time in queue mechine	-	10																			1								2
Turnel Number Number<	Waiting time in queue machine	-	1	1 1	1	1		1	111	-	1	32 386	32,495	34,992	35,461	32,931	32,685	27,507	25,097	26,599	28,370	25,845	44,418	40,020	38,771	37,218	37,213	34,130	34,358	31,776
Mer Mer <td>System cool down</td> <td>~</td> <td>6,38</td> <td>5,84</td> <td>4,79</td> <td>4,26</td> <td>3,73</td> <td>2,66</td> <td>2,13</td> <td>1,60</td> <td>1,07</td> <td>50'N</td> <td>12,31</td> <td>11,16</td> <td>10,06</td> <td>8,95</td> <td>7,83</td> <td>5,61</td> <td>4,49</td> <td>3,37</td> <td>2,25</td> <td>1,13</td> <td>27,40</td> <td>07107</td> <td>22,68</td> <td>20,72</td> <td>18,72</td> <td>16,53</td> <td>13,98</td> <td>11,49</td>	System cool down	~	6,38	5,84	4,79	4,26	3,73	2,66	2,13	1,60	1,07	50'N	12,31	11,16	10,06	8,95	7,83	5,61	4,49	3,37	2,25	1,13	27,40	07107	22,68	20,72	18,72	16,53	13,98	11,49
Upper term Upper T	System setup	*	4,32	3,79	3,52	3,26	3,00	2,46	2,20	1,93	1,67	1,40	8,54	7,95	7,41	6,85	6,30	5,20	4,64	4,08	3,52	16'7	18,59	11 90	16,72	15,89	15,07	14,14	12,96	11,87
Unit Month Control Con		-										1												L						
Unere Member Construct Const	e Machine setup tracking 3	~	5,21																											
University University Constant of	Machine utili- zation 2		4,32	4,32	4,35	4,35	4,35	4,35	4,35	4,36	4,35	9.4.0	19/6	96'6	69'68	9,85	10,08	9,75	10,26	10,04	9,62	275	28,52	30.34	29.62	28,57	29,22	28,79	29,55	29,16
		acking 1 %																												
Unite Integre Mont Integre	Machine utili- zation 1	*										-												1						
		*	156614	154337	153170	151188	150500	145775	136172	136175	136056	131212	220294	216860	210583	201904	203151	202367	163690	167852	168318	10/315	704440	500000	589016	557950	52232	505101	472162	000000
		_	Ц					1														ľ								
Image Machine Cool Summa Fording Fording Fording Fording Fording Consumed Consumed <thconsumed< th=""> Consumad Consumad<td>Total operator cost</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thconsumed<>	Total operator cost	-																												
Image Mesh mean Mesh mean Mesh mean Mumber mean Mumu			15458	15379	15441	15438	15448	15460	15461	15494	15486	TOPOL	34672	35580	34761	33680	34983	34377	35114	34433		ľ								
Interest tension Meant setup setup buttome Meant setup setup setup setup buttome Meant setup s	Consumed energy	ke	Ш									ľ												1						
Image in the interval setup in the interval setup interval	-	_																												
Illapper Mean Meantime Cool Summer and and burne filed hrs hrs hrs hrs and and and and burne settime or volume hrs hrs hrs hrs hrs settime volume hrs hrs hrs hrs and and and and burne settime volume 130 131 22 33 settime volume 130 131 22 33 settime volume 130 131 22 33 settime volume 130 13 22 33 settime volume 130 21 23 33 settime volume 130 21 24 35 settime volume 130 21 24 35 settime volume 130 21 24 36 settime 130 21 22 36 settime 130 21 22 36 settim 130 21 <t< td=""><td>- Elapse time</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.1 8</td><td>0.1 8</td><td>0.1 8</td><td>8 10</td><td>8 10</td><td>0.1 8</td><td></td><td></td><td></td><td>0.1 8</td><td>0.1 8</td><td>0.1 8</td><td>0.1 8</td><td>8 10</td><td>01 8</td><td>0 1 10</td><td></td><td></td><td>0.1 8</td><td></td><td></td><td></td></t<>	- Elapse time								0.1 8	0.1 8	0.1 8	8 10	8 10	0.1 8				0.1 8	0.1 8	0.1 8	0.1 8	8 10	01 8	0 1 10			0.1 8			
Ellapse Mean Mean Mean tetrad attradial setuct Switch hrs hrs Switch hrs hrs 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 130 130 1 100 100 1 100 100 1 100 100	Sum of setup and cool	down hrs	24	22	18	16	12	10	8 12	6 9	4 1	3.0	22	20	18	16	14	10	8	6 9	4	4	24	30 00	18	16	14	12	10	00
tilapoe volume or filled Switch	Mean arrival	ş	130		130	130	110	130	1 130 4			130		60	8	8	8	88				60	8 8	3 %	2	8		8	20	8
[2] 2] 2] 2] 2] 2] 2] 2] 2] 2] 2] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3] 3]	Elapse time or volume filled	filled Switch	Ħ	wn1.2 wn13			+		Preheat-Cooldown 1.9			+	Preheat-Cooldown 2.2						Preheat-Cooldown 2.9	I-Preheat-Cooldown 2.10		+					-Preheat-Cooldown 3.6		-	

Table 9-18: Results of three machines with fixed mate

Waiting
1
Start volume
ta
Ś
1
terial

Parts in AM queue parts	total out	_		cs. pcs.	13 144	13 144	13 144	13 144	13 144	13 144	13 144	13 144	13 144	13 144	12 144
Machine Parts in depre- queue	clation tot			6 pcs.	89107	20102	89107	89107	89107	89107	89107	20168	89107	89166	18068
Average Mac building der				mm1	\$88152 8	388152 8	588152 8	\$88152 8	388152 8	58152 8	\$88152 8	388152 8	68152 8	\$89143 8	180906
Number Ave				m	0,014 30	0,014 38	0,014 30	0,014 35	0,014 38	0,014 30	0,014 38	0,014 38	0,014 34	0,014 33	0,014 38
¥.s	dueue mac	machine	m				-			1				-	26,402
Number Waiti in queue time	machine qu	2 2		pcs.	0,017	0,017	0,017	0,017	0,017	0,017	0,017	0,017	0,017	0,018	0.017 2
ź,s	-				28,452 (28,452 (28,452 (28,452 (28,452 (28,452 (28,452 0	28,452 0	28,452 (24,575	683
umber Waiting queue time in	machine queue	machine	~	pcs. hrs	0,013 25	0,013 28	0,013 28	0,013 25	0,013 28	0,013 28	0,013 26	0,013 28	0,013 25	0,012 25	0.011 29
Waiting Number time in queue		machine		hrs	26,275 (26,275 (26,275 (26,275 (26,275 (26,275 (26,275 (26,275 (26,275 (260	1
Total Wat system tim	utili- queue	cation mad	-	4 %	19,09 26	19,09 26	19,09 20	19,09 26	19,09 26	19,09 26	19,09 26	19,09 26	19,09 26	19,11 25,	18.92
System Tc cool sys	down ut	162	_	×	4,49 1	4,49 1	4,49 1	4,49 1	4,49 1	4,49 1	4,49 1	4,49 1	4,49 1	4,49 1	4,50 1
System S utili-	zation			*	9,96	96,96	96'6	9,96	96,96	96,6	96'6	96'6	9,96	9,98	67.6
System setup				×	4,64	4,64	4,64	4,64	4,64	4,64	4,64	4,64	4,64	4,64	3 4,64
Machine	down	tracking 3		×	4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,48	4,46
Machine utili-	zation 3			×	9,81	9,81	9,81	9,81	9,81	9,81	9,81	9,81	9,81	96'6	9,63
Machine setup	tracking 3			×	4,65	4,65	4,65	4,65	4,65	4,65	4,65	4,65	4,65	4,63	4,61
Machine cool	down	tracking 2		×	4,62	4,62	4,62	4,62	4,62	4,62	4,62	4,62	4,62	4,62	4,59
Machine utili-	zation 2			×	10,41	10,41	10,41	10,41	10,41	10,41	10,41	10,41	10,41	10,26	10.12
Machine setup	tracking 2			×	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,78	4,74
Machine cool	down	tracking 1		×	4,36	4,36	4,36	4,36	4,35	4,36	4,36	4,36	4,36	4,37	4,44
Machine utili-	zation 1	-		×	9,65	9,65	9,65	9,65	9,65	9,65	9,65	9,65	9,65	9,74	9.61
Machine setup	tracking 1			×	4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,51	4,58
Total AM cost				ę	170542	170542	170542	170542	170542	170542	170542	170542	170542	169690	168513
Total penalty				9	5416	5416	S416	5416	5416	S416	5416	5416	5416	4375	4125
Total mainte-	nance	cost		÷	2 87170	2 87170	2 87170	2 87170	2 87170	2 87170	2 87170	2 87170	2 87170	6 87228	87144
t operator	cost			÷	2 7182	2 7182	2 7182	2 7182	2 7182	2 7182	2 7182	2 7182	2 7182	9 7186	8 7189
Consumed energy cost	5			v	6692	6693	6692	6692	6692	6692	6692	6692	6692	6709	6578
Consumed (material				v	35023	35023	35023	35023	35023	35023	35023	35023	35023	35114	34427
Consumed C				kg	111540	111540	111540	111540	111540	111540	111540	111540	111540	111829	109643
Consumed Co material e				kg	437	437	437	437	437	437	437	437	437	438	430
Total Cor ware- m	pousing	cost		¢	81046	81046	81046	81046	81046	81046	81046	81046	81046	80950	81298
Elapse T time w	ž			hrs	80	00	8	80	80	8	00	80	8	8	8
Produc- 1 tion	start	volume		*	+*	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	01	0.0
n setup	and	cool	down	hrs	8 12	8 12	8 12	8 12	8 12	8 12	8 12	8 12	8 12	8 12	8 12
hine Cool up down	time			s hrs	4	4	4	4	4	4	4	4	4	4	4
Mean Machine arrival setup	base time			hrs hrs	60	99	8	60	99	8	60	60	8	8	8
Elapse Mean Machine Cool time or arrival setup dowr	volume	filed	_	Switch he	=	1	1	1	1	1	1	1	=	1	1
5.5	Ŵ	+		5											
			Name		Start volume 1.1	Start volume 1.2	Start volume 1.3	Start volume 1.4	Start volume 1.5	Start volume 1.6	Start volume 1.7	Start volume 1.8	Start volume 1.9	Start volume 1.10	Start volume 1.11

MM	parts	out			pcs.	144	144	144	144	144	144	144	144	144	144	144	144	144
Parts in A	dieue	total	_	_	pcs. p	EL	13	EI	EI	13	12	E	12	12	11	11	11	10
Machine P.	depre- 0	clation				89185	89057	89058	89147	89166	89039	88898	89016	89014	89170	89178	89071	89169
Average	building	volume			"mm	381967	378550	385853	389697	\$89143	380553	386755	385806	385925	381999	381807	388835	393094
Number	in queue	machine	~			0,016	0,015	0,015	0,014	0,014	0,014	0,013	0,013	0,013	0,013	0,012	0,011	0,012
Waiting	time in	ananb	machine	m							***	25,756	28,695	26,584	28,540	27,409	26,116	26,860
Number	in queue	machine	2		pcs.	0,017	0,017	0,018	0,018	0,018	0,016	0,015	0,016	0,014	0,013	0,012	0,013	0.014
Waiting	time in	ananb	machine	2	hrs	30,558	30,390	31,847	29,795	29,575	29,158	1	27,842	26,886	26,162	26,372	27,470	30,229
Number	in queue	machine	1		pcs.	0,015	0,015	0,014	0,013	0,012	0,011	0,012	0,013	0,013	0,012	0,013	0,012	0,012
Waiting	time in	dueue	machine	1	hrs	26,855	27,695	27,768	25,484	25,097	25,571	25,640	27,835	29,788	28,390	28,134	25,896	28,692
m Total	system	ŧ	zation		×	4,49 18,95	50 18,88	50, 19,09	4,49 19,12	4,49 19,11	50 18,92	4,51 19,12	4,50 19,05	4,50 19,06	4,50 18,97	4,50 19,01	51, 19,17	51 19,30
m System	- 000	m down			×	83	9,74 4,50	9,95 4,50	10,00 4,4	9,98 4/	9,77 4,50	9,97 4,5	9,91 4,5	9,91 4,5	9,83 4,5	85 4,5	00 4,51	10,13 4,51
em System	엄	zation			*	64 6	4,64 9,	4,65 9,9	4,63 10,0	4,64 9,1	4,65 9,7	4,65 9,5	4,64 9,1	4,65 9,9	4,65 9,1	4,65 9,1	,66 10,00	,66 10,3
ne System	setup	-	\$ 3		×.	4,47 4,	4,51 4,	4,57 4,	4,51 4,	4,48 4,	4,46 4,	4,51 4,	4,43 4,	4,43 4,	4,47 4,	4,41 4,	4,42 4,	4,44 4,
ne Machine		13 down	tracking 3		25	9,77 4,	9,69 4,	9,96 4,	10,02 4,	9,94 4,	9,57 4,	9,91 4,	9,80 4,	9,94 4,	9,88 4,	9,58 4,	9,63 4,	36
e Machine	-iliji	3 zation		_	×	62 9												9 9
e Machine	setup	tracking 3	2		*	4	56 4,66	55 4,72	59 4,66	52 4,63	4,64 4,60	,60 4,65	,60 4,58	53 4,58	17 4,61	52 4,55	,62 4,57	56 4,59
e Machine	000	down	tracking		20	57 4,50	3 4,56	4 4,55	0 4,59	6 4,62		4	4	4,53	5 4,47	1 4,52	4	12 4,56
e Machine	uti i:	2 zation 2			*	5 9,67	0 9,63	0 10,14	4 10,20	8 10,26	8 10,04	5 10,15	5 10,19	8 9,84	1 9,65	7 9,71	7 10,36	0 10,32
e Machine	dnues	tracking 2	**		*	0 4,65	2 4,70	8 4,70	6 4,74	7 4,78	0 4,78	4,75	6 4,75	4 4,68	6 4,61	9 4,67	9 4,77	3 4,70
e Machine	000	1 down	tracking		26	04 4,50	4,42	14 4,38	4,36	4 4,37	10 4,40	94 4,41	3 4,46	95 4,54	36 4,56	27 4,59	32 4,49	11 4,53
e Machine	utili	1 zation 1			×	4 10,04	6 9,89	2 9,74	0 9,78	0,74	5 9,70	5 9,84	0 9,73	8 9,95	1 9,96	4 10,27	4 10,02	8 10,11
Total AM Machine	setup	tracking 1	_		×	4,64	4,56	4,52	4,50	0 4,51	4,55	3 4,55	4,60	12 4,68	4,71	4,74	4,64	ND 4,68
	cy cost				Ŷ	66 194863	33 189682	83 189057	50 176604	4375 169690	3583 167828	3583 168373	3916 168638	4416 169202	4208 168910	3916 168740	3708 168966	3875 169870
Total	e- penalty	6			÷	46 30166	21 24583	22 24083	09 11250									
Total	x mainte	nance	cost	_	Ŷ	7185 87246	7182 87121	89 87122	7180 87209	7186 87228	86 87103	91 86966	7187 87081	87079 59	7203 87232	7206 87239	7205 87135	7212 87231
d Total	st operator	cost			v	6606 71	6538 71	77 7189			64 7186	1917 08		55 7193	6608 7.2		6717 72	6814 72
Consumed	energy cost				~			5 6677	6721	4 6709	6564	2 6630	9 6645	0 6655		2 6625		
Consumed	material	cost			÷	34575	34216	34945	35173	35114	34355	34962	34779	34830	34581	34672	35155	35660
Consumed	energy				kg	110112	106970	111289	112016	111829	109412	111345	110762	110925	110133	110420	111959	113568
Consumed C	material				kg	432	427	436	439	438	429	437	434	435	432	433	439	445
Total Co	ware-	housing	cost		÷	81062	80885	81014	80936	80950	80813	80638	80351	80429	80306	81019	81416	81760
Elapse	time	_			hrs	12	11	10	6	8	7	9	S	4	3	2	1	0
Produc- [tion	start	volume		*	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sum of	setup	and	cool	down	hrs	12	12	12	12	12	12	12	12	12	12	12	12	12
Cool	down	p.			hrs	4 8	4 8	4 8	8	4 8	4 8	4	4 8	8	4 8	4 8	8	4 8
Mean Machine Cool	setup	base time			hrs													
	arrival				hrs	1 60	1 60	1 60	1 60	1 60	1 60	1 60	1 60	1 60	1 60	1 60	1 60	1 60
Elapse	time or	volume	filled		Switch			-			-			1				
				Name		Elapse time 1.1	Elapse time 1.2	Elapse time 1.3	Elapse time 1.4	Elapse time 1.5	Elapse time 1.6	Elapse time 1.7	Elapse time 1.8	Elapse time 1.9	Elapse time 1.10	Elapse time 1.11	Elapse time 1.12	Elapse time 1.18

Table 9-19: Results of three machines with fixed mate

Table 9-20: Results of three machines with fixed material – Elapse time - Waiting

IAL	
ЦПК	
I MALEKI	
BLE	
LEAIBLE	
ī	

AM	parts	ort			pcs.	55	62	67	72	8	88	96	108	123	144	172	216	288	431	675
Parts in	queue total				pcs.	0,000	0'000	0,000	0'000	0,000	0,000	0'000	0,000	0,000	0,000	0,067	0,233	3,217	73,467	58.618,067
Machine Pa	depre- que	ciation		2	5	86816	87214	\$7204	87887	87530	88277	88145	89635	88964	89214	89525	89766	90097	90315	90413 58.4
Average M	building o	volume o		3	mm ^s	391594	392299	168985	388451	386872	386260	383365	385448	395338	376009	380149	110166	382545	386009	390217
Average A	number b	of parts V	anene	1	pcs.	0'000	0/000	0,000	0'000	0/000	0'000	0'000	0,000	0'000	0/000	0,000	0/001	0,003	0,094	8,806
Average A	waiting n	time in o	dueue in		hrs	-	1	1	1	1	1	1	1	1	1	-	1	6,191	10,620	12,450
Total Av	ystem w	utili- ti	cation q		R	8,068	8,585	9,169	9,865	10,765	11,716	12,968	14,550	16,850	19,216	23,215	29,410	39,226	60,405	97,186
System 1	cool sy	down	R		R	1,868	1,988	2,139	2,299	2,513 1	2,742 1	3,047	3,409 1	3,886 3	4,513 1	5,394 2	6,724 2	8,968 3	13,365 6	20,916 9
System 5	utili-	zation			H.	4,133	4,398	4,674	5,044	5,503	5,986	6,614	7,422	8,662	9,617	11,601	14,852	19,383	29,139	46,101
System 2	setup				æ	2,067	2,200	2,356	2,522	2,748	2,988	3,307	3,719	4,301	5,086	6,220	7,835	10,876	17,901	30,169
Machine	cool	dawn	tracking 3		26	1,909	2,017	2,145	2,303	2,504	2,689	2,973	3,418	4,081	4,769	5,590	6,992	9,486	13,970	20,919
Machine	util-	zation 3	-		R	3,927	4,036	4,369	4,782	5,277	5,590	6,089	7,058	9,019	10,445	12,427	15,796	20,644	30,075	46,104
Machine	setup	tracking 3			R	2,124	2,246	2,375	2,540	2,752	2,949	3,249	3,755	4,558	5,408	6,504	8,217	11,657	18,837	30,190
Machine	looo	down t	tracking 2		%	1,844	2,014	2,193	2,362	2,612	2,871	3,201	3,522	3,894	4,465	5,443	6,725	8,921	13,536	20,946
Machine	utili-	zation 2	-		26	4,023	4,363	4,600	4,983	5,490	6,154	6,845	7,689	8,538	9/086	11,565	14,772	19,202	29,059	46,070
Machine	setup	tracking 2		Ì	R	2,029	2,214	2,401	2,576	2,838	3,110	3,455	3,816	4,307	5,053	6,302	7,858	10,817	18,147	30,172
Machine	cool	down	tracking 1		R	1,849	1,932	2,080	2,232	2,425	2,666	2,967	3,287	3,684	4,306	5,151	6,454	8,495	12,588	20,882
Machine	utili-	zation 1			8	4,450	4,794	5,054	5,368	5,742	6,215	6,907	7,518	8,429	9,320	10,811	13,988	18,301	28,284	46,129
Machine	setup	tracking 1			26	2,049	2,139	2,292	2,450	2,654	2,905	3,216	3,586	4,039	4,797	5,853	7,428	10,154	16,720	30,144
Total AM	cost	Ē			t	133019	134876	136234	139073	140697	144310	147166	151932	158433	163877	174260	190719	214494	274890	2471954
Total 1	penalty				v	0	0	0	0	0	0	0	0	0	0	41	166	458	11833	2124333
Total	mainte-	nance	cost		÷	84929	85318	85308	85976	85627	86358	86229	86708	87030	87275	87579	87814	88138	88351	88448
Total	operator	cost			J	2894	3095	3328	3605	3928	4321	4795	5393	6172	7188	8623	10775	14424	21550	33762
Consumed	energy cost o				5	2709	2891	3073	3342	3625	3985	4395	4961	5810	6468	7832	10057	13170	19845	31432
Consumed (material e	cost		-	J	14177	15131	16087	17490	18973	20857	23002	25966	30409	33852	40989	52633	68923	103858	164495
Consumed 0	energy		_	1	kWh	45150	48189	51233	55700	60423	66425	73256	82694	96845	107811	130540	167623	219501	330758	523870
Consumed	material				kg	177	189	201	218	237	260	287	324	380	423	512	657	861	1298	2056
Total	ware-	housing	cost		¢	70143	70526	71190	72098	73004	74128	75358	76998	79145	81466	84767	90275	99982	117594	174999
Elapse	time				hrs	80	00	90	00	00	80	00	00	00	00	80	00	90	00	00
Produc-	tion	start	volume		R	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1
Sum of	setup	and	cool	down	hrs															
I Cool	down			-	hrs	5 8	5 8	5 8	5 8	5 8	5	5 8	5 8	5 8	5 8	5	5 8	5 8	5 8	5 8
Material	change	time		ŝ	hrs		-		-	_	-	-			_	-		-		-
Elapse Mean Machine	setup	base time			hrs	4	-	4	4	4	4	4	4	4	4	4		4		4
Mean	arrival				hrs	150	140	130	120	110	100	90	8	70	99	8	40	30	20	10
Elapse	time or	volume	filled		Switch	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Name						Upper limit 1.1	Upper limit 1.2	Upper limit 1.3	Upper limit 1.4	Upper limit 1.5	Upper limit 1.6	Upper limit 1.7	Upper limit 1.8	Upper limit 1.9	Upper limit 1.10	Upper limit 1.11	Upper limit 1.12	Upper limit 1.13	Upper limit 1.14	Upper limit 1.15

Table 9-22: Results of three machines with flexible material - Upper limit - Waiting

AM	parts	out			pcs.	67	72	52	86	96	108	123	144	172	215	287	431	678
Parts in	queue total p	_			pcs.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,100	0,417	7,117	108,983	59.223,117
Machine Pa	depre- quet	clation		_	J	87279	87922	87594	88287	88146	88811	89135	89298	89349	89774	90108	90313	16505
Average Ma	building di	volume ct		_	mm ⁸	386950	988609	387059	386701	384700	386319	389911	378199	381334	390320	392578	379486	167386
Average Aw	number bui	of parts vol	dnene	_	pcs.	0,000 3	0,000 3	0,000 3	0,000 3	0,000 B	0,000 3	0,000 3	0,000 3	0,000 3	0,001 3	0,008 3	0,139 3	8,144 3
Average Ave	waiting nur	time in of	queue in q	_	hrs	1	1	100	1	-		1		1	1	8,173	10,744	12,368
Total Avr	system wi	utili- tin	zation qu	_	28	9,160	9,858	10,752	11,709	12,985	14,574	16,764	19,342	23,283	29,418	40,217	60,405 1	170,72
System 1	cool sy	down	19		R	2,137	2,297	2,510 1	2,739 3	3,046	3,401 3	3,871 1	4,508	5,402 2	6,716 2	8,931 4	13,338 6	20,976 9
System 5	utili-	zation			8	4,670	5,041	5,498	5,985	6,625	7,438	8,532	9,661	11,634	14,786	19,784	28,673	45,839
System 3	setup				8	2,354	2,520	2,744	2,985	3,313	3,735	4,360	5,174	6,248	7,915	11,501	18,394	30,255
Machine	000	dawn	tracking 3		ж	2,142	2,301	2,501	2,692	3,009	3,422	4,040	4,781	5,539	7,029	9,368	13,750	21,012
Machine	-ietn	zation 3			R	4,364	4,780	5,273	5,598	6,139	7,495	9,098	10,279	12,147	15,682	20,487	29,447	45,788
Machine	setup	tracking 3			æ	2,371	2,536	2,747	2,949	3,298	3,769	4,584	5,522	6,489	8,412	12,235	19,074	30,279
Machine	000	down	tracking 2		%	2,190	2,360	2,607	2,858	3,212	3,417	3,877	4,335	5,414	6,718	8,961	13,397	20,899
Machine	-ijiji	zation 2			%	4,596	4,979	5,485	6,115	6,952	7,388	8,225	9,324	11,655	14,979	19,871	28,953	46,038
Machine	setup	tracking 2			R	2,400	2,576	2,835	3,097	3,468	3,753	4,371	5,008	6,269	7,891	11,539	18,507	30,154
Machine	cool	down	tracking 1		se.	2,078	2,231	2,422	2,669	2,918	3,363	3,698	4,408	5,253	6,401	8,464	12,867	21,018
Machine	-ilih	zation 1			×	5,050	5,366	5,737	6,240	6,784	7,432	8,274	9,380	11,098	13,698	18,995	27,618	45,692
Machine	setup	tracking 1			%	2,291	2,448	2,651	2,909	3,173	3,683	4,124	4,991	5,985	7,444	10,730	17,601	30,333
Total AM	cost				ç	137246	140032	141732	145352	148425	153984	161017	169015	180355	198266	238487	313436	2510058
Total	penalty				ç	916	916	958	1041	1208	1708	2833	4791	6333	8000	22791	52375	2163500
Total	mainte-	namce	cost		J	85381	86011	85690	86368	86230	86881	87197	87356	87407	87822	88149	88349	88426
Total	operator	cost			J	3327	3604	3925	4318	4795	5392	6161	7186	8617	10763	14368	21538	33880
Consumed	energy cost				J	3073	3341	3624	3984	4403	4980	5736	6507	7838	10011	13443	19527	31247
Consumed	material	cost			J	16086	17488	18970	20851	23044	26062	30022	34054	41023	52394	70352	102195	163528
Consumed C	energy				kWh	51229	55694	60414	66404	73389	83001	95613	108452	130647	166960	224051	325464	520792
Consumed	material				kg	201	218	237	260	288	325	375	425	512	654	879	1277	2044
Total C	ware-	housing	cost		ç	71190	72098	73004	74119	75574	76639	78525	81248	85045	90402	100245	118375	173105
Elapse	time				hrs	.00	00	80	00	00	00	00	80	00	40	00	00	10
Produc-	tion	start	volume		R	01	0.1	0.1	0.1	0.1	0.1	0.1	10	0.1	01	0.1	0.1	10
Sum of Produc-	setup	pue	1000	down	hrs	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12 0.1	12	12 0.1	12 0.1	12 0.1	12 0.1
Cool	down				hrs	5 8	5 8	50	5 8	5 8	5 00	5 6	5 8	5 8	5 8	5 00	5 8	50 60
Material	change	time			hrs													
Elapse Mean Machine	setup	base time			hrs	4	4	4	4	4	4	4	4	*	4	4	4	4
Mean	arrival				hrs	1 130	120	110	100	1 90	1 80	70	60	50	40	30	1 20	10
Elapse	time or	volume	filled		Switch	-	1	-		1	-	1		1	1	-	1	1
Name						Upper limit 2.3	Upper limit 2.4	Upper limit 2.5	Upper limit 2.6	Upper limit 2.7	Upper limit 2.8	Upper limit 2.9	Upper limit 2.10	Upper limit 2.11	Upper limit 2.12	Upper limit 2.13	Upper limit 2.14	Upper limit 2.15

RESULTS OF THREE MACHINES WITH FLEXIBLE MATERIAL 2.4

Table 9-21: Results of three machines with flexible material - Upper limit - No waiting

No waiting
1
down
cool
and
Preheat and cool down
naterial

AM parts out	pcs.	215	215	215	215	215	215	215	215	216	216	216	215	412	423	427	429	429	430	430	430	431	431	431	432	414	435	460	485	511	542	567	572	572	572	574	1000
Parts in queue total	pcs.	4,050	3,367	2,400	1,667	1,133	0,883	0,600	0,283	0,233	0,117	0,050	0,113	4.033,000	1.948,067	802,833	468,617	291,433	182,383	140,267	98,250	73,467	57,467	32,783	26,900	32.381,250	29.524,550	25.402,900	20.938,650	16.003,317	8.751,650	2.532,750	1.170,467	661,950	387,567	269,083	100.000
Machine depre- clation	J	89988	89874	89799	89922	89795	89819	89745	89723	89766	89688	89760	89736	90352	90348	90338	90382	90358	90382	66706	90321	90315	90243	90220	90264	90327		90394	90382	90384	90366	90414	90387	90403	90404	90367	10000
Average N building volume	mm ^s	392469	392500	386621	387882	384585	388456	387370	387289	391011	388901	388222	392428	385317	389744	386344	387031	386869	382374	391975	382903	386009	393313	385188	390279	389001	390443	386194	388678	393763	388503	377046	386271	386486	382925	385614	000000
Average A number E of parts v in queue	pcs.	0,005	0,004	0,002	0,001	0,001	0,001	0,001	0/000	0,001	0'000	0,000	0,000	9,222	4,118	1,493	0,793	0,453	0,262	0,200	0,133	0,094	690'0	0,038	0,034	7,214	6,230	5,754	4,058	3,314	1,439	3,977	1,681	0,883	0,485	0,318	
Average A waiting n time in c queue ir	hrs	9,563	8,268	1	4,519	3,374	-	2,146	1	1	1	1		19,198	17,450	15,405	14,073	12,897	12,058	11,867	11,179	10,620	9,825	8,988	9,721	20,263	19,307	18,222	17,306	16,233	14,998	13,154	12,070	11,295	10,532	9,878	
system utili- zation	*	50,482	47,932	44,973	42,237	39,413	36,969	34,370	31,796	29,410	26,817	24,220	21,877	97,407	95,332	90,987	86,330	81,151		71,228	65,545		55,676	49,474	44,545	98,201		98,003	97,853	97,676	96,877	93,509	88,255	81,437	74,054	67,585	
System cool down	ж	5 20,069	5 18,441	1 16,769	15,082	3 13,415	9 11,757		8,395	2 6,724	1 5,051	5 3,363	2 1,681	7 38,355	36,054	2 33,098	\$ 29,929	26,622					7 10,039	3 6,685	3,348	2 38,536		5 35,623	3 33,788	31,677	3 29,396	7 26,362	3 22,136	1 17,726	13,295	8,901	L
n System utili- zation	8	57 14,846	14,876	20 14,634	31 14,674	14,553	32 14,729	51 14,730	57 14,735	35 14,852	55 14,801	32 14,765	74 14,922	44 27,807	39 28,890	18 28,942	53 29,138	99 29,130					59 29,777	57 29,123	29,569	34 28,262		35 31,095	32,973	58 35,230	36,888	37,477	56 38,653	50 38,751	38,354	77 38,808	Ł
ne System setup 83	8	21,530 15,567	19,774 14,615	17,782 13,570	16,048 12,481	14,367 11,444	12,582 10,482	10,359 9,561	8,794 8,667	6,992 7,835	5,267 6,965	3,501 6,092	1,751 5,274	38,596 31,244	36,061 30,389	33,333 28,948	30,397 27,263	27,253 25,399					10,532 15,859	7,014 13,667	3,508 11,628	38,202 31,404		35,382 31,285	33,832 31,092	397 30,768	29,485 30,593	26,493 29,669	22,329 27,466	18,028 24,960	13,721 22,405	9,167 19,877	
e Machine cool tracking 3	26			~																										87 31,897							
e Machine utili- 3 zation 3	ж	15,506	IS 15,176	0 15,411	15,392	6 15,220	01 15,485		5 15,484	17 15,796	33 15,587	0 15,482	2 15,537	16 27,441	7 29,070	15,042	14 28,956	1 29,445		0 30,555			14 30,651	EOE,OE 18	30,787	4 28,947		31,627	32,944	15 34,887	3 36,776	37,524	4 39,086	19 39,344	99 39,133	39,700	l
Machine setup tracking 3	*	3 16,849	1 15,815	6 14,530	5 13,395	1 12,376	11,301		9,155	5 8,217	0 7,403	1 6,460	8 5,612	31,446	7 30,407	7 29,186	8 27,774	8 26,071					1 16,794	6 14,461	8 12,367	0 31,114		7 31,059	31,101	4 30,945	3 30,713	0 29,861	0 27,814	4 25,489	3 23,199	8 20,587	ļ
Machine cool down tracking 2	%	20,023	18,371	16,806	14,845	13,131	11,530	_	8,488	6,725	5,090	3,351	1,678	38,289	36,087	33,347	29,978	26,518				-	9,991	6,636	3,348	38,520		35,477	33,868	31,484	29,203	26,310	22,120	17,604	13,163	8,868	
Machine utili- zation 2	%	14,865	15,068	14,928	14,777	14,596	14,795		14,958	14,772	14,826	14,731	15,175	27,937		28,549	29,457	29,617					29,673	28,994	29,529	28,271		31,376	32,775	35,559	37,184		38,534	39,127			
Machine setup tracking 2	%	15,543	14,625	13,587	12,315	11,198	10,280	9,702	8,767	7,858	6,993	6,069	5,251	31,172	30,375	29,152	27,220	25,311	23,510	21,940	20,095	18,147	15,753	13,678	11,578	31,397	31,413	31,147	31,204	30,618	30,438	29,661	27,519	24,829	22,246	19,777	
Machine cool down racking 1	×	18,654	17,180	15,718	14,354	12,748	11,161	9,642	7,904	6,454	4,794	3,238	1,615	38,180	36,012	32,613	29,413	26,095	22,595	19,415	16,050	12,588	9,595	6,405	3,187	38,885	36,897	36,009	33,665	31,652	29,499	26,283	21,961	17,545	13,001	8,668	
Machine I utili- zation 1 t	*	14,168	14,383	13,565	13,853	13,843	13,906	13,825	13,762	13,988	13,991	14,081	14,054	28,045	28,810	29,234	29,000	28,328	27,885	28,842	27,803	28,284	29,006	28,070	28,392	27,567	30,010	30,284	33,202	35,246	36,706	37,300	38,339	37,783	37,076	37,742	
Machine Machine Caracking 1 a	ж	14,309	13,403	12,594	11,732	10,758	9,866	9,022	8,079	7,428	6,499	5,748	4,958	31,115	30,384	28,506	26,794	24,815	22,768	20,839	18,943	16,720	15,031	12,861	10,937	31,702	31,176	31,650	30,970	30,741	30,627	29,487	27,064	24,562	21,769	19,265	
cost In Internation	¢	256217	250844	246903	250871	235607	211757	197004	189929	190719	190157	190151	190802	1229952	867268	548258	448778	395893	354116	316495	280673	274890	271756	265106	267280	1622162	1676914	1743656	1782589	1836501	1621923	\$39411	500751	399031	348482	333602	
Total To penalty	J	65291	60000	57250	60791	46291	21625	7041	0	166	0	0	41	973375	605583	286166	185625	132833	92458	51958	18500	11833	6166	2375	2500	1363625					320250	533833	190041	87833	38958	22166	
Total mainte- nance cost	J	88031	87920	87847	87967	87843	87867	87794	87773	87814	87738	87808	87785	88388	88384		88417	88393	88417	88336	88357	88351	88281	88259	88301	88363 1	88412 1411000	88429 1470625	88417 1500375	88419 1543375	88401 1320250	88448	88422	88437	88438	88403	
Total operator cost	J	10747	10760	10754	10762	10753	10774	10765	10758	10775	10781	10780	10774	20623	21147	21352	21464	21473	21475	21484	21522	21550	21566	21535	21580	20714	21750	22995	24231	25559	27099	28369	28577	28609	28611	28720	
Consumed energy cost o	J	10075	10083	6066	9950	9856	9978	9968	9968	10057	10009	9993	10097	18947	19683	19717	19860	19849	19619	20096	19707	19845	20264	19815	20128	19252	20258	21197	22474	24011	25139	25552	26347	26417	26148	26445	
Consumed Co material ene cost	ç	52727	52772	51859	52076	51581	52222	52169	52170	52633	52381	52299	52841	99156	103009	103188	103937	103879	102673	105173	103133	103858	106050	103701	105336	100753	106021	110931	117617	125662	131565	133724	137887	138254	136845	138398	
energy m	kWh	167922	168064	165157	165849	164271	166314	166145	166148	167623	166820	166558	168284	315784	328054	328626	331012	330824	326985	334948	328451	330758	337740	330259	335468	320870	337646	353285	374578	400198	418998	425875	439132	440299	435812	440759	
material cor	kg	659	659	648	650	644	652	652	652	657	654	653	660	1239	1287	1289	1299	1298	1283	1314	1289	1298	1325	1296	1316	1259	1325	1386	1470	1570	1644	1671	1723	1728	1710	1729	
m ware- m ware- housing cost	ç	90529	89940	89967	90919	90497	90449	90476	89689	90275	90531	90602	90252	118750	117947	117939	117338	118215	118070	117596	117793	117594	119208	117901	118799	137186	137247	135779	136613	137037	136253	136658	136037	137570	137182	137128	
Elapse time	hrs	90	00	-00	00	00	00	00	00	60	00	10	00	00	00	00	00	90	00		80	00	90	10	00	00	90	00	00	60	00	90	00	00	90	00	ĺ
Produc- tion start volume	ж	0.1	0.1	30 0.1	27 0.1	24 0.1	21 0.1	18 0.1	15 0.1	12 0.1	9 0.1	6 0.1	3 0.1	36 0.1	33 0.1	30 0.1	27 0.1	24 0.1	21 0.1	18 0.1	15 0.1	12 0.1	9 0.1	0.1	3 0.1	36 0.1	33 0.1	30 0.1	27 0.1	24 0.1	21 0.1	18 0.1	15 0.1	12 0.1	0.1	0,10	
i Sum of and cool down	hrs	36					14 21					4 6				20 30				12 18			6 9	6	2 3	24 36					14 21				9	4 6	
rial Cool ige down re	s hrs						5 1					5							5					5		5 2										5	
ne Material p change me time	hrs	12	11	10	6	60	7	9	s	4	65	2	1	12	11	10	6	90	2	9	s	4	8	2	1	12	11	10	6	90	7	9	5	4	3	2	
in Machine oil setup base time	suh	40	40	40	40	40	40	40	40	40	40	40	40	20	20	20	20	20	20	2	20	20	20	20	20	15	15	15	15	15	15	15	15	15	15	15	
e or arrivel me ed	tch hrs	0	0	0		0						0							0						0					0							
Elapse time or volume filled	Switch										0	1	24				_						0		~			33							0	-	
Name		0-Preheat-Cooldown 1.1	0-Preheat-Cooldown 1.2	0-Preheat-Cooldown 1.3	0-Preheat-Cooldown 1.4	0-Preheat-Cooldown 1.5	0-Preheat-Cooldown 1.6	0-Preheat-Cooldown 1.7	-Prehest-Cooldown 1.8	0-Preheat-Cooldown 1.9	0-Preheat-Cooldown 1.10	0-Preheat-Cooldown 1.11	0-Preheat-Cooldown 1.12	0-Preheat-Cooldown 2.1	0-Preheat-Cooldown 2.2	0-Preheat-Cooldown 2.3	0-Preheat-Cooldown 2.4	0-Preheat-Cooldown 2.5	0-Preheat-Cooldown 2.6	0-Preheat-Cooldown 2.7	0-Preheat-Cooldown 2.8	0-Preheat-Cooldown 2.9	0-Preheat-Cooldown 2.10	Preheat-Cooldown 2.11	D-Preheat-Cooldown 2.12	0-Preheat-Cooldown 3.1	0-Preheat-Cooldown 3.2	0-Preheat-Cooldown 3.3	D-Preheat-Cooldown 3.4	0-Preheat-Cooldown 3.5	0-Preheat-Cooldown 3.6	0-Preheat-Cooldown 3.7	0-Preheat-Cooldown 3.8	0-Preheat-Cooldown 3.9	0-Preheat-Cooldown 3.10	0-Preheat-Cooldown 3.11	

Table 9-23: Results of three machines with flexible mate

-
2
Waiting
Ŧ
5
Waii
>
÷.
_
F
5
C
Ē
_
C
C
C
Preheat and cool down
7
5
_
5
C
2
¢
2
_
nateria
.Ξ
Ē
ŧ
ĉ
_

annig	11 - TT AA	I TUINAL AITA COOL AO MIL - M ATH	val alla		

AM parts out	pcs.	86	86	86	86	86	86	88	8	86	86	86	38	143	144	144	144	144	144	143	144	144	144	144	144	411	422	427	428	429	429	430	429	431	431	430	430
Parts in A queue total p		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0'000	0,000	0,000	0,000	0,000	0,050	0'000	0,083	0,017	0,000	0,000	0'000	0,000	0,000	0,000	0,000	0,000	4.078,700	2.205,250	1.047,633	567,917	396,350	285,250	209,200	148,067	108,983	93,300	58,350	49,133
Machine Par depre- queu ciation		88308	88124	88281	88256	88217	88390	88321	88281	88287	88322	88311	88303	89270	89383	89392	89356	89091	89285	89281	89291	89298	89161	89105	89238	90304 4.0		90310 1.0	90359 51	90349 3	90294 21	90338 21	90342 1	90313 1		20297	90311
	+			383799 8		385272 8	388162 8			386701 8	386532 8		386449 8	383245 8	382411 8	390659 8	387900 8	380049 8		377066 8	372981 8	878199 8	382727 8		397315 8	386601 9	392391 9	389965	385330 9	385145 9	387098 9	388159 9	386461 9	379486 9	398975 9	382253	390541 9
< 2 2 >	+			0,000 38	0,000 37	0,000 385	0,000 381			0,000 38(0,000 38/	0,000 38/	0,000 38(0,000 38:	0,000 38;	000/0	0,000 38:	0,000 38(0,000 37	0,000 377	0,000 378		0,000 380	00000 397	9,334 38(1,992 38%	0,953 389	0,610 380	0,408 387	0,285 384	0,195 380	0,139 375	0,118 390	0,065 383	0,054 39(
ge Average ng number in of parts se in queue	-	-	-	-		- 0	- 0	- 0	-	-	- 0	- 0		0'	0	0	0'		-0	-	- 0		- 0	- 0				15,728 1,	14,110 0,	13,001 0,	12,055 0,	11,617 0,	11,015 0,	10,744 0,		9,292 0,	9,107 0,
al Average em waiting - time in on queue	ž	89	358	871	166	623	793	137	67	60	582	9,657	8,634	078	\$13	000	087	192	528	659	900	542	126	886	110												
F & 7 %		_		6,847 17,871	6,155 16,766	5,482 15,829	4,787 14,793			2,739 11,709	2,055 10,682	1,370 9/	0,686 8,6	13,490 33,078	12,369 31,313	11,251 29,800	10,145 28,087	9,038 26,192		6,746 22,659	5,641 20,930	4,508 19,342			1,130 14,710	38,240 97,301	35,958 95,336	33,087 91,396	29,827 86,197	26,560 81,244	23,266 76,268	19,977 71,326	16,618 65,926	13,338 60,405		6,661 50,209	3,333 45,578
System System utili- cool zation down		_		5,960 6	5,906 6	5,978 5,	5,994 4		_	5,985 2,	5,987 2,	5,988 1	5,991 0,	9,719 13	9,705 12	9,901 11	9,876 10	9,682 9		9,574 6	9,531 5,	9,661 4			10,157 1.	27,857 38			28,950 29	28,979 26	29,113 23	29,272 19	29,090 16	28,673 13	_	28,841 6,	29,512 3,
System Sy setup u za				5,064	4,705	4,368	4,011			2,985	2,640	2,299	1,957		9,238	8,648	8,065	7,473			5,759	5,174				31,204 2	_	29,066 2	27,420 23	25,705 21	23,889 25	22,076 25	20,218 2	18,394 23	_	14,707 23	12,732 29
Machine Sy cool s down tracking 3	×	8,460	7,702	6,808	6,236	5,454	4,754	4,040	3,357	2,692	2,021	1,348	0,674	14,099	12,937	11,742	10,613	9,415	8,219	7,172	5,940	4,781	3,538	2,353	1,210	38,186 3		32,976 2	29,908 2	26,898 2	23,465 2	20,295 2	16,982 2	13,750 1		6,902 1	3,443 1
Machine M util- zation 3 c	æ	6,245	6,082	5,687	5,493	5,494	5,496	5,462	5,552	5,598	5,617	5,619	5,617	10,027	9,875	10,456	10,138	9,928	9,940	10,144	9,889	10,279	10,370	10,206	11,168	28,047	28,722	29,559	29,078	28,637	29,402	29,576	29,709	29,447	31,592	29,626	30,742
Machine M setup tracking 3 za	8	5,997	5,572	5,060	4,797	4,368	4,002	3,627	3,278	2,949	2,611	2,275	1,939	10,406	9,783	9,079	8,510	7,832	7,229	6,767	6,089	5,522	4,820	4,184	3,703	31,144	30,498	28,969	27,500	26,027	24,089	22,533	20,810	19,074	17,126	15,464	13,376
Machine M cool s down tra tracking 2	×	8,053	7,766	7,045	6,343	5,770	5,013	4,274	3,575	2,858	2,152	1,435	0,718	13,600	12,241	11,466	10,138	8,919	7,595	6,436	5,486	4,335	3,373	2,306	1,110	38,424	35,921	33,207	29,787	26,619	23,577	19,916	16,645	13,397	10,242	6,711	3,357
Machine M utili- zation 2 d	×	6,032	6,056	6,155	6,268	6,414	6,322	6,118	6,149	6,115	6,132	6,131	6,133	9,860	9,187	9,397	9,897	9,646	9,649	9,364	9,421	9,324	9,311	9,707	9,861	27,505	29,151	29,015	29,026	28,857	28,396	29,627	29,241	28,953	29,848	28,877	29,643
8 N 2	æ	5,669	5,584	5,192	4,830	4,578	4,178	3,801	3,455	3,097	2,750	2,392	2,034	9,962	9,113	8,839	8,046	7,399	6,689	6,079	5,639	5,008	4,602	4,092	3,378	31,372	30,317	29,169	27,366	25,819	24,266	21,999	20,258	18,507	17,072	14,835	12,794
Machine N cool down tr tracking 1	29.	8,116		6,689	5,885	5,221	4,594	4,000	3,337	2,669	1,991	1,329	0,665	12,772	11,930	10,546	9,684	8,779	7,841	6,630	5,496	4,408	3,247	2,134	1,070	38,112	35,829	33,078	29,787	26,164	22,756	19,720	16,226	12,867	9,559	6,370	3,199
8 . T	×	6,236	6,143	6,038	5,957	6,027	6,165	6,312	6,236	6,240	6,212	6,215	6,224	9,270	10,055	9,850	9,594	9,472	9,626	9,214	9,282	9,380	9,574	9,287	9,441	28,018	29,172	29,153	28,747	29,442	29,541	28,612	28,321	27,618	29,012	28,019	28,151
Machine N setup tracking 1 2	×	5,695	5,126	4,940	4,489	4,159	3,854	3,577	3,246	2,909	2,559	2,229	1,898	9,239	8,818	8,027	7,640	7,187	6,795	6,171	5,548	4,991	4,341	3,726	3,188	31,096	30,274	29,062	27,394	25,269	23,312	21,697	19,587	17,601	15,752	13,821	12,028
cost tr	J	172897	173064	169060	168019	162913	160568	159631	156839	145352	144965	144370	144376	210272	208323	207169	204785	195395	191599	188838	183215	169015	166940	164194	166201	1276845	918266	622032	459398	408948	384917	360977	346225	313436	306476	266571	267603
Total Total Total	J	27791	28541	24875	24083	18750	16041	15333	12541	1041	583	0	0	45875	43791	41791	39541	31458	27083	25041	19541	4791	2583	0	0	1020250	656083	358750	197166	146583	122125	97333	83375	52375	39166	4875	3000
Total mainte- nance cost	J	86389	86208	86362	86337	86300	86469	86401	86362	86368	86402	86391	86383	87329	87439	87449	87413	87154	87344	87340	87349	87356	87223	87168	87298	88341	88389	88347	88394	88385	88331	88375	88378	88349	88342	88334	88347
Total operator cost	J	4313	4314	4318	4311	4316	4317	4316	4317	4318	4320	4321	4323	7166	7176	7182	7194	7187	7180	7168	7194	7186	7186	7205	7200	20555	21100	21354	21407	21451	21448	21500	21465	21538	21529	21501	21516
Consumed energy cost	J	4108	4053	3965	3931	3975	3997	3975	3983	3984	3987	3988	3990	6544	6540	6673	6657	6504	6557	6445	6419	6507	6557	6539	6834	18970	19769	19914	19726	19743	19823	19942	19820	19527	20533	19638	20099
Consumed C material e cost	J	21499	21210	20751	20575	20805	20919	20804	20847	20851	20870	20872	20883	34247	34228	34922	34839	34038	34318	33729	33593	34054	34316	34224	35767	99279	103461	104218	103237	103323	103744	104367	103725	102195	107457	102776	105189
5	kWh	68468	67550	66088	65525	66258	66622	66255	66393	66404	66465	66472	66508	109067	109006	111217	110955	108402	109294	107417	106985	108452	109287	108996	113910	316178	329493	331904	328781	329054	330397	332380	330336	325464	342221	327314	334998
Consumed Cor material e		268	265	259	257	260	261	260	260	260	260	260	261	428	427	436	435	425	428	421	419	425	428	427	447	1241	1293	1302	1290	1291	1296	1304	1296	1277	1343	1284	1314
Total Con ware- ma bousing cost	5	73965	74269	74416	74161	74350	74300	74226	74118	74119	74150	74150	74150	81761	80822	80919	80858	81500	80963	81139	81458	81248	80965	81993	81562	118243	117851	117557	118882	118306	117938	118402	118413	118375	117979	118305	118396
								00 0				00										80					8 1			00	8		1	1		8 1	-
Produc- El tion t start volume		0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
*	hrs	36	33	8	27	24	21	18	15	12	6	9	9	36	33	30	27	24	21	18	15	12	6	9	m	8	33	30	27	24	21	18	15	12	6	9	m
down	ž	5 24		5 20	5 18	5 16	5 14	5 12	10	5	9	5 4	5 2	5 24	5 22	5 20	5 18	5 16	5 14	5 12	5 10	50	5 6	5 4	5 2	5 24	5 22	5 20	5 18	5 16	5 14	5 12	5 10	00	5 6	5 4	5 2
25	rl 2					60	P	10	5		m		1	-	1	-	6	00	-	9	10		-	Pul				-	6	90	-	9	-	-	-	Put	
Machine setup base time	Ę			-									-		11	10					-1				-	12	11	10					-	-			
e Mean or arrivel e	-	1 100	100	1 100	1 100	1 100	1 100	1 100	1 100	1 100	1 100	1 100	1 100	1 60	1 60	1 60	1 60	1 60	1 60	1 60	1 00	1 60	1 60	1 60	1 60	1 20	1 20	1 20	1 20	1 20	1 20	1 20	1 20	1 20	1 20	1 20	1 20
Elapse time or volume filled	Switch																																				
Name		1-Preheat-Cooldown 1.1	1-Preheat-Cooldown 1.2	1-Preheat-Cooldown 1.3	1-Preheat-Cooldown 1.4	1-Preheat-Cooldown 1.5	1-Preheat-Cooldown 1.6	1-Preheat-Cooldown 1.7	1-Preheat-Cooldown 1.8	1-Preheat-Cooldown 1.9	1-Preheat-Cooldown 1.10	1-Preheat-Cooldown 1.11	1-Preheat-Cooldown 1.12	1-Preheat-Cooldown 2.1	1-Preheat-Cooldown 2.2	1-Preheat-Cooldown 2.3	1-Preheat-Cooldown 2.4	1-Preheat-Cooldown 2.5	1-Preheat-Cooldown 2.6	1-Preheat-Cooldown 2.7	1-Preheat-Cooldown 2.8	1-Preheat-Cooldown 2.9	1-Preheat-Cooldown 2.10	1-Preheat-Cooldown 2.11	1-Preheat-Cooldown 2.12	1-Preheat-Cooldown 3.1	1-Preheat-Cooldown 3.2	1-Preheat-Cooldown 3.3	1-Preheat-Cooldown 3.4	1-Preheat-Cooldown 3.5	1-Preheat-Cooldown 3.6	1-Preheat-Cooldown 3.7	1-Preheat-Cooldown 3.8	1-Preheat-Cooldown 3.9	1-Preheat-Cooldown 3.10	1-Preheat-Cooldown 3.11	1-Preheat-Cooldown 3.12

Table 9-24: Results of three machines with flexible m

(• •

Waiting
1
volume
Start
1
naterial

AM	parts	out			pcs.	144	144	144	144	144	144	144	144	144	144	144
Parts in	queue total p	-			pcs.	0'000	0,000	0'000	0,000	0,000	0,000	0,000	0'000	0'000	0,000	0'000
Machine Par	depre- queu	clation			۵ ر	89281	89281	89281	89281	89281	89281	89281	89281	89227	89298	89073
_	_				μ	382590 8	382590 8	382590 8	382590 8	382590 8	382590 8	382590 8	382590 8	379676 8	378199 8	379018 8
ge Average	er building	ts volume	an	_	mm ⁸		0,000 382	0,000 382	_			0,000 382	0,000 382	0,000 379	0,000 378	
e Average	g number	n of parts	in queue		pcs.	000/0	0'0	0'0	0/000	0,000	0/000	0'0	0'0	0'0	0'0	000/0
Average	waiting	time in	ananb		hrs											
n Total	system	ġ	zation		R	7 19,470	7 19,470	7 19,470	7 19,470	7 19,470	7 19,470	7 19,470	7 19,470	M 19,384	8 19,342	0 19,297
n System	000	n down			R	76 4,507	76 4,507	76 4,507	76 4,507	76 4,507	76 4,507	76 4,507	76 4,507	90 4,504	51 4,508	54 4,520
m System	ntili-	zation		_	8	87 9,776	87 9,776	87 9,776	87 9,776	87 9,776	87 9,776	87 9,776	87 9,776	90 9,690	74 9,661	22 9,654
he System	setup	_	m	_	8	4,774 5,187	4,774 5,187	4,774 5,187	4,774 5,187	4,774 5,187	4,774 5,187	4,774 5,187	4,774 5,187	4,782 5,190	4,781 5,174	4,615 5,122
Machine	000	dawn	tracking 3		×											
Machine	utili-	zation 3			×	10,435	10,435	10,435	10,435	10,435	10,435	10,435	10,435	10,255	10,279	10,153
Machine	setup	tracking 3			æ	5,527	5,527	5,527	5,527	5,527	5,527	5,527	5,527	5,545	5,522	5,247
Machine	000	down	tracking 2		×	4,352	4,352	4,352	4,352	4,352	4,352	4,352	4,352	4,346	4,335	4,534
Machine	utili	zation 2			*	9,598	9,598	9,598	9,598	9,598	9,598	9,598	9,598	9,535	9,324	9,189
Machine	setup	tracking 2			R	5,043	5,043	5,043	5,043	5,043	5,043	5,043	5,043	5,038	5,008	5,173
Machine	cool	down	tracking 1		*	4,395	4,395	4,395	4,395	4,395	4,395	4,395	4,395	4,385	4,408	4,413
	utili-	zation 1			×	9,294	9,294	9,294	9,294	9,294	9,294	9,294	9,294	9,279	9,380	9,620
Machine Machine	setup	tracking 1			8	4,991	4,991	4,991	4,991	4,991	4,991	4,991	4,991	4,987	4,991	4,945
Total AM	cost				J	172133	172133	172133	172133	172133	172133	172133	172092	171130	169015	166213
Total	penalty				J	7458	7458	7458	7458	7458	7458	7458	7416	6916	4791	2416
Total	mainte-	nance	cost		J	87340	87340	87340	87340	87340	87340	87340	87340	87287	87356	87136
Total	operator	cast			J	7184	7184	7184	7184	7184	7184	7184	7184	7175	7186	7190
onsumed	energy cost				J	6583	6583	6583	6583	6583	6583	6583	6583	6522	6507	6485
Consumed Consumed	material e	cost			J	34453	34453	34453	34453	34453	34453	34453	34453	34132	34054	33938
Consumed C	energy				kWh	109725	109725	109725	109725	109725	109725	109725	109725	108703	108452	108085
Consumed C	material				kg	430	430	430	430	430	430	430	430	426	425	424
Total	ware-	housing	cost		J	81441	81441	81441	81441	81441	81441	81441	81441	81288	81248	81498
Elapse	time			Ī	hrs	00	90	60	00	80	00	90	00	00	80	00
Produc-	tion	start	volume		R	1	06'0	0,80	0,70	0,60	0,50	0,40	0'30	0,20	0,10	0,00
Sum of	setup	pue	000	down	hrs	12	12	12	12	12	12	12	12	12	12	12
Cool	down				hrs	5 8	5 00	5 00	5 8	5 00	5 8	5 00	50	5 8	5 8	5
Materia	change	time			hrs											
Mean Machine Material	setup	base time			hrs	4	4	4	4	4	4	4	4	4	4	4
Mean	arrival				hrs	99	3	8	8	3	8	3	8	8	3	8
Elapse	time or	volume	filled		Switch	1	1	1	1	1	1	1	1	1	1	1
Name						Start volume 1.1	Start volume 1.2	Start volume 1.3	Start volume 1.4	Start volume 1.5	Start volume 1.6	Start volume 1.7	Start volume 1.8	Start volume 1.9	Start volume 1.10	Start volume 1.11

Table 9-26: Results of three machines with flexible material – Elapse time - Waiting

AM	parts	out			pcs.	144	144	144	144	144	144	144	144	144	144	144	144	144
F		0	_			0'000	0'000	0,000	0,000	0000'0	0'000	0,000	0,000	0'000	0,000	0,000	0,000	0,000
ine Parts in	e- queue total	ц		_	pcs.	89265	89298	89289	89321 (89298	89227 (89220 (89139 (89082 (89105 (89145 (89272 (89224 0
e Machine	g depre-	e clation		_	J					_								1
Average	building	volume	~		mm*	0 371722	0 375021	374408	376741	378199	0 384692	0 375928	0 382136	0 380364	0 381723	0 376237	0 376349	0 376351
Average	number	of parts	in queue		pcs.	00000	0/000	0,000	0/000	000/0	0'000	0'000	00000	0'000	0,000	0,000	0/000	0,000
Average	waiting	time in	ananb		hrs				-	-		-			1		1	
Total	system	ŧ	zation		R	5 19,177	3 19,266	4 19,224	7 19,297	8 19,342	3 19,495	2 19,266	7 19,414	4 19,311	3 19,372	9 19,208	5 19,235	3 19,235
System	000	down			R	2 4,506	4 4,508	2 4,504	3 4,507	1 4,508	9 4,508	4 4,512	3 4,517	0 4,514	7 4,518	3 4,519	6 4,515	6 4,518
n System	-iti	zation			3R	8 9,482	4 9,574	8 9,542	6 9,613	4 9,661	0 9,819	0 9,604	4 9,743	7 9,660	717,9 ()	6 9,573	4 9,626	1 9,616
e System	setup		m		8	86 5,188	45 5,184	67 5,178	89 5,176	81 5,174	64 5,170	62 5,150	14 5,154	45 5,137	70 5,137	04 5,116	54 5,094	91 5,101
Machine Nachine	000	dawn	tracking 3		%	4 4,786	6 4,745	0 4,767	2 4,789	9 4,781	4 4,764	1 4,762	3 4,714	0 4,745	3 4,770	4 4,704	1 4,754	4 4,791
Machine	utii-	zation 3			R	10,044	9,946	10,010	10,082	10,279	10,514	10,401	10,323	10,460	10,283	9,984	10,281	10,344
Machine	setup	tracking 3			æ	5,549	5,491	5,527	5,544	5,522	5,496	5,471	5,403	5,421	5,442	5,363	5,410	5,447
Machine	000	down	tracking 2		%	4,378	4,386	4,424	4,369	4,335	4,376	4,399	4,501	4,502	4,493	4,568	4,483	4,464
Machine 1	-tiji	zation 2	<u>ت</u>		%	9,283	9,504	9,401	9,391	9,324	9,338	8,845	9,282	9,272	9,320	9,445	9,386	9,091
Machine N	setup	tracking 2			R	5,062	5,069	5,105	5,047	5,008	5,056	5,064	5,168	5,158	5,142	5,187	5,066	5,057
Machine N	cool	down tr	tracking 1		<i>3</i> 9.	4,356	4,393	4,321	4,364	4,408	4,383	4,375	4,336	4,295	4,292	4,285	4,310	4,298
Machine 7	utili-	zation 1	5		×	9,121	9,271	9,214	9,368	9,380	9,604	9,565	9,623	9,249	9,546	9,291	9,211	9,414
Machine 1	setup	tracking 1			×	4,954	4,992	4,901	4,938	4,991	4,958	4,917	4,892	4,832	4,827	4,797	4,804	4,800
Total AM	cost	4			J	185791	184026	182625	173818	169015	168196	166497	166989	164912	164105	163591	164022	163895
Total 1	penalty				J	22375	20166	18916	9750	4791	3458	2666	2708	1083	0	0	0	0
Total	mainte-	nance	cost		J	87324	87356	87348	87379	87356	87287	87281	87201	87145	87168	87207	87331	87284
Total	operator	cost			J	7181	7186	7180	7187	7186	7180	7185	7188	7179	7188	7192	7195	7195
Consumed	energy cost				J	6385	6448	6427	6477	6507	6605	6460	6549	6490	6528	6436	6478	6468
	material er	cost			J	33416	33748	33636	33897	34054	34569	33810	34275	33965	34164	33685	33905	33851
Consumed Consumed	energy r				kWh	106422	107478	107123	107953	108452	110094	107677	109157	108170	108805	107277	107979	107806
Consumed Co	material				kg	417	421	420	423	425	432	422	428	424	427	421	423	423
Total Co	ware-	guisting	cost		J	81377	81373	81199	81495	81248	81117	81158	80989	81146	81227	81633	81745	81550
esdel3	time	-			hrs	12	11	91	6	90	7	9	50	4	9	2	1	0
Produc- E	tion	start	volume		R	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Sum of P	setup	pue	000	down	hrs	12	12	12	12	12	12	12	12	12	12	12	12	12
Cool	down				hrs	80	00	80	00	-00	00	00	60	60	00	00	80	00
Material	change	time			hrs	5	5	2	5		5	5	5	5	2	5	5	5
Elapse Mean Machine	setup	base time			hrs	4	4	4	4	4	4	4	4	4	4	4	4	4
Mean	arrival				hrs	8	8	8	99	3	3	8	8	8	3	8	8	99
Elapse	time or	volume	filled		Switch	1	1	1	1	1	1	1	1	1	1	1	1	1
Name						Elapse time 1.1	Elapse time 1.2	Elapse time 1.3	Elapse time 1.4	Elapse time 1.5	Elapse time 1.6	Elapse time 1.7	Elapse time 1.8	Elapse time 1.9	Elapse time 1.10	Elapse time 1.11	Elapse time 1.12	Elapse time 1.13

Table 9-25: Results of three machines with flexible m

Mean Machine Material Cool Sum of	Machine Material Cool Sum of	Material Cool Sum of	aterial Cool Sum of	Sum of		Produc	<u> </u>	-	-	Ð	-				ĥ	~	Machine	g	~	8	2		g	9	W1	10		_		_			MM
time or arrival setup change down setup tion time ware- material energy unlines	Setup change down setup tion time ware- material housing time to the setup time time.	change down setup toon time ware- material	down setup toon time ware- material	setup toon time ware- material	tion time ware- material	time ware- material	ware- material housing	material	energy	-	material energy cost	cost operator	ator mainte-	rte- penalty	cost	Setup tracking 1	utit-	cool down	Setup	utili-	loool	setup u	utili- resion 3 de O	cool setup	-itite	- 000	system	waiting +immin	of number	building o	depre- que	queue total	parts
cool volume cost	cool volume cost down	cool volume cost down	cool volume cost	volume cost	volume cost	cost			<u> </u>			}		1 11				-		+-	ⁿ		1	racking 3									į
Switch hrs hrs hrs hrs % hrs C kg kWh C	hrs hrs hrs % hrs € kg kWh	hrs hrs hrs % hrs C kg kWh	hrs hrs % hrs € kg kWh	hrs % hrs € kg kWh	% hrs € kg kWh	hrs C kg kWh	c kwh	kwh	╞	۱	Ľ	Ĭ	-	~	J	×	*	38	R	×	*	8	R	8	8	R	R	Sul	pcs.	mm ^s		bc.	DC.
1 100 4 1 8 12 0,10 8 74139 260 66254 20803	4 1 8 12 0,10 8 74139 260 66254	8 12 0,10 8 74139 260 66254	8 12 0,10 8 74139 260 66254	12 0,10 8 74139 260 66254	0,10 8 74139 260 66254	8 74139 260 66254	74139 260 66254	260 66254		2080		3975 4	4318 863	86374 291	1 144554	54 2,784	4 6,188	2,665	2,984	6,142	2,862	2,812	5,580	2,690 2,8	2,860 5,5	5,970 2,739	9 11,569	-	0'000	385739	88293	0,000	86
8 12 0,10 8 74139	4 2 8 12 0,10 8 74139 260 66254	2 8 12 0,10 8 74139 260 66254	8 12 0,10 8 74139 260 66254	12 0,10 8 74139 260 66254	0,10 8 74139 260 66254	8 74139 260 66254	74139 260 66254	260 66254		2080		3975 4	4318 863	86374 583	3 144846	46 2,814	4 6,188	2,665	3,013	6,142	2,862	2,846	5,580	2,690 2,8	2,891 5,9	5,970 2,739	9 11,601	1	0'000	385739	88293	0,000	86
0,10 8 74139	4 3 8 12 0,10 8 74139 260 66254	4 3 8 12 0,10 8 74139 260 66254	8 12 0,10 8 74139 260 66254	12 0,10 8 74139 260 66254	0,10 8 74139 260 66254	8 74139 260 66254	74139 260 66254	260 66254		2080		3975 4	4318 863	86374 750	0 145013	13 2,845	5 6,188	2,665	3,043	6,142	2,862	2,880	5,580	2,690 2,9	2,923 5,5	5,970 2,739	9 11,632	1	0/000	385739	88294	0,000	86
8 12 0,10 8 74139	4 4 8 12 0,10 8 74139 260 66254	4 4 8 12 0,10 8 74139 260 66254	8 12 0,10 8 74139 260 66254	12 0,10 8 74139 260 66254	0,10 8 74139 260 66254	8 74139 260 66254	74139 260 66254	260 66254		2080		3975 4	4318 863	86374 833	3 145097	97 2,875	5 6,188	2,665	3,073	6,142	2,862	2,914	5,580	2,690 2,9	2,954 5,5	5,970 2,739	9 11,664		0,000	385739	88294	0,000	86
74119 260 66404	4 5 8 12 0,10 8 74119 260 66404	4 5 8 12 0,10 8 74119 260 66404	8 12 0,10 8 74119 260 66404	12 0,10 8 74119 260 66404	0,10 8 74119 260 66404	8 74119 260 66404	74119 260 66404	260 66404		20851		3984 4	4318 863	86368 1041	1 145352	52 2,909	9 6,240		3,097	6,115	2,858	2,949	5,598	2,692 2,9	2,985 5,5	5,985 2,739	9 11,709	1	0/000	386701	88287	0,000	86
8 12 0,10 8 74119 260 66404	4 6 8 12 0,10 8 74119 260 66404	4 6 8 12 0,10 8 74119 260 66404	8 12 0,10 8 74119 260 66404	12 0,10 8 74119 260 66404	0,10 8 74119 260 66404	8 74119 260 66404	74119 260 66404	260 66404		20851			4318 863	86368 1041	145353		0 6,240	2,669	3,127	6,115	2,858	2,983	5,598	2,692 3,0	3,017 5,5	5,985 2,739	9 11,741	-	0,000	386701	88287	0,000	86
8 12 0,10 8 74176 260	4 7 8 12 0,10 8 74176 260 66333	4 7 8 12 0,10 8 74176 260 66333	8 12 0,10 8 74176 260 66333	12 0,10 8 74176 260 66333	0,10 8 74176 260 66333	8 74176 260 66333	74176 260 66333	260 66333		20828		3979 4	4317 863	86301 1041	1 145236		8 6,257	2,666	3,169	6,130	2,870	3,013	5,559	2,687 3,0	3,050 5,5	5,982 2,741	1 11,773	1	0'000	386443	88219	0,000	86
0,10 8 74176 260 66333	4 8 8 12 0,10 8 74176 260 66333	4 8 8 12 0,10 8 74176 260 66333	8 12 0,10 8 74176 260 66333	12 0,10 8 74176 260 66333	0,10 8 74176 260 66333	8 74176 260 66333	74176 260 66333	260 66333		20828		3979 4	4317 863	86301 1041	1 145236	36 2,999	9 6,257	2,666	3,199	6,130	2,870	3,047	5,559	2,687 3,0	3,082 5,5	5,982 2,741	1 11,805	1	0/000	386443	88219	0,000	86
8 12 0,10	4 9 8 12 0,10 8 74176 260 66333	4 9 8 12 0,10 8 74176 260 66333	8 12 0,10 8 74176 260 66333	12 0,10 8 74176 260 66333	0,10 8 74176 260 66333	8 74176 260 66333	74176 260 66333	260 66333		20828		3979 4	4317 863	86301 1041	1 145236	36 3,030	0 6,257	2,666	3,228	6,130	2,870	3,081	5,559	2,687 3,1	3,113 5,5	5,982 2,741	1 11,836		0,000	386443	88219	0,000	86
8 12 0,10	4 10 8 12 0,10 8 74176 260 66333	4 10 8 12 0,10 8 74176 260 66333	8 12 0,10 8 74176 260 66333	12 0,10 8 74176 260 66333	0,10 8 74176 260 66333	8 74176 260 66333	74176 260 66333	260 66333		20828		3979 4	4317 863	86302 1041	1 145237	37 3,061	1 6,257	2,666	3,258	6,130	2,870	3,116	5,559	2,687 3,1	3,145 5,5	5,982 2,741	1 11,868	1	0/000	386443	88219	0/000	8
8 12 0,10	4 1 8 12 0,10 8 81121 432 110140	4 1 8 12 0,10 8 81121 432 110140	8 12 0,10 8 81121 432 110140	12 0,10 8 81121 432 110140	0,10 8 81121 432 110140	8 81121 432 110140	81121 432 110140	432 110140		34583		6608 7	7200 872	87269 958	8 165710	10 4,672	2 9,553	4,436	4,613	9,579	4,360	5,038	10,324	4,764 4,7	4,774 9,8	9,819 4,520	0 19,113		0'000	384236	80768	0,000	4
1 60 4 2 8 12 0,10 8 81195 430 109699 34445	4 2 8 12 0,10 8 81195 430 109699	4 2 8 12 0,10 8 81195 430 109699	8 12 0,10 8 81195 430 109699	12 0,10 8 81195 430 109699	0,10 8 81195 430 109699	8 81195 430 109699	81195 430 109699	430 109699		34445		6581 7	7195 873	87323 2916	6 167570	70 4,731	1 9,482	4,411	4,681	9,553	4,325	5,203	10,287	4,808 4,8	4,872 9,7	9,774 4,515	5 19,160	1	0/000	382471	89264	0,000	4
8 12 0,10	4 3 8 12 0,10 8 81209 426 108700	4 3 8 12 0,10 8 81209 426 108700	8 12 0,10 8 81209 426 108700	12 0,10 8 81209 426 108700	0,10 8 81209 426 108700	8 81209 426 108700	81209 426 108700	426 108700		34131		6522 7	7192 873	87316 3083	3 167352	52 4,815	5 9,388	4,411	4,788	9,433	4,329	5,308	10,241	4,801 4,5	4,970 9,6	9,687 4,514	4 19,171		0'000	379077	89257	0,000	3
1 60 4 4 8 12 0,10 8 81100 427 10826 34203	4 4 8 12 0,10 8 81100 427 108926	4 4 8 12 0,10 8 81100 427 108926	8 12 0,10 8 81100 427 108926	12 0,10 8 81100 427 108926	0,10 8 81100 427 108926	8 81100 427 108926	81100 427 108926	427 108926		34203		6535 7	7192 873	87362 3625	S 168039	39 4,924	4 9,429	4,424	4,883	9,354	4,319	5,417	10,324	4,791 5,0	5,074 9,7	9,702 4,511	1 19,288	1	0/000	379906	89303	0,000	4
12 0,10	4 5 8 12 0,10 8 81248 425 108452	4 5 8 12 0,10 8 81248 425 108452	8 12 0,10 8 81248 425 108452	12 0,10 8 81248 425 108452	0,10 8 81248 425 108452	8 81248 425 108452	81248 425 108452	425 108452		34054	1	6507 7	7186 873	87356 4791	1 169015	15 4,991	1 9,380	4,408	5,008	9,324	4,335	5,522	10,279	4,781 5,1	5,174 9,6	9,661 4,508	8 19,342	1	0,000	378199	89298	0,000	144
0,10	4 6 8 12 0,10 8 81181 426 108633	4 6 8 12 0,10 8 81181 426 108633	8 12 0,10 8 81181 426 108633	12 0,10 8 81181 426 108633	0,10 8 81181 426 108633	8 81181 426 108633	81181 426 108633	426 108633		34110		6518 7	7186 873	87343 4791	169065	5,075	5 9,388	4,406	5,125	9,373	4,337	5,644	10,275	4,783 5,2	5,281 9,6	9,679 4,509	9 19,469	1	0'000	379063	89284	0,000	14
4 7 8	4 7 8 12 0,10 8 80971 424 108209	4 7 8 12 0,10 8 80971 424 108209	12 0,10 8 80971 424 108209	12 0,10 8 80971 424 108209	0,10 8 80971 424 108209	8 80971 424 108209	80971 424 108209	424 108209		33977		6492 7	7176 873	87335 4833	3 168927	27 5,114	4 9,283	4,367	5,256	9,392	4,356	5,766	10,253	4,786 5,3	5,379 9,0	9,643 4,503	3 19,524	1	0/000	378343	89276	0,000	14
4 8 8 12 0,10 8 81056	4 8 8 12 0,10 8 81056 422 107710	4 8 8 12 0,10 8 81056 422 107710	8 12 0,10 8 81056 422 107710	12 0,10 8 81056 422 107710	0,10 8 81056 422 107710	8 81056 422 107710	81056 422 107710	422 107710		33821		6462 7	7179 873	87337 4583	3 168496	96 5,224	4 9,324	4,372	5,375	9,333	4,364	5,859	10,138	4,777 5,4	5,486 9,5	9,598 4,504	4 19,589		0,000	376458	89278	0,000	144
1 60 4 9 8 12 0,10 8 81151 420 107100 33629	4 9 8 12 0,10 8 81151 420 107100	4 9 8 12 0,10 8 81151 420 107100	8 12 0,10 8 81151 420 107100	12 0,10 8 81151 420 107100	0,10 8 81151 420 107100	8 81151 420 107100	81151 420 107100	420 107100		33629		6426 7	7181 873	87346 4541	1 168240	40 5,283	3 9,224	4,352	5,481	9,227	4,365	5,980	10,182	4,801 5,5	5,581 9,5	9,544 4,506	6 19,632	1	0'000	374279	89287	0,000	14
4 10 8 12 0,10 8 81184	4 10 8 12 0,10 8 81184 423 1	4 10 8 12 0,10 8 81184 423 1	8 12 0,10 8 81184 423 1	12 0,10 8 81184 423 1	0,10 8 81184 423 1	8 81184 423 1	81184 423 1		107863 33869	33869		6471 7	183 87	360 483	3 16883	37 5,410	0 9,340	4,375	5,591	9,310	4,357	6,080	10,183	4,786 5,6	694 9,6	4,50	6 19,810	1	00000	376970	89301	00000	14
	4 1 8 12 0,10 8 117779 1305 332698	4 1 8 12 0,10 8 117779 1305 332698	8 12 0,10 8 117779 1305 332698	12 0,10 8 117779 1305 332698	0,10 8 117779 1305 332698	8 117779 1305 332698	117779 1305 332698	1305 332698		104467	1	19961 21	21533 883	88392 18666	6 282486	96 14,133	3 27,947	12,852	14,723	29,808	13,375	15,191	30,134 1	13,772 14,682	82 29,296	96 13,333	3 57,312	10,659	0,113	388204	90357	89,917	431
8 12 0,10 8 118416 1312 334508	4 2 8 12 0,10 8 118416 1312 334508	4 2 8 12 0,10 8 118416 1312 334508	8 12 0,10 8 118416 1312 334508	12 0,10 8 118416 1312 334508	0,10 8 118416 1312 334508	8 118416 1312 334508	118416 1312 334508	1312 334508		105035		20070 21	21479 883	88368 40333	3 304742	42 14,873		12,791	15,677	29,442	13,373	16,160	30,266 1		570 29,464	13,306	6 58,340	10,647	0,118	391301	90331	93,783	430
1 20 4 3 8 12 0,10 8 118521 1327 338268 106216	4 3 8 12 0,10 8 118521 1327 338268	4 3 8 12 0,10 8 118521 1327 338268	12 0,10 8 118521 1327 338268	12 0,10 8 118521 1327 338268	0,10 8 118521 1327 338268	8 118521 1327 338268	118521 1327 338268	1327 338268		106216	2	20296 21	21490 883	88337 43583	3 309369	69 15,813		12,834	16,583	30,041	13,359	17,152	30,381	13,759 16,5	16,516 29,804	04 13,317	7 59,638	11,009	0,136	395744	90300	103,667	43(
4 4 8 12 0,10 8 117783 1293 329668	4 4 8 12 0,10 8 117783 1293 329668	4 4 8 12 0,10 8 117783 1293 329668	8 12 0,10 8 117783 1293 329668	12 0,10 8 117783 1293 329668	0,10 8 117783 1293 329668	8 117783 1293 329668	117783 1293 329668	1293 329668		103515	-	19780 21	21491 883	88350 48416	6 311005	05 16,625		12,846	17,597	29,108	13,394	18,068	29,964 1	13,704 17,430	130 29,044	44 13,315	59,789	10,963	0,143	385844	90314	108,617	430
0,10 8 118375	4 5 8 12 0,10 8 118375 1277 325464	4 5 8 12 0,10 8 118375 1277 325464	8 12 0,10 8 118375 1277 325464	12 0,10 8 118375 1277 325464	0,10 8 118375 1277 325464	8 118375 1277 325464	118375 1277 325464	1277 325464		102195	1	19527 21	21538 883	88349 52375	5 313436	36 17,601	1 27,618	12,867	18,507	28,953	13,397	19,074	29,447	13,750 18,394	194 28,673	573 13,338	8 60,405	10,744	0,139	379486	90313	108,983	431
1 20 4 6 8 12 0,10 8 118661 1293 32950 103478	4 6 8 12 0,10 8 118861 1293 329550	4 6 8 12 0,10 8 118861 1293 329550	8 12 0,10 8 118861 1293 329550	12 0,10 8 118961 1293 329550	0,10 8 118961 1293 329550	8 118961 1293 329550	118861 1293 329550	1293 329550		103478	-	19773 21	21490 883	88399 57208	8 319816	16 18,746	6 27,739	13,000	19,335	29,418	13,313	20,045	29,893 1	13,615 19,376	176 29,016	016 13,309	9 61,701	10,680	0,150	384729	90363	118,167	430
4 7 8 12 0,10 8 117932	4 7 8 12 0,10 8 117932 1327 338175	4 7 8 12 0,10 8 117932 1327 338175	8 12 0,10 8 117932 1327 338175	12 0,10 8 117932 1327 338175	0,10 8 117932 1327 338175	8 117932 1327 338175	117932 1327 338175	1327 338175		10618		20290 21	21521 883	88368 57708	8 323532	32 19,406	6 29,286	12,850	20,770	29,525	13,462	21,163	30,541 1	13,686 20,446	146 29,784	13,332	2 63,563	10,947	0,171	394615	90332	132,850	430
8 12 0,10	4 8 8 12 0,10 8 117883 1305 332622	8 12 0,10 8 117883 1305 332622	8 12 0,10 8 117883 1305 332622	12 0,10 8 117883 1305 332622	0,10 8 117883 1305 332622	8 117883 1305 332622	117883 1305 332622	1305 332622		10444		19957 21		88346 58750	0 322443	43 20,553		12,944	21,580	29,484	13,360	22,142	29,928 1	13,652 21,425	125 29,306	06 13,319	9 64,049	10,822	0,184	388487	90310	140,917	430
20 4 9 8 12 0,10 8 118096 1283 326979	4 9 8 12 0,10 8 118096 1283 326979	4 9 8 12 0,10 8 118096 1283 326979	8 12 0,10 8 118096 1283 326979	12 0,10 8 118096 1283 326979	0,10 8 118096 1283 326979	8 118096 1283 326979	118095 1283 326979	1283 326979		102671								12,953	22,745	28,558	13,519								0,183	382405	90323	141,817	430
8 12 0,10	4 10 8 12 0,10 8 118978 1304 332365	4 10 8 12 0,10 8 118978 1304 332365	8 12 0,10 8 118978 1304 332365	12 0,10 8 118978 1304 332365	0,10 8 118978 1304 332365	8 118978 1304 332365	118978 1304 332365	1304 332365		104362	-	19941 21	21501 883	88351 66208	8 329816	16 22,744	4 28,562	13,023	23,660	29,064	13,398	23,954	30,214 1	13,539 23,453	153 29,280	80 13,320	0 66,053	11,167	0,220	388095	90314	164,567	430
																																	2

Table 9-27: Results of three machines with flexibl

monting	walulig
ž	
choncerner time	CIIAIIECUVCI UIIIC -
Matorial	- IVIAICIIAI
motoriol	IIIatclial

Table 9-28: Results of three machines with flexible material – Material changeover time – No waiting	achines with flexible	ss with flexible	flexible	le	maté	srial – N	Aaterial	changeo	ver time	– No w:	iting																			
Elapse Mean Machine Material Cool Sum of Produc. Elapse Total Consumed Consumed time or arrival setup change down setup time ware-material energy volume base time time and start housing	Material Cool Sum of Produc. Elapse Total Consumed Consumed change down setup tion time ware-material energy time and start housing	tarial Cool Sum of Produc. Elapse Total Consumed Consumed ange down setup tion time ware-material energy me and start housing	Sum of Produc. Elapse Total Consumed Consumed setup tion time ware material energy and start housing	Produc- Elapse Total Consumed Consumed tion time ware- material energy start housing	Total Consumed Consumed ware material energy housing	Consumed Consumed material energy	Consumed energy		Consumed material cost	d Consumed energy cost	Total operator cost	Total	Total To penalty	Total AM M cost tra	Machine Mac setup uf tracking 1 zati	Machine Machine utili- cool zation 1 down	Aachine Machine cool setup down tracking 2	ine Machine p utili- ng 2 zation 2	ne Machine cool	ne Machine setup tracking 3	Machine utili- zation 3	Machine S cool dawn	System Sy setup u	System System utili- cool zation down	em Total ol system utili-	Average waiting time in	Average number of parts	Average M building of	Machine P. depre- que clation	Parts in AM queue total parts
cool volume cost	cool volume cost	volume cost	volume cost	volume cost				_				cost			_	tracki	racking 1		tracking	32		tracking 3		-	zation	ənənb	in queue			
hrs hrs hrs hrs hrs % hrs € kg kWh	hrs hrs hrs % hrs C kg kWh	hrs hrs % hrs C kg kWh	hrs % hrs C kg kWh	% hrs C kg kWh	hrs C kg kWh	kWh kWh	kWh		J.	Ŭ			J	J				1				W.				r l	prs.	mm*	J	pcs. pcs.
8 12 0.10 8 72008 218 55700	00/25 812 8002/ 0 10 10 8 2000 210 2200 0 1	8 12 0.10 8 72008 218 55700	12 0.10 8 72098 218 55200	0.10 8 72098 218 55200	00/100 017 0100 017 0 00/100 017 0100 017 0	218 55700	00/55		17490	2542 000	9098 0	85976	0	130072	2.363	5, 368 2	2 262,2	2,407 4.0	4,983 2,362	62 2.443	4.787	2,303	2.433	5.044 2.1	2.299 9.776		0.000	100000	87886	0.000
120 4 3 8 12 0,10 8 72098 218 55700	8 12 0,10 8 72098 218 55700	8 12 0,10 8 72098 218 55700	12 0,10 8 72098 218 55700	0,10 8 72098 218 55700	8 72098 218 55700	218 55700	55700		12				0	139073								2,303				1	0,000	388451	87887	0,000
120 4 4 8 12 0,10 8 72098 218 55700	4 8 12 0,10 8 72098 218 55700	8 12 0,10 8 72098 218 55700	12 0,10 8 72098 218 55700	0,10 8 72098 218 55700	8 72098 218 55700	218 55700	55700		121		2 3605	85976	0	139073				2,548 4,9	4,983 2,362			2,303			2,299 9,836		0'000	388451	87887	0,000
120 4 5 8 12 0,10 8 72098 218 55700	5 8 12 0,10 8 72098 218 55700	8 12 0,10 8 72098 218 55700	12 0,10 8 72098 218 55700	0,10 8 72098 218 55700	8 72098 218 55700	218 55700	55700		6				0	139073								2,303			2,299 9,865	-	0'000	388451	87887	0,000
120 4 6 8 12 0,10 8 72098 218 55700	6 8 12 0,10 8 72098 218 55700	8 12 0,10 8 72098 218 55700	12 0,10 8 72098 218 55700	0,10 8 72098 218 55700	8 72098 218 55700	218 55700	55700		5				0	139074								2,303				1	0,000	388451	87887	0,000
4 7 8 12 0,10 8 72098 218 55700	7 8 12 0,10 8 72098 218 55700	8 12 0,10 8 72098 218 55700	12 0,10 8 72098 218 55700	0,10 8 72098 218 55700	8 72098 218 55700	218 55700	55700		190	3342			0	139074								2,303					0000	388451	87887	0,000
120 4 8 8 8	00/25 812 8007 8 01,0 21 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 12 0,10 8 72098 218 55700 e 13 0.10 e 73068 318 55700	12 0,10 8 72098 218 55700 13 0,10 8 72008 318 55700	01,0 8 720 812 86027 8 01,0 01,0 8 7007 8 01,0	218 55700 218 55700 218 55700 218 25	218 55700	55700		060	3342	3605	85977	0 800	139074	2,536	5,368 2		2,661 4,9	4,983 2,362	62 2,637	4,782	2,303	2,611	5,044 2,3	2,299 9,955	1	00000	388451	87888	000'0
120 4 10 8 12 0,10 8 72098 218 55700	10 8 12 0,10 8 72098 218 55700	8 12 0,10 8 72098 218 55700	12 0,10 8 72098 218 55700	0,10 8 72098 218 55700	8 72098 218 55700	218 55700	55700		061	3342			541	139617			2,232 2					2,303					0,000	388451	87888	0,000
4 1 8	1 8 12 0,10 8 78837 376 95886	8 12 0,10 8 78837 376 95886	12 0,10 8 78837 376 95886	0,10 8 78837 376 95886	8 78837 376 95886	376 95886	95886		108	5753	6169	87091	0	158152	3,848	8,520 3		4,087 8,5	8,524 3,904	04 4,257	7 8,672	4,058	4,064	8,572 3,6	3,881 16,517		0/000	391100	89026	0,000
70 4 2 8 12 0,10 8 78773	2 8 12 0,10 8 78773 374 95537	8 12 0,10 8 78773 374 95537	12 0,10 8 78773 374 95537	0,10 8 78773 374 95537	8 78773 374 95537	374 95537	95537		398		2 6166	87099	0	158029		8,410 3		4,145 8,5	8,552 3,905	05 4,311	1 8,657	4,043		8,540 3,8	3,880 16,539		0,000	389702	89034	0,000
70 4 3 8 12 0,10 8 78973 375 95618	3 8 12 0,10 8 78973 375 95618	8 12 0,10 8 78973 375 95618	12 0,10 8 78973 375 95618	0,10 8 78973 375 95618	8 78973 375 95618	375 95618	95618		100.0				0	158047												-	0/000	389850	89020	0,000
70 4 4 8 12 0,10 8 79163 377 96061	4 8 12 0,10 8 79163 377 96061	8 12 0,10 8 79163 377 96061	12 0,10 8 79163 377 96061	0,10 8 79163 377 96061	8 79163 377 96061	377 96061	96061		골모				0	158162			3,727 4,						_			1	0,000	391417	88981	0,000
70 x x x x x x x x x x x x x x x x x x x	CP009 082 CP16/ 8 01/0 /1 8 C	200400 C00 200400 0 01/0 71 0 0	20042 02 20042 0 010 71 20042 0 010 71 20042 0 010 20042 0 010 010 010 010 010 010 010 010 010	0,10 8 /9145 580 95645 0,10 0 7400 500 00700	20005 CSLV 8	26905 000	200400		512	2810	0 51/2	8/030	0 0	158455	4,039	0,429 3		4 345 0.5	8,538 3,894 970 0 0 0 0 0	36 4,558	0 0100	4,081	4,301	6,554 3,2 0 746 3 6	3,885 15,850	1	00000	307364	00000	00000
4 7 8 12 0.10 8 79034 381 97105	7 8 12 0.10 8 79034 381 97105	8 12 0.10 8 79034 381 97105	12 0.10 8 79034 381 97105	0.10 8 79034 381 97105	8 79034 381 97105	381 97105	97105		5 Ji wa				0	158599			L						1		_		0000	395266	2017	0.000
70 4 8 8 12 0,10 8 79205	8 8 12 0,10 8 79205 378 96551	8 12 0,10 8 79205 378 96551	12 0,10 8 79205 378 96551	0,10 8 79205 378 96551	8 79205 378 96551	378 96551	96551		122	(7 5793		87080	0	158387	4,211	8,531 3	3,719 4	4,459 8,3	8,342 3,871	71 4,750	0 9,029	4,060	4,473	8,634 3,8	3,883 16,990		0/000	393076	89015	0,000
4 9 8	9 8 12 0,10 8 79250 378 96512	8 12 0,10 8 79250 378 96512	12 0,10 8 79250 378 96512	0,10 8 79250 378 96512	8 79250 378 96512	378 96512	96512		100	05 5790	6165	87089	375	158755	4,256	8,549 3	63	4,519 8,3	8,347 3,857	57 4,852	2 8,997	4,080	4,542	8,631 3,8	3,880 17,053	-	0,000	394574	89024	0,000
70 4 10 8 12 0,10 8 79146 378 96546	8 12 0,10 8 79146 378 96546	8 12 0,10 8 79146 378 96546	12 0,10 8 79146 378 96546	0,10 8 79146 378 96546	8 79146 378 96546	378 96546	96546	546 303	100		2 6170	87051	1625	159971	4,304	8,532 3	,708 4,	567 8,A	8,411 3,856	56 4,936	6 8,974	4,090	4,603	8,639 3,8	885 17,120		0000	394162	88985	0,000
20 4 1 8 12 0,10 8 118411 1310 333923	1 8 12 0,10 8 118411 1310 333923	8 12 0,10 8 118411 1310 333923	12 0,10 8 118411 1310 333923	0,10 8 118411 1310 333923	8 118411 1310 333923	1310 333923	333923		in l				6500	270631				14,652 28,859		25 15,278		13,963					0,069	389830	90249	57,717
4 2 8 12 0,10 8 118180 1310 333774	2 8 12 0,10 8 118180 1310 333774	8 12 0,10 8 118180 1310 333774	12 0,10 8 118180 1310 333774	0,10 8 118180 1310 333774	8 118180 1310 333774	1310 333774	333774		응				8791	272864								14,027			_			389729	90241	66,900
20 4 3 8 12 0,10 8 117690 1315 335247	3 8 12 0,10 8 117690 1315 335247	8 12 0,10 8 117690 1315 335247	12 0,10 8 117690 1315 335247	0,10 8 117690 1315 335247	8 117690 1315 335247	1315 335247	335247		믱			88315	10833	275495				16,171 29,489		50 17,111		14,002		29,547 13,355	_		0,087	390838	90277	69,233
20 4 4 8 12 0,10 8 117915 1306 332970	4 8 12 0,10 8 117915 1306 332970	8 12 0,10 8 117915 1306 332970	12 0,10 8 117915 1306 332970	0,10 8 117915 1306 332970	8 117915 1306 332970	1306 332970	332970		in l		8 21537	88326	11375	275211				17,269 29,440	13,476	76 17,776	6 30,333	13,789	17,098 2	29,342 13,361	361 59,800	0 10,228	0,093	388128	90289	73,083
4 5 8 12 0,10 8 117594	5 8 12 0,10 8 117594 1298 330758	8 12 0,10 8 117594 1298 330758	12 0,10 8 117594 1298 330758	0,10 8 117594 1298 330758	8 117594 1298 330758	1298 330758	330758		3		5 21550	88351	11833	274890				18,147 29,059	13,536	36 18,837		13,970	17,901 2	29,139 13,365	365 60,406	5 10,620	0,094	386009	90315	73,467
20 4 6 8 12 0,10 8 117794 1312	6 8 12 0,10 8 117794 1312 334389	8 12 0,10 8 117794 1312 334389	12 0,10 8 117794 1312 334389	0,10 8 117794 1312 334389	8 117794 1312 334389	1312 334389	334389			98 20063	3 21525	88370	12416	276832		27,836 12	12,916 18,	18,652 29,958	958 13,252	52 19,764	4 30,557	13,873	18,818 2	29,451 13,347	347 61,616	5 10,627	0,106	390161	90334	81,983
20 4 7 8 12 0,10 8 118949 1302 331797	7 8 12 0,10 8 118949 1302 331797	8 12 0,10 8 118949 1302 331797	12 0,10 8 118949 1302 331797	0,10 8 118949 1302 331797	8 118949 1302 331797	1302 331797	331797				21475		12375	275713						60 20,603	3 29,901	13,843		29,239 13,322	322 62,156		0,105	388106	90291	80,600
20 4 8 8 12 0,10 8 118892 1294 329704	8 8 12 0,10 8 118892 1294 329704	8 12 0,10 8 118892 1294 329704	12 0,10 8 118892 1294 329704	0,10 8 118892 1294 329704	8 118892 1294 329704	1294 329704	329704		m					277400			12,822 20					13,813						384929	90305	84,817
4 9 8 12 0,10 8 117939 1302 331767	9 8 12 0,10 8 117939 1302 331767	8 12 0,10 8 117939 1302 331767	12 0,10 8 117939 1302 331767	0,10 8 117939 1.302 331767	8 117939 1302 331767	1302 331767	331767		12	104175 19906				287357		28,247 12						13,911						386778	90327	97,567
20 4 10 8 12 0,10 8 118716 1271 323934	8 12 0,10 8 118716 1271 323934	8 12 0,10 8 118716 1271 323934	12 0,10 8 118716 1271 323934	0,10 8 118716 1271 323934	8 118716 1271 323934	1271 323934	323934			15 19436	5 21540	88380	39458	299989	21,163 2	1		22,534 28,589	589 13,414	14 23,359	9 29,634	13,792	22,352 21	28,527 13,355	355 64,233	3 11,030	0,128	377370	90344	95,667

Table 9-28: Results of three machines with flexible n

metry party party <t< th=""><th>Ŷ</th><th>trac</th><th>tracking 1 zati</th><th>zation 1 tracking 1</th><th>racking 1 tracking 2</th><th>2 zation 2</th><th>2 tracking 2</th><th>z setup</th><th>utili- zation</th><th>down 4</th><th>_</th><th></th><th>number of building parts in volume</th><th>ng depre-</th><th>queue total</th><th>queue parts total out</th></t<>	Ŷ	trac	tracking 1 zati	zation 1 tracking 1	racking 1 tracking 2	2 zation 2	2 tracking 2	z setup	utili- zation	down 4	_		number of building parts in volume	ng depre-	queue total	queue parts total out
m 150 50 75 73370 15677 15674 3013 2305 0 140 5 20 75 73366 7301 15113 4001 3313 0 140 5 20 75 7376 5311 15113 4001 3313 0 110 5 20 75 73746 7316 7305 3114 4001 3313 0 100 5 20 75 7543 330 7365 700 333 0 100 5 20 75 7543 366 3661 3716 3716 3716 0 100 5 20 75 7543 440 40	,	4		3	*	8	8	8	3	4	b wonez	duene di	ananb	-	ŝ	ž
0 140 5 70370 2351 5431 1431 3211 3316 0 130 5 20 75 70566 7343 1314 3211 3316 0 110 5 20 75 75242 230 7554 3716 3316 0 100 5 20 75 75242 230 1449 3716 3316 0 0 5 20 75 75242 320 1449 3716 3316 0 0 5 20 75 7548 440 400 3054 0 0 5 20 75 14020 3753 1531 533 0 0 5 20 75 14020 3754 4413 3634 0 0 3 5 3116 323 4413 3136 0 0 5 14020 14020 3141<			816	885	675			1	-	74S	12,451		00			
0 130 5 7056 223 56011 3400 3436 0 110 5 20 75 73728 254 6134 3414 3401 3335 0 110 5 20 75 73728 254 6134 201 3335 0 100 5 20 75 75322 200 73964 21147 4001 3335 0 900 5 20 75 75832 303 3156 7035 6136 6131 3933 0 100 50 20 75 18826 5735 7335 6135 6136 0 0 0 703 33 33 7305 9135 7335 7336 0 10 33 33 7026 5651 6551 7335 7356 7356 0 10 33 7326 6651 12161 7035 7											13,245	'				
0 120 5 71/36 2.43 61/33 73/16 61/1 0 100 5 20 75 73/23 200 75/64 200 37/66 37/16 36/10 0 100 5 20 75 73/23 200 75/64 30/90 36/91 43/9 43/9 0 0 0 5 20 75 84/41 407 10/99/0 37/63 6/93 6/91 6/91 0 0 0 5 20 75 81/48 407 10/99/0 37/63 6/93 6/91 6/93 6/91 6/93 6/91 6/93 6/91											14,292	I,	0,000 435118			0 67
0 110 5 20 75 7228 264 67348 21147 4040 3335 0 00 5 20 75 73222 3209 35547 4037 4055 0 0 5 20 75 75422 3200 35547 4007 4055 0 0 5 20 75 85056 771 109208 35547 4007 4055 0 0 5 20 75 85056 771 109208 3641 4017 10936 4131 0 0 5 20 75 85056 773 11202 3821 4334 0 10 30 33 70787 765 9545 4138 4317 0 10 30 33 70787 7646 7656 9541 3934 0 10 30 333 70264 656510 1060 <t< td=""><td></td><td></td><td></td><td></td><td>3,460 3,534</td><td></td><td>59 3,368</td><td></td><td></td><td>3,414 1</td><td>15,315</td><td>I,</td><td>0,000 428051</td><td></td><td></td><td>2</td></t<>					3,460 3,534		59 3,368			3,414 1	15,315	I,	0,000 428051			2
0 100 5 20 7372 230 73594 4437 4335 0 00 5 20 75 75843 5453 5453 5415 0 00 5 20 75 75843 5453 5413 5435 0 00 5 20 75 75843 5453 5413 5435 0 00 5 20 75 75843 5453 5435 5435 0 0 5 20 75 8646 710 7305 7316 730 0 0 5 20 75 86056 771 147024 4511 1433 1434 0 100 33 33 700750 750 150750 15166 15166 15166 15166 0 100 33 33 70075 750 15267 15167 15167 0 100 33 <td>56509 0</td> <td></td> <td>3,944</td> <td>8,942 3,7</td> <td>3,763 3,855</td> <td>55 9,151</td> <td>51 3,678</td> <td>78 3,900</td> <td>9,047</td> <td>3,721 1</td> <td>16,667</td> <td>١,</td> <td>0,000 424253</td> <td>253 57765</td> <td></td> <td>79</td>	56509 0		3,944	8,942 3,7	3,763 3,855	55 9,151	51 3,678	78 3,900	9,047	3,721 1	16,667	١,	0,000 424253	253 57765		79
0 90 5 75.42 320 81.679 25.647 400 406 0 0 5 20 75 78.44 407 103900 36531 6733 6733 6735 0 0 5 20 75 78.44 407 103900 3631 6733 6735 6134 0 0 5 20 75 85056 577 184006 37316 7336 633 0 0 0 5 20 75 85056 7315 7353 7354 0 0 0 5 20 75 13822 2415 7353 7353 7354 0 100 33 33 70321 611 17032 7363 7434 0 100 33 33 73241 17047 1747 7433 7434 7437 0 10 103 33 733 735	57714 0					33 10,050	50 4,042				18,255	-,				87
0 80 5 7 7638 355 9553 5453 6453 5116 7033 5136 7033 5136 7034 7036 7034 7036 7034 7036 7034 7036 7034 7036 7034 7036 7034 7036	57748 0	112352	4,789 1	10,840 4,5	4,581 4,669	69 10,995	95 4,466	56 4,729	10,918	4,523 2	20,170	1,	0,000 424607	507 59031		0 96
0 70 5 7844 4/0 10920 3756 6191 6235 6191 0 60 5 20 75 8148 4/0 118.06 3716 7922 155 1633 0 60 5 20 75 90025 75 10020 954 21559 13364 0 10 5 20 75 10020 954 21559 13364 0 10 5 20 75 10020 954 68851 101261 3593 0 10 10 5 20 75 100263 1013 3544 0 10 33 33 77311 7301 17657 16880 11613 3544 0 10 33 33 77321 7830 13341 3516 0 10 33 33 73204 15656 13164 13664 <th1317< th=""></th1317<>											22,521	L				0 108
0 60 5 70 75 84505 5411 7092 7216 0 40 5 70 75 84505 57 75390 14102 76391 14383 0 40 5 20 75 10820 9541 14132 76391 141392 166391 14384 0 20 5 70 75 14922 15640 11102 15939 15649 14384 0 20 5 70 75 14922 166551 709255 49115 3594 3554 0 150 33 33 70797 671 17052 53710 10263 3683 0 100 33 33 73940 877 20267 68951 1341 3919 0 100 33 33 73940 877 20545 68146 7145 7145 7145 7145 7145 7145 7145 <td>ő</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>25,628</td> <td>1</td> <td></td> <td></td> <td></td> <td>0 124</td>	ő										25,628	1				0 124
0 0 0 0 0 0 1 8.805 5.71 14.702 4.615 88.11 18.633 0 0 0 5 20 75 10025 7.5550 14550 14550 14550 14563 14550 14563 14563 14563 14563 14563 14563 14563 15664 113 14563 15664 113 14563 15664 133 3465 13663 3683 33<											29,483	7,990			1,3	
0 40 5 20 75 90275 726 185036 58101 11102 10780 0 10 10 5 20 75 100420 954 24355 75550 145895	58703 1541	143433	8,486 1	18,992 8,1	8,159 8,248	48 19,996	96 7,925	25 8,367	19,494	8,042 3	35,903	15,429	0,008 428807	307 60007	7 4,25	173
0 30 5 20 75 100a2 954 24315 7650 14569 14369 14369 0 10 5 20 75 118822 1415 560640 113241 21658 21569 0 10 5 20 75 118822 1415 56054 12025 54317 21658 21569 0 10 33 33 7121 730 156052 58432 11155 3331 0 110 33 33 7390 960 244675 76828 14317 0 100 33 33 7390 960 244675 76838 1437 0 100 33 33 7500 1043 37331 13341 3919 0 101 33 33 7500 1044 762 7347 747 0 101 33 33 7500 1044 7632	58816 2875	161281 1	0,376 2	24,682 9,9	992 10,3A	47 24,28	56'6 68	8 10,361	24,486	9,975 4	44,822	21,271	0,027 431063	063 6012	3 10,33	216
0 20 5 20 75 118922 1415 360640 113241 21638 21569 0 10 5 20 75 173508 26.34 666551 20925 40113 39544 0 140 33 33 70750 6711 11052 53710 10263 3882 0 130 33 33 7123 7354 666551 59731 1165 3321 0 120 33 33 77123 7394 65692 5643 1165 3321 0 100 33 33 73990 9670 245595 6843 13640 4317 0 101 33 33 75500 1043 24433 9349 9349 9349 9349 9344 1464 1316 1476 5362 0 10 103 33 19491 14433 24413 1431 1476 1476	58863 14125	197934	13,365 3	32,211 12,8	12,887 13,543	43 32,091	91 13,058	58 13,454	32,151	12,973 5	58,577	17,926	0,088 424932	332 60171	1 41,583	288
0 10 10 5 20 7 173508 26.24 668551 209925 40113 39544 0 150 33 33 57721 10105 3987 2882 0 120 33 33 37036 795 11052 5337 11053 3338 0 110 33 33 37036 795 202644 69645 12165 3333 0 110 33 33 72030 1043 264675 7683 146616 3431 0 10 10 33 33 72940 877 22357 68364 7365 0 10 33 33 7859 11643 23676 13680 1366 0 10 33 33 34511 12643 3516 1363 0 10 33 33 34511 13939 24667 1361 0 0 <	58928 118791	353811	17,535 4	47,470 16,9	16,924 17,302	02 47,798	98 16,700	-		L	81,865	18,342	0,479 419658	558 60238	8 223,183	431
0 150 33 33 6721 614 15645 49126 9387 2882 0 140 33 33 70787 671 171052 53710 10263 3088 0 130 33 33 7121 7078 6442 11165 3593 0 110 33 33 73906 7905 20564 56432 11165 3593 0 110 33 33 73900 960 244675 76828 1341 3919 0 100 33 33 75000 1043 265805 83463 1467 5383 0 0 73 33 33 78911 1299 26546 7467 7487 0 70 33 33 78911 1293 23564 7467 748 11 13 33 33 314122 224123 235624 7467 7467	~	2607751				37 90,869		1	90,945		1			347 58492		1
0 140 33 33 70787 671 171052 53710 10263 3088 0 130 33 33 71121 730 186'92 5432 11165 321 0 110 33 33 372036 8795 54835 11165 321 0 110 33 33 75000 960 245'35 683463 13463 3319 0 100 33 33 75000 960 245'35 683463 15460 4317 0 100 33 33 75000 1043 265805 83463 1567 5383 0 90 33 33 81811 184 293463 1567 5462 0 0 73 33 81811 1843 469711 14763 25862 7452 1469 1461 1 0 33 81811 1843 469711 14785 <t< td=""><td>57690 0</td><td>138316</td><td>2,855 2</td><td>L</td><td>2,705 2,923</td><td>L</td><td>77 2,773</td><td>73 2,889</td><td>21,118</td><td>2,739 2</td><td>26,746</td><td>I.</td><td>0,000 1361442</td><td>142 58972</td><td></td><td>0 58</td></t<>	57690 0	138316	2,855 2	L	2,705 2,923	L	77 2,773	73 2,889	21,118	2,739 2	26,746	I.	0,000 1361442	142 58972		0 58
0 130 33 71121 730 186092 58432 11165 3321 0 120 33 33 71121 730 186092 58432 11165 3393 0 110 33 33 72906 940 872 22357 69820 13341 3993 0 0 00 33 33 7559 1144 24457 5468 1364 393 0 0 0 33 33 7559 1144 24457 5493 4786 0 0 33 33 7559 1144 24457 5493 4786 0 0 33 33 8511 1843 2363 1747 5369 1747 0 0 33 33 81861 15461 1747 5369 1747 0 0 33 33 81861 1843 45911 147483 13867 146	57967 0				2,901 3,092						28,964	1		112 59256		62
	58115 0										31,351	1		159 59407		0 66
0 110 33 33 72940 872 22337 69820 13341 3919 0 0 100 33 33 75900 960 24457 76828 14680 4317 0 0 90 33 33 75900 1043 265905 84463 15648 4786 4317 0 0 90 33 33 38181 15413 265905 84463 15643 4786 538 0 0 0 33 33 38181 1545 33733 12652 5524 7147 0 0 50 33 33 3118429 2673 35163 13460 3637 0 0 10 33 33 3118429 2747 70083 28703 13650 3136 0 10 10 33 3118429 2673 68148 14601 13331 0 10	58057 0				3,388 3,566		70 3,394	3,562	27,169	3,391 3	34,123	I,	0,000 1413452	152 59348		0 72
0 100 33 33 73900 960 244675 76828 14680 4317 0 90 33 33 75500 1043 265805 83463 15948 4786 0 0 90 33 33 76559 1154 29413 15948 4786 0 0 70 33 33 78517 1299 331181 109990 19870 6136 0 0 50 33 33 84511 1843 2658102 18873 4786 7147 0 0 50 33 33 84512 285102 18373 23624 7147 0 6 33 33 34511 2750 70034 23183 7460 7147 0 0 33 33 318429 2747 70033 47044 13331 0 10 10 33 318449 2750 701452	58181 0	164656	3,867 2		3,686 3,878	78 29,499	3,697	3,873	29,744	3,691 3	37,308		0,000 1421694	594 59474		0 78
0 00 03 33 75500 1043 265805 83463 17647 5380 0 80 33 33 75559 1154 294133 92354 17647 5380 0 70 33 33 78917 1299 33181 103990 19870 6136 0 60 33 33 33 84511 1249 33131 12622 23624 7147 0 60 33 33 33 84512 1247 2063 7362 7362 0 0 33 33 33 99122 2576 70074 23182 7462 0 0 33 33 318429 2750 70074 23182 4760 13473 0 10 20 33 33 118429 2750 70032 21373 13460 1367 0 10 10 33 33 118429	58393 0	173684	4,241 3	32,849 4,0	4,047 4,249	49 32,369	69 4,056	56 4,245	32,609	4,052 4	40,906		0,000 1419298	1998 59691	1 0,017	86
0 80 33 33 76559 1154 294123 92354 17647 5389 0 70 33 33 76917 1299 331181 109990 19870 6136 0 70 33 33 78917 1299 331181 109990 19870 6136 0 60 33 33 33 91122 2296 33733 12362 28652 0 9 33 33 91122 2750 700744 23063 48181 13462 0 10 33 33 174122 2775 61382 45041 13373 0 10 33 33 174122 2775 700742 21932 4504 13473 0 10 13 33 174122 2747 70032 14799 3731 0 10 13 33 17412 2775 14799 37331 <td< td=""><td>58283 0</td><td>181909</td><td>4,662 3</td><td>35,362 4,4</td><td>4,455 4,752</td><td>52 35,640</td><td>40 4,546</td><td>4,707</td><td>35,501</td><td>4,501 4</td><td>44,709</td><td></td><td>0,000 1391308</td><td>308 59579</td><td>9 0,25</td><td>96</td></td<>	58283 0	181909	4,662 3	35,362 4,4	4,455 4,752	52 35,640	40 4,546	4,707	35,501	4,501 4	44,709		0,000 1391308	308 59579	9 0,25	96
0 70 33 33 78917 1299 33181 103990 19870 6136 0 60 33 33 81861 1545 393733 123632 23624 7147 0 60 33 33 81811 1843 469711 147489 23862 7147 0 0 40 33 33 81912 2296 585102 183722 23616 10621 0 0 30 33 31 18429 2735 681148 21380 4086 13460 0 0 33 33 174122 2777 70032 213872 35163 31373 0 10 33 33 174122 2777 23033 42044 13373 0 110 33 33 174122 2777 73452 13473 0 120 50 0 77452 14708 23733 <td< td=""><td>58433 2375</td><td>195676</td><td>5,303 3</td><td>38,643 5,07</td><td>075 5,2</td><td>55 39,697</td><td>97 5,033</td><td>2 5,279</td><td>39,170</td><td>5,054 4</td><td>49,503</td><td>8,648</td><td>0,005 1368484</td><td>184 5973</td><td>1 5,033</td><td>10</td></td<>	58433 2375	195676	5,303 3	38,643 5,07	075 5,2	55 39,697	97 5,033	2 5,279	39,170	5,054 4	49,503	8,648	0,005 1368484	184 5973	1 5,033	10
0 60 33 31 81861 1545 393733 123632 23624 7147 0 70 50 33 33 84511 1843 469711 147489 23822 8552 0 70 33 33 31122 2296 585102 183722 35106 10621 0 30 33 33 318429 2735 681148 213880 40868 13460 0 30 33 33 118429 2772 681148 213830 40621 13331 0 10 33 33 118429 2773 681148 213830 40621 13371 0 10 13 33 31 118429 27353 68143 13373 0 140 50 0 7051 11331 13473 13473 0 110 51 51 12653 681466 17473 13473 13473 </td <td>58509 13541</td> <td>221553</td> <td>5,947 4</td> <td></td> <td>5,703 6,028</td> <td>28 43,879</td> <td>79 5,783</td> <td>33 5,988</td> <td>44,054</td> <td>5,743 5</td> <td>55,785</td> <td>17,284</td> <td>0,033 1356907</td> <td>907 59809</td> <td>9 16,067</td> <td>123</td>	58509 13541	221553	5,947 4		5,703 6,028	28 43,879	79 5,783	33 5,988	44,054	5,743 5	55,785	17,284	0,033 1356907	907 59809	9 16,067	123
												27,124			m	143
	58686 111833	374317	7,502 6		7,208 7,552		12 7,251			7,229 7		30,712		155 59991	1 73,85	171
												48,656				_
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$										_	-		-			_
12 0 10 33 $1/41/2$ $2/4/1$ 700082 213622 42004 $138/3$ 1 0 150 50 50 70751 958 916 233478 73312 14008 2875 2 0 1340 50 50 0 70751 958 916 233478 73312 14709 2875 3 0 1340 50 50 0 77153 13078 33018 4 0 110 50 50 0 73353 13976 3310 5 0 110 50 50 0 73853 1357 345893 108610 20753 4300 6 0 100 50 50 0 73353 13510 7 0 130 516 314902 13650 27302 4300 7 0 10 10 50 50 7										_	_	ľ	-			_
1 0 150 50 0 5988 91b 233478 73312 14008 2875 2 0 140 50 50 0 70751 968 246665 77452 14799 3078 3 0 140 50 50 0 70751 1043 256533 98166 17353 3589 4 0 110 50 50 0 72021 1135 28923 90816 17353 3589 5 0 10 10 50 50 0 7383 1357 345935 90816 1379 34910 6 0 100 50 50 0 7385 1357 345935 13899 3910 7 0 100 50 50 0 73853 1357 345995 26036 5478 1400 8 0 90 50 50 73853 </td <td>23C/96 18/05</td> <td>1</td> <td>1,130 9</td> <td>20 01 100 000 000</td> <td>1,058 1,141</td> <td>1/0//6 18</td> <td>/1 1,044</td> <td>14 I,139</td> <td>_</td> <td>Thut a</td> <td>10 708'65</td> <td>17 bSC/57b</td> <td>d/2/221 128/2/2</td> <td>070/5 0/2</td> <td>9/9/05</td> <td>1</td>	23C/96 18/05	1	1,130 9	20 01 100 000 000	1,058 1,141	1/0//6 18	/1 1,044	14 I,139	_	Thut a	10 708'65	17 bSC/57b	d/2/221 128/2/2	070/5 0/2	9/9/05	1
\sim <td></td> <td>177701</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>31,41/</td> <td></td> <td>51/12</td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>		177701							31,41/		51/12					0000
σ τ <td></td> <td>+cn/cc</td> <td></td> <td></td> <td></td> <td></td> <td></td>											+cn/cc					
4 0 110 50 7202 1133 24925 54920 1733 34996 17733 34996 17733 34996 17733 34996 17733 34996 17733 34996 17733 34996 17733 34996 17733 34906 17833 34300 28893 34300 28893 34300 28893 34300 28893 34300 28893 34300 28893 34300 28893 34300 28893 34300 28893 34300 28930 28930 28930 24302 24302 4300 23042 4300 23042 4300 23042 4300 23042 4300 23042 4300 23042 24036 6118 9900 900 200 2269 59830 29042 2107 29569 6118 2001 2000 2000 2000 2000 2000 2000 2000 2000	0 00100	147001	C 277'C	0'C 0+0'CC	C#0'0 C00'0	20 20 20 20	5/T'C 20	13 3,203	470'CC	777'C	44,034	1	00000 00000 00000	10000 DCt		
0 1010 50 50 1 200 1 200 200303 33103 335033 108510 216833 33103 33103 33103 33103 33103 33103 33103 33103 33103 33103 33103 21603 230131 2301313											10104					
0 100 200 200 7,333 1,357 3,43832 1,03010 2,0753 4,300 7 0 0 50 50 0 7,5075 1,507 3,43842 1,20589 2,3042 4,300 8 0 80 50 50 0 7,5075 1,507 3,43942 1,20589 2,3042 4,301 9 0 80 50 0 7,5075 1,507 3,43942 1,20589 2,5036 5,361 9 0 70 50 50 7 7,837 1,34746 2,9569 6,118 10 0 60 50 50 8,379 2,269 6,118 3,4696 7,107 11 0 50 50 8,379 2,709 6,90398 2,1675 3,4696 7,107 12 0 40 50 60 8,379 2,709 6,90398 2,1675 8,1696 7,107											020'54	1.				
0 50 </td <td>26320 0</td> <td>276117</td> <td></td> <td>4,0 001,00</td> <td>4,022 4,233</td> <td>23 40,532</td> <td>920,9 25</td> <td>927 9 224</td> <td>40,104</td> <td>d nen/tr</td> <td>24,439</td> <td></td> <td>0,000 2014514</td> <td>514 59510 51455 5155</td> <td></td> <td>00</td>	26320 0	276117		4,0 001,00	4,022 4,233	23 40,532	920,9 25	927 9 224	40,104	d nen/tr	24,439		0,000 2014514	514 59510 51455 5155		00
8 0 80 50 50 765/1 1/13 433742 1.36258 26036 5361 9 0 70 50 50 0 78488 1934 492821 154746 29569 6118 10 0 60 50 50 0 81379 2269 578277 181579 34696 7107 11 0 50 50 0 84942 2606 664121 208533 39847 8260 12 0 40 50 50 0 80958 2709 690398 216785 41423 8569	C/C 00000										00,220	T,300			1	
9 0 70 50 50 7838 1934 49283.1 15474b 29593 5118 10 0 60 50 50 0 81379 2269 578277 181579 34696 7107 11 0 50 50 0 84942 2606 664121 208533 39847 8260 12 0 40 50 50 0 90958 2709 690398 216785 41423 8589	28243 8100	253880	2,238	2/,00/ 5/	25,012 5,240		570/5	24 5,242	21/080	2/010	01/240	2,107	T//8707 510/0	1	4 11/3	AULT I
10 0 30 30 0 64373 2703 376277 161373 34639 7107 11 0 50 50 50 0 84942 2606 664121 208533 39847 8260 12 0 40 50 50 0 90958 2709 690398 216785 41423 8589	ľ	1			14 2 10/C	100 20 00	\downarrow		114/00		+	201400	LIFETON COTIO		1	+
11 U 3U 3U 3U 3U 3U 9U 84342 20U 004121 2U333 33847 820U 12 0 40 50 50 0 90358 2709 690398 216785 41423 8589	\perp									_		001'00			_	+
12 14 14 20 20 21 210 210 210 210 210 210 210 21											ľ		_		_	4
CATO CERCA ADALCE ADALCE ADALACE ADALA									_		_		_			_
0 10 10 10 10 10 10 10 10 10 10 10 10 10	190080 28100										_	\perp	_			_
1988 Cd124 400022 12C/20/ 8C/2 12E0811 0 0C 0C 02	192762 /70241	916956	1,125	9/,b53 1,0	1,050 1,142	965/16 25	1,040	4 1,134	97,010	1,038 S	9//30 d	1 200,519	115,145 1922b4	2/7/5 2/2/5	5 2194,b8	1/1

RESULTS OF PART SIZE DISTRIBUTION 2.5

Table 9-29: Results of part size simulations - Upper limit - No waiting

AM	parts	out		ž	001	62	66	72	78	86	96	108	123	143	170	206	233	290	430	57	61	66	71	78	85	95	106	113	114			115	110	52	62	67	73	79	87	96	108	123	144	172	216		430	640
	dueue	total		ž	0	0	0	0	0	0,017	0,75	10,333	30,2	52,05	99,117	184,85	413,85	1151,07	3917,72	0	0	0	0	0	0,05	3,1	59,45	117,833	233,067	505,583	958,283	1631,32	2923,1 5700 AC	C DOCIO	0	0	0	0	0	0	0	0	0	0	1,083	58,333	323,567	1670 88
6	depre-	ciation		Ļ	59107	59201	59334	59491	59561	59591	59736	59697	59869	59922	59871	59272	57495		_	59381	59479	59548	59616	59714	59783	59876	59945	58319	57508	_	_	_	6TOCC	+	29993	30005	30040	30063	30060	31553	50765	59749	59974	60088	60206			57387
Average	guiping	volume		, mm	1581199	1553091	1553658	1544375	1548508	1548307	1538840	1588798	1579102	1576280	1572035	1573617	1515322	1236622	826109	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	2049676	1100210	272609	272284	273383	272828	272419	286806	465848	545596	548915	548352	550032	545944	546292	545037
	number of	parts in	duene	2	0.000	0,000	0.000	0,000	0,000	0,000	0,000	0,012	0,077	0,211	0,516	1,855	14,750	53,739	195,291	0,000	0,000	0,000	0,000	000'0	0,000	0,002	0,116	1,507	7,911	21,311	42,494	78,099	149,010	0000	0.000	0,000	0,000	0,000	0,000	0,000	0,000	000'0	0,000	0,000	0,000	0,052	0,647	55,003
	waiting	time in	queue	hre		1			1	I,	1,823	9,946	21,640	34,668	44,006	84,546	281,440	366,194	415,071	· · · ·	~~~~	1,	1,	I,	Ļ	1	15,882	107,745	274,131	341,263	367,497	387,440	370 30C	010000			L			I,	1,	Ļ	Ļ	ſ	1,806	7,644	17,230	070 575
Total	system	utili-	zation	8	30.029	31.582	33,932	36,493	39,811	43,764	48,391	55,634	62,942	72,541	83,742	95,707	99,335	99,687	99,862	52,141	55,758	59,817	64,720	70,469	77,368	85,848	96,202	99,162	99,492	99,590	99,668	99,720	99,769	12 040	14.914	16,037	17,400	18,931	20,770	23,102	26,286	29,779	34,681	41,425	51,804	68,415	92,262	00000
System	000	down		8	2.729	2.916	3,130	3,383	3,684	4,048	4,497	5,045	5,719	6,356	6,262	4,427	1,654	1,198	1,046	2,691	2,878	3,088	3,341	3,638	3,994	4,433	4,958	2,512	1,422	1,208	1,115	1,084	1 0.00	2 700	2.902	3,123	3,380	3,683	4,045	4,491	5,077	5,788	6,732	8,039	10,042		4	011.
System	-littn	zation		3	24.420	25,592	27.509	29,555	32,262	35,475	39,190	45,319	51,262	59,565	70,955	86,653	95,911	97,191	97,675	46,612	49,848	53,482	57,869	63,013	69,189	76,779	86,065	93,996	96,542	97,074	97,340	97,454	5/5/16	8 ADS	8.988	9,661	10,501	11,417	12,521	13,944	15,918	17,953	20,935	25,023	31,330	41,313	61,945	
System	setup			8	2.880	3,073	3,293	3,555	3,865	4,241	4,705	5,270	5,962	6,621	6,525	4,628	1,770	1,298	1,142	2,837	3,032	3,248	3,510	3,817	4,185	4,636	5,179	2,654	1,529	1,309	1,212	1,182	1122/1	7 276	3.024	3,253	3,519	3,831	4,204	4,667	5,291	6,038	7,014	8,363	10,432	13,796	15,433	-
Machine	cool down	tracking 2		ø	2.815	2.958	3,203	3,425	3,725	4,088	4,527	5,058	5,715	6,384	6,319	4,397	1,677	1,191	1,038	2,686	2,856	3,085	3,341	3,636	3,993	4,432	4,954	2,523	1,415	1,207	1,114	1,086	1 03C	7 537	2.716	2,923	3,161	3,445	3,782	4,185	4,430	5,696	6,789	8,063	10,005	13,289	14,837	101
Machine	-tit	zation 2		8	ſ						39,532	45,008	50,774	59,192		86,827	95,879	97,204		46,532	49,470	53,433		62,984	69,158	76,766	86,032	93,955	96,527				703 70					10,723	11,790	13,099		17,450	21,048	25,094				
Machine	setup	tracking 2		*	2.970	3,115	3,369	3,600	3,908	4,283	4,736	5,282	5,956	6,651	6,583	4,594	1,794	1,290	1,132	2,833	3,011	3,246	3,512	3,816	4,184	4,638	5,177	2,668	1,521	1,308	1,211	1,183	1 1 3 3	2 6.46	2.831	3,044	3,291	3,584	3,931	4,350	4,618	5,945	7,071	8,387	10,392	13,780	15,384	
Machine	cool down	tracking 1		3	2.643	2,875	3,057	3,340	3,643	4,008	4,467	5,032	5,722	6,327	6,205	4,457	1,632	1,206	1,054	2,696	2,900	3,090	3,340	3,640	3,996	4,433	4,961	2,501	1,429	1,210	1,116	1,083	100/1	7 821	3.087	3,323	3,599	3,921	4,308	4,797	5,724	5,880	6,675	8,014	10,080	13,324	14,931	
Machine	÷	zation 1		8	18	25,248	27,131	29,255	31,863	35,019	38,848	45,630	51,749	59,938	71,071	86,479	95,942	97,178	97,661	46,693	50,225	53,530	57,862	63,043	69,220	76,793	86,098	94,038	96,557	97,095	97,353	97,471	59C1/5	0.017	9.649	10,368	11,256	12,111	13,252	14,789	18,065	18,456	20,821	24,952	31,184	41,307	61,835	
Machine	setup	tracking 1		8	2.790	3,031	3,217	3,510	3,823	4,199	4,673	5,257	5,967	6,591	6,467	4,661	1,746	1,305	1,151	2,841	3,054	3,249	3,509	3,819	4,186	4,634	5,181	2,639	1,536	1,309	1,214	1,181	1 1 1 2 2	2 005	3.218	3,461	3,747	4,078	4,478	4,984	5,965	6,131	6,957	8,338	10,472	13,812	15,482	
z	cost	5			147785	151532	157430	163833	171934	181430	193128	216843	269264	340335	496261	831367	1090969	1321927	1815908	210440	220006	230660	243488	258648	276681	300524	437857	695317	718471	729451	736450	724039	010400	66743	67572	69737	72463	75435	78940	85368	116384	134521	144456	157681	178079	217830	456944	
Total	penalty			•	ŕ	0	0	0	0	0	375	6416	40791	87250	209958	502375	745083	972375	1453708	0	0	0	0	0	0	1583	111833	355916	376750	384958	387541	382625	363206	Cionee	0	0	0	0	0	0	0	0	0	0	8	8041	181416	
Total	-ueu	tenance	cost		57822	57914	58044	58198	58266	58296	58438	58399	58568	58619	58569	57984	56245	55807	56532	58090	58186	58253	58320	58416	58484	58575	58642	57051	56258	56472	57074	55794	OTable	103500	29341	29352	29387	29409	29407	30867	49661	58450	58671	58782	58897	58899	58943	
Total	operator	cost			2880	3082	3315	3592	3917	4307	4795	5376	6130	7150	8523	10313	11664	14518	21475	2853	3055	3282	3555	3878	4263	4738	5317	5650	5722	5775	5853	5729	5600	CUBC	3107	3345	3625	3953	4341	4819	5420	6174	7208	8624	10794	14330	21495	
Consumed	energy cost				10878	11427	12308	13258	14491	15945	17653	20403	23141	26915	32035	38721	41587	41811	42569	20876	22358	24017	26016	28376	31193	34668	38906	41339	41869	42260	42827	41918	40341	1025	4065	4372	4757	5176	5677	6319	7178	8087	9468	11339	14225	18758	28145	
σ	material	cost		ļ	56929	59803	64413	69384	75836	83449	92386	106780	121109	140859	167651	202644	217640	218813	222778	109256	117010	125689	136155	148504	163246	181434	203610	216342	219118	221160	224128	219373	211417	10000	21277	22882	24896	27092	29711	33073	37569	42325	49551	59341	74446	98167	147296	
P	energy			-Wh	181305	190456	205137	220970	241518	265761	294224	340066	385698	448596	533920	645365	693123	696857	709484	347949	372643	400284	433616	472943	519892	577816	648442	688989	697830	704333	713784	698643	6/0790	62384	67763	72873	79289	86281	94623	105328	119646	134795	157808	188986	237092	312634	469096	
в	material			ko -	711	747	805	867	947	1043	1154	1334	1513	1760	2095	2533	2720	2735	2784	1365	1462	1571	1701	1856	2040	2267	2545	2704	2738	2764	2801	2742	1/07	248	265	286	311	338	371	413	469	529	619	741	930	1227	1841	
	ware- mar	housing	cost		69837	70846	71306	71997	72742	73744	5201	76908	78979	81672	84307	91235	100414	117552	174336	69829	70887	71131	71859	72829	73856	5056	76887	78833	80979	85318	90955	1//66	TOUCLE	60043	70356	71092	71767	72699	73743	75027	76512	78037	81621	84868	90227	99049	118503	
	sign wa	small hou	parts co	2	92	50					50 7							50 11		0 6	0 7	0 7		0 7	0 7	0 7	0 7	0 7	0 8			ľ	11 0	1	50			50 7						50 8			50 11	L
	s Bu	mid	parts p	y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	•	-	2	205	50	50	50	50	50	50	50	50	50	50	50	50	
	sign -		parts	ø	05	50	20	50	20	20	So	20	20	50	50	50	SO	50	20	100	100	100	100	100	100	100	100	100	100	100	100	100	3 4	201	0	0	0	0	0	0	0	0	0	0	0	0	0	
	arrival		-	ž	150	140	130	120	110	100	6	80	70	60	50	40	30	20	10	150	140	130	120	110	100	90	80	70	60	20	9	8	3 9	150	140	130	120	110	100	90	80	5	60	50	40	30	2	
_	time or ar	volume	filled	Switch		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0			0	0	0	0	0	0	0	0	0	0	0	0	0	
					aitine 1	alting 2	aiting 3	vaiting 4	vaiting 5	vaiting 6	aiting 7	vaiting 8	vaiting 9	Case 4 - No waiting 10	Case 4 - No waiting 11	Case 4 - No waiting 12	Case 4 - No waiting 13	Case 4 - No waiting 14	Case 4 - No waiting 15	vaiting 1	vaiting 2	vaiting 3	vaiting 4	vaiting 5	vaiting 6	aiting 7	vaiting 8	vaiting 9	Case 5 - No waiting 10	Case 5 - No waiting 11	Case 5 - No waiting 12	Case 5 - No waiting 13	Case 5 - No waiting 14	vaiting 10	alting 2	vaiting 3	vaiting 4	raiting 5	raiting 6	raiting 7	vaiting 8	vaiting 9	Case 6 - No waiting 10	Case 6 - No waiting 11	ase 6 - No waiting 12	Case 6 - No waiting 13	Case 6 - No waiting 14	
					Case 4 - No waiting 7	Case 4 - No waiting	Case 4 - No waiting	4 - No w	Case 5 - No waiting	Case 5 - No waiting 2	Case 5 - No waiting	Case 5 - No waiting	Case 5 - No waiting 5	Case 5 - No waiting 6	Case 5 - No waiting 7	Case 5 - No waiting 8	Case 5 - No waiting 9	5 - No w	5 - No w	5 - No w	N 0 N - 5	NON-C	Case 5 - No waiting	Case 6 - No waiting 2	Case 6 - No waiting	Case 6 - No waiting	Case 6 - No waiting 5	Case 6 - No waiting 6	Case 6 - No waiting 7	Case 6 - No waiting 8	Case 6 - No waiting	6 - No w	6 - No w	6 - No w	6 - No w	6 - No w												
			Name		Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Caco	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case	Case							

AM	parts	out			DCS.	58	62	67	72	79	87	96	108	123	144	172	215	285	345	352	58	62	67	73	79	87	97	109	124	144	173	216	288	432	860
Parts in	ananb	total		T	DC:	0	0	0	0	0	0	0	0	0	0	0,017	4,267	247,95	600,867	4510,42	0	0	0	0	0	0	0	0	0	0	0	0	0	0,55	662,2
Machine Pa	depre- d	ciation 1		+	5	29982	29995	30012	30067	30069	30060	34507	57727	59838	60041	60144	60217	60219	57070 60	57428 49	30001	30009	30025	30019	30049	30081	30082	30099	30109	30131	30164	36158	60160	60329	60416
	building	volume		1	- mm	500000	500000	500000	500000	500000	500000	575000	966667	1000000	1000000	1000000	0000001	1000000	1000000	1000000	48668	48668	48668	48668	48668	48668	48668	48668	48668	48668	48668	58402	97336	97336	97336
Average A	number of t	parts in V	dueue		pcs.	0,000	0,000	0,000	0,000	0,000	0'000	0'000	0'000	0'000	0,000	0,000	0,002	0,545	20,090	229,055	0'000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0'000	0'000	0'000	0'000	0,000	0,000	0,468
	waiting nu	time in p	duene		S1U	····		I,	1.	1,	Ļ	1		· · · ·	~ ~		3,401	18,932	264,110	411,593		'	'	·····	···· '		١,	1	1,	1,	1,	···· '	···· '	···· ,	6,098
Total	system	utili-	zation	,	¢.	20,907	22,381	24,078	26,058	28,374	31,161	34,678	39,115	44,526	51,750	61,773	77,212	97,121	99,730	99,859	7,050	7,543	8,117	8,783	9,563	10,501	11,648	13,082	14,923	17,382	20,819	25,996	34,715	51,887	92,762
System	00	down		,	R	2,706	2,897	3,117	3,374	3,674	4,036	4,491	5,063	5,764	6,701	8,000	10,001	10,668	1,652	1,089	2,716	2,906	3,129	3,386	3,688	4,051	4,494	5,048	5,761	6,712	8,040	10,040	13,403	20,043	34,767
System	utili-	zation		,	R	15,378	16,463	17,713	19,172	20,877	22,930	25,516	28,767	32,751	38,072	45,453	56,823	75,380	96,310	97,585	1,502	1,607	1,730	1,872	2,039	2,240	2,486	2,792	3,186	3,712	4,447	5,553	7,412	11,085	22,037
	setup			1	R	2,823	3,020	3,247	3,513	3,823	4,196	4,671	5,285	6,011	6,978	8,320	10,388	11,073	1,768	1,186	2,832	3,029	3,259	3,525	3,836	4,211	4,669	5,241	5,976	6,958	8,332	10,403	13,899	20,759	35,958
	cool down	tracking 2		2	R	2,536	2,715	2,920	3,159	3,441	3,777	4,323	4,747	5,750	6,721	7,982	9,999	10,691	1,656	1,090	2,541	2,720	2,928	3,166	3,450	3,786	4,198	4,714	5,379	6,266	7,513	9,375	13,120	20,059	34,775
ę.	tiji	zation 2 t		,	Ŗ	14,410	15,425	16,592	17,949	19,550	21,462	24,560	26,974	32,668	38,190	45,355	56,812	75,366	96,286	97,575	1,406	1,504	1,619	1,751	1,908	2,094	2,322	2,607	2,975	3,465	4,155	5,185	7,256	11,094	22,094
Machine	setup	tracking 2		,	Ŗ	2,646	2,831	3,043	3,290	3,582	3,929	4,499	4,959	5,997	7,000	8,301	10,388	11,102	1,772	1,189	2,650	2,834	3,048	3,294	3,588	3,935	4,360	4,893	5,579	6,497	7,786	9,716	13,605	20,770	35,965
Machine	cool down	tracking 1 t		1	8	2,877	3,080	3,315	3,589	3,908	4,294	4,659	5,379	5,779	6,680	8,017	10,003	10,644	1,648	1,088	2,890	3,092	3,330	3,605	3,925	4,315	4,791	5,382	6,143	7,157	8,568	10,706	13,686	20,027	34,759
e	tili	zation 1		2	g	16,346	17,501	18,834	20,394	22,204	24,398	26,471	30,560	32,834	37,953	45,552	56,834	75,394	96,334	97,594	1,598	1,710	1,841	1,994	2,171	2,386	2,650	2,977	3,397	3,958	4,738	5,921	7,569	11,076	21,981
Machine	setup	tracking 1		;	¢	3,000	3,210	3,452	3,735	4,064	4,462	4,844	5,611	6,025	6,956	8,339	10,389	11,043	1,764	1,183	3,015	3,224	3,469	3,755	4,085	4,487	4,977	5,589	6,373	7,420	8,878	11,091	14,193	20,748	35,950
Total AM	cost	4			ų	85352	88654	92466	97033	102182	108342	121830	161533	176323	192948	215546	250516	471814	1486790	1548782	46277	46791	47402	48069	48913	49923	51094	52586	54484	57037	60615	73704	113828	131714	184409
Total	penalty			ŀ		0	0	0	0	0	0	0	0	0	0	0	375	165625	1136708	1192833	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41
Total	main-	tenance	cost	,	5	29330	29343	29360	29413	29415	29406	33757	56472	58537	58736	58837	58908	58910	55829	56180	29348	29357	29373	29366	29396	29427	29428	29445	29454	29476	29508	35372	58852	59018	59103
Total	operator	cost		ļ	5	2897	3103	3340	3622	3945	4331	4813	5403	6157	7182	8590	10751	14263	17270	17609	2909	3114	3354	3629	3956	4350	4827	5425	6193	7220	8660	10805	14395	21588	42979
Consumed	energy cost			,	ų	6954	7448	8018	8694	9468	10396	11552	12968	14778	17238	20616	25804	34232	41450	42262	679	727	783	847	924	1016	1127	1267	1446	1686	2023	2524	3362	5043	10040
ъ	material e	cost		,	-	36392	38977	41960	45498	49549	54405	60455	67865	77338	90212	107890	135040	179147	216921	221171	3556	3807	4100	4436	4837	5319	5901	6633	7571	8827	10587	13210	17599	26392	52543
Consumed C	energy			-	HWN H	115900	124133	133633	144900	157800	173266	192533	216133	246300	287300	343600	430066	570533	690833	704366	11326	12124	13059	14129	15405	16939	18795	21125	24113	28113	33717	42071	56049	84052	167336
Consumed Co	material				Kg	454	487	524	568	619	680	755	848	996	1127	1348	1688	2239	2711	2764	44	47	51	55	60	66	73	82	94	110	132	165	219	329	656
Fotal Con	ware- ma	housing	cost		5	69807	70212	70937	71649	72582	73578	74859	76503	78558	81661	84871	90697	99812	118839	173551	69877	70417	71216	71870	72860	73844	75158	76804	78906	81787	85552	91097	99655	119096	172026
Reas- T	sign w	small ho	parts	1	¢							0	0	0	0	0		0	0 1	0 1		100		100		100		100			100	100	100		100 1
Reas- R	sign		parts p	1	Ŗ	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	sign		parts	;	ß	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean	arrival		-		nrs	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	150	140	130	120	110	100	90	80	20	60	50	40	30	20	10
	time or ar	volume	filled	+	Switch	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Name		Case 7 - No waiting 1	Case 7 - No waiting 2	Case 7 - No waiting 3	Case 7 - No waiting 4	Case 7 - No waiting 5	Case 7 - No waiting 6	Case 7 - No waiting 7	Case 7 - No waiting 8	Case 7 - No waiting 9	Case 7 - No waiting 10	Case 7 - No waiting 11	Case 7 - No waiting 12	Case 7 - No waiting 13	Case 7 - No waiting 14	Case 7 - No waiting 15	Case 8 - No waiting 1	Case 8 - No waiting 2	Case 8 - No waiting 3	Case 8 - No waiting 4	Case 8 - No waiting 5	Case 8 - No waiting 6	Case 8 - No waiting 7	Case 8 - No waiting 8	Case 8 - No waiting 9	Case 8 - No waiting 10	Case 8 - No waiting 11	Case 8 - No waiting 12	Case 8 - No waiting 13	Case 8 - No waiting 14	Case 8 - No waiting 15

AM parts	out	pc;	22	20	67	72	79	87	96	108	123	143	173	216	287	428	794	58	62	66	72	78	86	96	107	123	143	171	212	220	281	58	61	66	72	78	86	95	107	122	142	165	171	1/4	195
5 4	total	bc;	0	-	•	0	0	0	0,05	0,2	0,767	1,933	4,717	13,233	68	271,15	852,967	0	0	0	0	0	0,017	0,583	7,75	20,383	37,7	76,867	156,983	306,15	5061.92	0	0	0	0	0	0,067	1,9	18,567	50,083	92,45	157,65	313,433	3100,183	6156.2
	ciation	ų	55581	chcoc	57679	57768	57748	58992	59127	59568	59765	59910			60193		58478 85	58952	59268	59378	59346	59505	59711	59529	59797	59874	59981	_			57215 50		59307	59375	59593	59588	59665	59728				_	_	2/104 3/	- L
	volume	mm²	411563	6/7575	431626	428196	424504	423104	425781	425787	425552	423290	422198	423489	423146	434238	420700	1408773	1416890	1405777	1413811	1419710	1419517	1376986	1378738	1365037	1378163	1362244	1360209	1373358	1269622	2019805	2014398	2003267	2019022	2016440	2012975	2033402	2035145	2018698	2038275	2019118	2014155	1002001	10010101
*	parts in queue	pcs.	0,000	0000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,004	0,011	0,031	0,118	0,635	10,793	0'000	0,000	0,000	0,000	0,000		0,000	0,009	0,042	0,118	0,284	0,931	6,932	265,809	-	0,000			0,000	0,000	0,001		- 1	_	_	_	+	374 975
	time in queue	hrs	I,	I.	L	Ļ	I,	1	0,222	~~~	5,591	12,796	18,947	19,772	14,565	20,082	105,318	L	Ļ			I,	I,	2,096	8,853	17,684	26,657	31,451	49,350	180,969	423.708	Ļ	I,	I,	Ļ	I,	0,485	4,405	9,734	22,022	37,075	76,246	275,224	670'195	1001016
System	utili- zation	%	12,364	13,255	14,268	15,304	16,658	18,238	20,178	22,484	25,720	29,765	35,594	44,447	58,208	81,172	99,209	27,424	29,389	31,387	34,091	37,236	40,827	44,213	49,530	56,075	65,361	76,272	90,079	98,954	1270,82	36,668	39,119	41,843	45,500	49,500	54,400	60,705	68,199	76,932	88,550	97,334	99,353	120/66	11/100
System cool	down	%	2,746	7,940	3,156	3,411	3,718	4,079	4,518	5,064	5,783	6,705	8,036	9,978	12,869	15,833	4,285	2,736	2,918	3,133	3,387	3,688	4,044	4,492	5,033	5,742	6,542	7,197	6,644	2,385	1.024	2,717	2,903	3,122	3,371	3,672	4,039	4,468	5,019	5,666	5,801	3,931	1,562	1,100	000/T
System utili-	zation	*	6,729	\$77,	797,7	8,313	9,043	9,890	10,937	12,133	13,908	16,075	19,200	24,107	31,996	48,927	90,441	21,803	23,399	24,960	27,147	29,680	32,549	35,025	39,241	44,347	52,003	61,581	76,516	94,047	97,628	31,087	33,157	35,438	38,589	41,976	46,130	51,564	57,937	65,357	76,700	89,285	96,115	661'/6	
System setup		*	2,889	060'5	3,315	3,579	3,897	4,269	4,723	5,288	6,029	6,984	8,359	10,362	13,342	16,412	4,484	2,885	3,073	3,294	3,556	3,868	4,234	4,697	5,256	5,987	6,815	7,494	6,920	2,523	1,118	2,864	3,058	3,283	3,540	3,852	4,230	4,673	5,243	5,908	6,049	4,118	1,675	1,200	4 000
	tracking 2	×	2,683	2,902	3,120	3,365	3,673	4,037	4,402	4,952	5,887	6,672	7,963	9,913	12,842	15,798	4,251	2,667	2,912	3,135	3,390	3,690	4,049	4,508	4,919	5,785	6,472	7,182			1,020		2,914	3,174	3,399	3,696	4,066	4,454	4,896			3,947	1,589	1,155	D DEA
Machine utili-	zation 2	ж	6,456	177'1	7,902	8,353	9,142	10,036	10,748	11,647	14,012	15,608	19,098	23,772	31,625	48,860	90,519	21,377	23,009	24,461	26,832	29,413	32,284	34,428	38,767	43,441	51,682	60,781	75,889	94,119	97,623	30,320	33,387	35,916	38,986	42,337	46,629	52,023	56,207	64,603	76,026	88,994	95,989	21,182	14 07 242 0 0EA
	tracking 2	*	2,823	3,049	3,276	3,527	3,847	4,223	4,603	5,170	6,136	6,954	8,284	10,295	13,316	16,379	4,448	2,815	3,067	3,296	3,558	3,868	4,238	4,714	5,140	6,031	6,742	7,481	6,954	2,491	1,115	2,765	3,071	3,338	3,571	3,877	4,258	4,658	5,117	5,850	6,022	4,133	1,703	1,454	1 057
	tracking 1	*	2,808	2,9/8	3,191	3,458	3,764	4,121	4,633	5,176	5,679	6,739	8,109	10,042	12,896	15,868	4,318	2,805	2,924	3,131	3,384	3,687	4,039	4,476	5,147	5,699	6,613	7,213	6,608	2,415	1,029	2,810	2,893	3,070	3,342	3,649	4,013	4,482	5,142	5,723	5,825	3,914	1,536	1/1/1	67 0 071
	zation 1	R	7,002	1,223	7,691	8,273	8,944	9,744	11,126	12,618	13,805	16,543	19,301			48,994		22,229	23,789	25,459	27,462	29,947	32,814	35,621	39,715	45,252	52,325	62,381			97,633	31,854				41,614	45,630	51,104				89,575	96,242	017'/6	200/10
Machine setup	tracking 1	%	2,956	5,132	3,355	3,631	3,947	4,316	4,843	5,405	5,922	7,015	8,434	10,430	13,369	16,445	4,520	2,954	3,078	3,293	3,555	3,867	4,229	4,679	5,373	5,942	6,888	7,507	6,885	2,554	1,122	2,962	3,046	3,228	3,510	3,827	4,203	4,688	5,368	5,966	6,076	4,103	1,648	1/2/1	1 062
Total AM cost		ę	94180	4/696	100358	102248	104570	109046	112840	117217	123499	131212	143019	161905	202987	407970	2574883	141218	146691	151669	157990	165812	174814	181667	198649	227690	276427	377976	641404	1121530	1231/31	169087	175336	182112	191869	201656	214045	230666	263688	347031	495754	783267	901974	816076	000241
Total penalty		ę	125	9	125	125	125	125	250	166	291	625	1875	4708	19583	169416	2210416	1000	1125	1250	1250	1250	1250	1250	4958	18625	44416	117791	338375	778041	957166	2250	2458	2458	2458	2458	2541	3208	17166	78791	194375	448500	561416	104100	TELTO
Total main-	cost	ę	54373	9/755	56425	56512	56493	57710	57842	58273	58465	58608	58737	58758	58884	58934	57207	57670	57979	58087	58056	58212	58413	58235	58497	58572	58677	58628	58385	56553	12000	58007	58018	58085	58297	58292	58368	58429	58572	58591	58634	58064	55777	77600	A1000
Total operator	cost	ų	2894	1606	3333	3610	3936	4330	4808	5386	6170	7172	8638	10783	14354	21423	39685	2880	3087	3320	3589	3918	4310	4775	5373	6140	7141	8538	10579	12516	14038	2875	3074	3309	3585	3906	4303	4765	5365	6103	7100	8265	8573	8/03	1000
Consumed energy cost		ų	2994	3210	3475	3715	4040	4434	4918	5449	6269	7262	8693	10920	14524	22227	39867	9696	10455	11173	12151	13319	14658	15721	17698	20025	23523	27830	34428	41000	42093	13896	14830	15866	17341	18861	20755	23227	26159	29521	34668	39959	41328	41902	OCCCV
al d	cost	J	15669	10855	18190	19447	21144	23209	25740	28516	32812	38007	45496	57149	76012	116324	208638	50746	54716	58475	63591	69707	76711	82274	92622	104802	123107	145645	180174	214567	220286	72722	77615	83032	90752	98706	108620	121559	136900	154493	181431	209121	216286	167617	351736
consumed C energy		kWh	49901	20055	57930	61933	67338	73914	81975	90817	104498	121044	144893	182003	242078	370460	664453	161614	174257	186227	202519	221999	244302	262019	294975	333765	392063	463838	573804	683336	701550	231600	247181	26434	289022	314352	345925	387131	435988	492016	577806	665993	688809	104104	106167
Consumed Co material		kg	195	017	227	243	264	290	321	356	410	475	568	714	950	1454	2607	634	683	730	794	871	958	1028	1157	1310	1538	1820	2252	2682	2753	606	970	1037	1134	1233	1357	1519	1711	1931	2267	2614	2703	2/41	1774
_	housing cost	ę	69788	10315	70976	71798	72729	73722	74907	77025	78643	81116	85308	90648	100102	118203	174711	69530	70683	71111	72036	72939	73898	75245	76489	78292	80708	84866	90769	100048	173853	70041	70643	71226	72021	72859	73909	74836	77014	78935	81212	85533	91122	1101229	UCBELL
	parts (%	75	2	75	75	75	75	75			75	75		75 1	82	75 1	33	33	33	33	33	33	33	33						33 1	1.0	0	0	0	0	0	0	0	•	0		00		
	parts	×	50									20				20		33	33					33	33						33 5		50			50			50				2 2		
æ	big parts	%	5 1					0 5	0 5			0				0 5		0 33			0 33		0 33		0 33			0 33			33		0 50										200		
Mean arrival		hrs					1 110	1 100	1 90	1 80		1 60					1 10	1 150	1 140	1 130			1 100	1 90	1 80			1 50		1 30	1 10		1 140	1 130		1 110	1 100	1 90						1 30	
Elapse time or	filled	Switch			1	1	1	1	1	1	1	-	-	1	1	1	1	-		-	1	-	-			1	-	1					-	-	1	1	1		1	-		-			
			Waiting 1	Waiting 2	Case 1 - Waiting 3	Case 1 - Waiting 4	Case 1 - Walting 5	Case 1 - Waiting 6	Waiting 7	Waiting 8	Case 1 - Waiting 9	Case 1 - Waiting 10	Case 1 - Waiting 11	Case 1 - Walting 12	Case 1 - Walting 13	Case 1 - Waiting 14	Case 1 - Waiting 15	Case 2 - Walting 1	Waiting 2	Waiting 3	Waiting 4	Case 2 - Waiting 5	Case 2 - Waiting 6	Case 2 - Waiting 7	Case 2 - Walting 8	Case 2 - Walting 9	Case 2 - Waiting 10	Case 2 - Waiting 11	Case 2 - Waiting 12	Case 2 - Waiting 13	Case 2 - Waiting 14 Case 2 - Waiting 15	Waiting 1	Case 3 - Waiting 2	Case 3 - Waiting 3	Case 3 - Waiting 4	Case 3 - Walting 5	Case 3 - Waiting 6	Case 3 - Waiting 7	Case 3 - Waiting 8	Case 3 - Waiting 9	Case 3 - Waiting 10	Case 3 - Waiting 11	Case 3 - Waiting 12	Case 5 - Walting 15	COSC 0 - MINISTER 1C
	Name		Case 1 - Waiting	Case 1 - Waiting	Case 1 -	Case 1 -	Case 1 -	Case 1 -	Case 1 - Waiting	Case 1 - Waiting	Case 1 -	Case 1 -	Case 1 -	Case 1 -	Case 1 -	Case 1 -	Case 1 -	Case 2 -	Case 2 - Waiting	Case 2 - Waiting	Case 2 - Waiting	Case 2 -	Case 2 -	Case 2 -	Case 2 -	Case 2 -	Case 3 - Waiting	Case 3 -	Case 3 -	Case 3 -	Case 3 -	0.000													

Table 9-30: Results of part size simulations - Upper limit - Waiting

AM	parts	out		5	58	62	66	72	78	86	96	108	123	143	170	205	235	294	426	57	61	66	71	78	85	95	106	113	115	115	117	115	110	58	62	67	72	79	87	96	108	123	144	172	216	187	634
_	dueue	_		ž	0	0	0	0	0	0,033	1,517	14.867	30,833	56,85	98,017	186,367	403,117	1164,57	3904,17	0	0	0	0	0	0,25	5,983	72,45	117,75	235,1	506,75	956,467	1642,08	68603	0	0	0	0	0	0	•	•	0	0	0,1	8,267	104,55	1639,85
6	depre-	ciation		5	59293	59280	59347	59501	59547	59640	59731	59831	+		59846	58994 1	57458 4	57398 1	57579 3	59237	59478	59557	59637	59719	59798	59886	59910	58338	57745	57712		_	52/655		30012	29989	30054	30058	31017	47334	59654	59866	60003	60074		90709	
	building	volume		, mm	1561044	1559689	1536639	1544887	1549296	1544080	1550195	1586119	1560115	1596507	1556229	1576314	1500596	1223803	829320	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	3048625	272665	272663	272178	273369	272915	280833	433477	546525	545531	546947	547129	548455	24205/	547606
	number of	parts in	duene	DCS.	0.000	0.000	0,000		0,000		0,001	0.019			0,514	2,050	14,020	53,818	196,015	0,000	0,000	0,000	0,000	0'000	0'00	1.1	0,159	1,520	7,948	21,393	42,728	77,934	365 980	0,000	0,000	0'000	0,000	0,000	0,000	0,000	00000	00000	00000	0,000	0,004	171'0	67,648
	waiting n	time in	duene	ž					1	0,286	3,125	10.683	23,920	34,670	44,296	91,734	272,680	365,763	420,101	I,	L	L	Ļ	I.		6,062	18,417	108,763	276,512	342,101	367,352	385,215	381,634	l	L	.,	1.	I,	Ļ	I.	L	Ļ	Ļ	1	3,968	10 404	328,123
Total	system	utili-	zation	8	29.631	31.644	33,577	36,463	39,783	43,664	48,575	55.584	62,330	73,174	82,779	95,305	99,136	99,619	99,777	52,270	55,754	59,852	64,696	70,431	77,318	85,893	96,346	99,041	99,435	99,540	99,616	99,668	04//66	13.920	14,904	16,019	17,385	18,915	20,752	23,302	26,110	29,613	34,582	41,309	51,697	160,80	99,694
System	cool	down		*			3,128	3,380	3,680	4,047	4,486	5.040	5,712	6,305	6,240	4,199	1,715	1,192	1,018	2,698	2,878	3,089	3,340	3,636	3,992	4,435	4,965	2,502	1,410	1,206	1,114	1,081	1 026	2.707	2,899	3,120	3,377	3,679	4,045	4,507	5,068	5,765	6,727	8,031	10,039	13,258	1,489
System	ii:	zation		8	24.036	25,669	27,160	29,535	32,243	35,380	39,397	45.280	50,663	60,302	70,035	86,709	95,588	97,134	97,646	46,728	49,845	53,515	57,849	62,982	69,146	76,820	86,196	93,894	96,508	97,029	97,291	97,409	97,648	8,388	8,982	9,648	10,491	11,408	12,500	14,094	15,749	17,836	20,848	24,925	31,238	61 861	96,608
System	setup			8	2.871	3,065	3,289	3,549	3,859	4,237	4,692	5.263	5,955	6,568	6,505	4,397	1,833	1,293	1,113	2,845	3,031	3,248	3,507	3,813	4,181	4,638	5,185	2,645	1,516	1,306	1,211	1,178	1,125	2,825	3,023	3,251	3,517	3,829	4,207	4,701	5,293	5,012	100/1	8,353	10,420	13,/48	1,597
	cool down	tracking 2		8	2.643	2.930	3,191	3,423	3,720	4,090	4,465	5.011	5,649	6,248	6,177	4,075	1,701	1,183	1,010	2,550	2,813	3,078	3,336	3,632	3,988	4,431	4,959	2,473	1,371	1,195	1,112	1,078	1,022	2,535	2,713	2,921	3,158	3,441	3,757	3,973	4,914	5,809	2 000	7,990	10,014	14 050	1,500
ę.	ij	zation 2		*	23.548	25,886	27,404	29,817	32,613	35,867	39,723	43.994	50,346	60,449	69,592	86,625	95,540	97,118	97,647	44,168	48,719	53,316	57,791	62,921	69,083	76,752	86,134	93,857	96,517	96,984	97,235	97,355	97,613	7,780	8,320	8,944	9,736	10,715	11,689	12,227	15,279	18,072	20,947	25,049	31,228	41,012	96,585
Machine	setup	tracking 2		*	2.785	3.087	3,355	3,594	3,901	4,282	4,672	5.233	5,890	6,511	6,438	4,268	1,820	1,283	1,104	2,690	2,964	3,236	3,503	3,808	4,177	4,636	5,179	2,616	1,475	1,295	1,207	1,176	1 119	2,646	2,830	3,045	3,291	3,583	3,909	4,145	5,130	6,058	1,049	8,311	10,389	13,/40	1,609
Machine	cool down	tracking 1 t		8	2,805	2.890	3,065	3,336	3,641	4,004	4,507	5.069	5,775	6,362	6,302	4,323	1,730	1,202	1,027	2,845	2,943	3,101	3,343	3,640	3,995	4,439	4,970	2,531	1,450	1,217	1,115	1,084	1,05/ 1,031	2,880	3,085	3,319	3,596	3,916	4,332	5,041	5,223	5,721	6,687	8,072	10,064	607/51	1,477
g	-tiji	zation 1		8	24.524	25,452	26,916	29,252	31,874	34,893	39,071	46.566	50,980	60,155	70,477	86,794	95,636	97,150	97,646	49,287	50,972	53,713	57,907	63,043	69,209	76,888	86,259	93,931	96,500	97,073	97,347	97,463	97,682	8,996	9,644	10,352	11,246	12,100	13,312	15,960	16,219	17,600	20,748	24,801	31,247	61 287	96,631
Machine	setup	tracking 1		8	2.957	3,043	3,222	3,503	3,817	4,191	4,712	5.294	6,020	6,624	6,571	4,526	1,846	1,303	1,122	2,999	3,098	3,261	3,512	3,819	4,185	4,641	5,190	2,673	1,557	1,317	1,215	1,181	1.130	3.004	3,216	3,458	3,744	4,075	4,505	5,257	5,457	5,966	0,965	8,395	10,451	14 570	1,585
Total AM	cost				148772	153757	158319	165636	173663	183191	195556	224018	272134	355937	496203	842034	1099003	1335127	1801674	213377	223172	233955	246683	261742	279998	305818	480003	703647	722221	728612	743381	731790	721195	66109	68095	70159	72966	75894	80600	106986	128164	135149	144983	157979	178438	251542	2463097
Total	penalty			J	1583	1833	1833	1833	1833	1875	2250	13250	45291	101000	212625	514500	754125	983500	1440958	3125	3166	3166	3166	3166	3375	6708	153791	364416	379375	384333	395875	389000	392333	500	500	500	500	500	500	750	16/	708	708	625	875	102310	2098000
Total	-uain-	tenance	cost	ľ	58004	57991	58057	58208	58252	58343	58433	58531	58580	58567	58545	57711	56209	56150	56327	57949	58185	58262	58341	58420	58498	58584	58607	57070	56490	56457	56868	56039	53662	29312	29360	29337	29401	29405	30342	46305	58358	58565	58698	58768	58841	28035	55791
Total	operator	cost		Ű	2883	3080	3314	3590	3912	4310	4784	5384	6135	7139	8505	10242	11737	14682	21312	2853	3055	3285	3555	3876	4261	4741	5322	5645	5740	5771	5829	5751	5002	2896	3106	3340	3624	3948	4338	4820	5398	6161	7205	8613	10/80	14300	31711
Consumed	energy cost				10743	11474	12154	13251	14478	15916	17745	20429	22877	27225	31606	38557	41421	42044	42401	20876	22358	24035	26016	28364	31181	34693	38943	41308	41997	42229	42650	42083	41014	3790	4065	4364	4755	5172	5663	6365	7085	8052	9433	11291	14170	12054	41550
ъ	material	cost		Ŀ	56223	60047	63607	69350	75768	83297	92866	106913	119724	142482	165405	201785	216772	220033	221898	109256	117010	125785	136155	148440	163182	181561	203802	216183	219788	221001	223203	220235	211396	19838	21276	22838	24885	27067	29641	33310	37078	42140	49370	59092	74156	170/6	217447
σ	energy			kWh	179056	191233	202573	220862	241301	265279	295752	340489	381287	453765	526769	642630	690359	700743	706684	347949	372643	400589	433616	472740	519688	578222	649052	688481	699964	703825	710837	701386	673238	63181	67759	72733	79252	86201	94399	106084	118084	134205	157229	188191	236167	CIENTE	692506
ъ	material			ke	702	750	795	866	947	1041	1160	1336	1496	1781	2067	2522	2709	2750	2773	1365	1462	1572	1701	1855	2039	2269	2547	2702	2747	2762	2790	2752	2642	247	265	285	311	338	370	416	463	526	617	738	926	1020	2718
-	ware- m	housing	cost	3	70101	70715	71235	71997	72742	73753	75039	76452	79340	81892	84931	91453	100020	118005	173768	69983	70605	71069	71801	72829	73685	74962	77060	78484	81769	84661	90574	99828	173991	69943	70356	71092	71767	72699	73739	74897	75849	78237	81337	84679	90860	118370	172484
	n Sign	-	parts	8	205	So	20	20	25	05	20	20	20	20	20	20		50 1		0	0	0	0	0	0	0	0	0	0	0	0				So		SO	SO	20	2				8			205
-	5		parts	8	•	0	0	0	0	•	•	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0 0		50	50	50	50	20	2	2	3	20	2	3	2	2 2	3 3
	2ign		parts	8	205	20	S	20	3	3	8	20	3	So	So	So	20	So	50	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0	•	0	•	•	0	•	0	•		0
	arrival			ž	150	140	130	120	110	100	90	80	R	60	50	40	30	20	10	150	140	130	120	110	100	90	80	70	60	50	4	R	2 9	150	140	130	120	110	100	8	8	R	99 5	20	8	2 2	2 2
_	time or al	volume	filled	Switch	-	1	1		-	-	-	-	-	1		1	1	1	1	1		1	1	1	1	1	1	1	1	1	-		-	-	1	1	1	1	1	-			-	-4	-1 .		
			Name		Case 4 - Walting 1	Case 4 - Waiting 2	Case 4 - Waiting 3	Case 4 - Waiting 4	Case 4 - Waiting 5	Case 4 - Waiting 6	Case 4 - Waiting 7	Case 4 - Walting 8	Case 4 - Walting 9	Case 4 - Waiting 10	Case 4 - Waiting 11	Case 4 - Waiting 12	Case 4 - Waiting 13	Case 4 - Waiting 14	Case 4 - Walting 15	Case 5 - Waiting 1	Case 5 - Waiting 2	Case 5 - Waiting 3	Case 5 - Walting 4	Case 5 - Waiting 5	Case 5 - Waiting 6	Case 5 - Waiting 7	Case 5 - Waiting 8	Case 5 - Waiting 9	Case 5 - Waiting 10	Case 5 - Waiting 11	Case 5 - Walting 12	Case 5 - Walting 13	Case 5 - Waiting 14 Case 5 - Waiting 15	Case 6 - Waiting 1	Case 6 - Waiting 2	Case 6 - Waiting 3	Case 6 - Waiting 4	Case 6 - Waiting 5	Case 6 - Waiting 6	Case 6 - Waiting 7	Case 6 - Waiting 8	Case 6 - Walting 9	Case 6 - Waiting 10	Case 6 - Waiting 11	Case 6 - Waiting 12	Case 6 - Watting 15	Case 6 - Walting 15

AM parts out		Ľ,	58	62	67	72	79	87	96	108	123	143	172	215	285	346	352	58	62	67	73	79	87	96	108	124	144	173	216	287	431	863	863	958	1077	1230	1434	1721	2147	2850	3565
Parts in queue total		bC3	0	0	0	0	0	0	0	0	0	0	0,233	7,817	246,667	603,383	4508,3	0	0	0	0	0	0	0	0	0	0	0	0	0	13,633	621,6	621,6	720,117	851,2	17,07	1206,17	1550	_	_	5343,12
Machine Par depre- qu ciation to		е Э	29978	30001	30010	30074	30077	33959	54171	59754	59945	60079	60138	60217 2	60225 24	57170 60	57351 4	29994	30022	30017	30019	30046	30085	30089	30099	30117	30135	35628	60048				60396	2	60399	60398 10	60389 120	60360			57504 534
Average Ma building de volume cia		mm ²	200000	200000	500000	500000	S00000	566667	908333		1000000	1000000	1000000	00000	1000000	1000000	1000000	48668	48668	48668	48668	48668	48668	48668				57590	97336		97336		97336		97336	97336	97336	97336			97336
Average Ave number of bui parts in vol		pcs.	0,000 5(0,000 5(0,000 5(0,000 5(0,000 5(0,000 St	0000'0	0,000 10(0,000 10(0,000 10(0,000 100	0,015 100	0,642 100	20,169 100	229,560 100	7 000'0	0'000	0'000	0000'0	0,000	0,000	0000'0				0,000	0,000				0,380		0,593	0,822		0,806			15,362
		hrs	-,	I,	I,	Ļ	I,				1.	1.	1	4,591 (22,446 (266,148 20	411,567 229	-,	-,		,	,				l,	,	,			2,504 0		5,279 (6,020 (,974 (8,779 (10,053 (235,850 15
_ E	-	ч %	20,887	22,360	24,057	26,036	28,349	31,246	34,838	38,937	44,260	51,569	61,720	179 4	94,558 22	99,598 266	99,751 411	7,045	7,537	8,111	8,776	9,556	10,494	11,640	13,073	14,912	17,368	20,835	26,108				83,445 5		88,690 6	772 6		94,240 10		_	99,849 235
System Total cool system down utili-		%	2,704 20,	2,895 22,	3,115 24,	3,371 26	3,671 28,	4,046 31,	4,509 34,		5,730 44,	6,677 51,	7,994 61,	77 792,	9,502 94,	1,611 99,	1,063 99,	2,713 7,	2,903 7,	3,126 8,	3,383 8,	3,684 9,	4,047 10,	4,490 11,	5,044 13,			8,044 20,	10,075 26,		_		30,132 83,		30,017 88,	,113 90,	26,992 91,	24,607 94,			1,859 99,
System Sys utili- cc zation do		%	15,362 2	16,447 2	17,696 3	19,153 3	20,858 3	22,988 4	25,619 4	28,634 5	32,557 5	37,937 6	45,418 7	5,801 9	75,187 9	96,262 1	97,530 1	1,501 2	1,606 2	1,729 3	1,871 3	2,037 3	2,238 4	2,483 4			3,708 6	4,449 8	5,572 10		11,071 19		22,140 30		27,611 30	L,534 29	36,778 26	44,160 24			96,008 1
System Sys setup uf za	1	*	2,821 15	3,018 16	3,246 17	3,511 19	3,821 20	4,212 22	4,710 25	5,263 28	5,972 32	6,955 37	8,308 45	0,381 56,	9,869 79	1,725 96	1,158 97	2,831 1	3,027 1	3,257 1	3,523 1	3,834 2	4,209 2	4,667 2				8,342			20,665 11	31,173 22	31,173 22		31,062 27	0,124 31	27,934 36	25,473 44			1,981 96
Machine Sy cool down se tracking 2	0	×	2,533	2,712	2,918	3,156	3,438	3,881	4,133		5,749	6,666	7,996	9,996 1	9,508	1,616	1,067	2,539	2,717	2,925	3,163	3,446	3,783	4,194				7,458	9,722 10		_				30,007 3	29,111 3	26,997 2	24,615 2			1,883
Machine M utili- co zation 2 tra		*	14,394	15,410	16,577	17,933	19,532	22,048	23,482	27,882	32,667	37,873	45,433	56,793	75,139	96,249	97,520	1,404	1,503	1,618	1,750	1,906	2,092	2,319	2,605	2,972	3,462	4,124	5,377	7,431	11,085	22,172	22,172	24,558	27,592	31,624	36,820	44,155	55,154	73,482	95,959
Machine M setup tracking 2 zi		*	2,644	2,829	3,042	3,288	3,579	4,041	4,319	5,126	5,988	6,946	8,312	10,384	9,881	1,728	1,161	2,651	2,835	3,050	3,297	3,589	3,937	4,361	4,894	5,579	6,494	7,735	10,097	13,930	20,694	31,170	31,170	31,273	31,049	30,120	27,939	25,473	21,412	12,950	2,005
Machine N cool down tracking 1 tr		*	2,874	3,077	3,312	3,586	3,904	4,211	4,885	5,172	5,711	6,688	7,991	9,998	9,496	1,606	1,059	2,887	3,090	3,326	3,602	3,922	4,311	4,786	5,377	6,137	7,150	8,631	10,428	13,282	19,927	30,134	30,134	30,227	30,028	29,116	26,988	24,599	20,694	12,620	1,836
Machine N utili- co zation 1 tr		8	16,331	17,484	18,816	20,374	22,184	23,928	27,757	29,387	32,448	38,001	45,404	56,809	75,234	96,276	97,540	1,597	1,709	1,840	1,992	2,169	2,384	2,647	2,974	3,394	3,954	4,773	5,767	7,346	11,056	22,108	22,108	24,577	27,630	31,445	36,735	44,165	55,060	73,171	96,057
Machine N setup tracking 1 z		%	2,998	3,208	3,450	3,734	4,063	4,383	5,100	5,401	5,957	6,965	8,304	10,378	9,858	1,722	1,156	3,011	3,220	3,464	3,749	4,079	4,481	4,973	5,584	6,369	7,414	8,948	10,825	13,775	20,636	31,175	31,175	31,270	31,075	30,128	27,928	25,474	21,430	13,095	1,958
Cotal AM A cost tr	1	ų	86084	89412	93202	97795	102945	114232	148697	165072	177564	194165	216876	254449	490347	1486058	1545900	46260	46804	47381	48061	48898	49920	51096	52574	54484	57027	67729	104846	113820	131695	184795	184795	196550	211382	233128	266520	328968	621015	2321149	12208004
Total penalty		ų	791	791	791	791	791	791	1416	1333	1500	1500	1458	4375	184708	1135500	1190583	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		125	375	3333	11666	38916	278583	_	11695250
Total main- tenance	cost	J	29326	29348	29358	29421	29423	33220	52994	58455	58642	58773	58830	58907	58916	55927	56104	29342	29369	29364	29366	29392	29431	29435	29444	29462	29480	34854	58742	58908	59040	59083	59083 0	59083	59086	59085	59076	59048	59044		56254 3
Total operator cost		J	2894	3100	3337	3620	3942	4332	4800	5375	6132	7161	8582	10747	14228	17292	17575	2905	3112	3350	3625	3952	4347	4824	5420	6189	7215	8655	10798	14362	21568	43164	43164	47899	53835	61484	71691	86037	107365	142524	178225
Consumed energy cost		ų	6946	7442	8010	8688	9462	10398	11522	12902	14718	17188	20598	25794	34148	41502	42182	678	727	782	847	923	1015	1126	1266	1445	1685	2021	2522	3355	5038	10083	10083	11189	12576	14363	16747	20098	25081	33294	41634
Consumed (material e cost		J	36350	38946	41919	45467	49517	S4416	60298	67520	77024	89950	107796	134988	178707	217193	220752	3552	3805	4095	4432	4832	5314	5897	6627	7566	8820	10581	13201	17558	26368	52769	52769	58558	65815	75166	87645	105184	131259	174241	217888
consumed C		kWh	115766	124033	133500	144800	157700	173300	192033	215033	245300	286466	343300	429900	569133	691700	703033	11313	12118	13043	14116	15388	16926	18782	21105	24097	28091	33697	42042	55919	83975	168057	168057	186492	209603	239384	279127	334981	418022	554909	693911
Consumed Co material		kg	454	486	523	568	618	680	753	844	962	1124	1347	1687	2233	2714	2759	44	47	51	55	60	99	73	82	4	110	132	165	219	329	659	659	731	822	939	1095	1314	1640	2178	2723
Total Con ware- ma housing	cost	e	69807	70212	70937	71649	72582	73609	75042	76447	78739	81543	85234	90886	99549	118121	174575	69877	70416	71216	71870	72860	73844	75158	76804	78906	81787	85566	90125	100629	118493	174245	174245	185673	200354	9627	247909	287276	340491	431561	611849
sign w small hor		%	22	0		0	0	0	0		0	0	0	0	0	0 11	0 17	100	100	100 7	100 7	100 7	100 7	100 7				100 8	100 5				100 17		100 20	100 21	100 24	100 28			100 61
Reas- Re sign s mid sr		*	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	-	0
Reas- R sign s big r	- 21	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	-	0
Mean Ro arrival si	' a	hrs	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	150	140	130	120	110	100	90	80	2	60	50	40	ß	20	10	10	6	8	7	9	s	4	m	2
Elapse Mi time or arr volume	filled	Switch h	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	11	1	1		1	1	1	1	1	1	1	1	1	-	1
ς ti π		S											1	2	3	4	2												~	m		5	ting 1	iting 2	iting 3	iting 4	iting 5	iting 6	iting 7	iting 8	iting 9
	Name		Case 7 - Waiting 1	Case 7 - Waiting 2	Case 7 - Walting 3	Case 7 - Walting 4	Case 7 - Waiting 5	Case 7 - Waiting 6	Case 7 - Waiting 7	Case 7 - Waiting 8	Case 7 - Waiting 9	Case 7 - Waiting 10	Case 7 - Waiting 11	Case 7 - Walting 12	Case 7 - Walting 13	Case 7 - Waiting 14	Case 7 - Waiting 15	Case 8 - Waiting 1	Case 8 - Waiting 2	Case 8 - Waiting 3	Case 8 - Waiting 4	Case 8 - Waiting 5	Case 8 - Waiting 6	Case 8 - Walting 7	Case 8 - Walting 8	Case 8 - Waiting 9	Case 8 - Waiting 10	Case 8 - Waiting 11	Case 8 - Waiting 12	Case 8 - Waiting 13	Case 8 - Waiting 14	Case 8 - Waiting 15	Case 8 Detail - Walting	Case 8 Detail - Waiting 5	Case 8 Detail - Waiting 6	Case 8 Detail - Waiting	Case 8 Detail - Waiting 8	Case 8 Detail - Waiting			

waiting
- No
summary
imit

AM	parts	out		pcs.	216	108	96	96	95	216	215
Parts in	ananb	total		pc;	10,333	5,033	0,867	0,75	3,1	1,083	4,267
Machine	depre-	ciation		ε	60123	59731	59837	59736	59876	60206	60217
Average	building	volume		mma	431063	1368484	2011654	1538840	3048625	550032	1000000
Average	number of	parts in	duene	pcs.	0,027	0,005	0,001	0,000	0,002	0,000	0,002
Average	waiting	time in	duene	hrs	21,271	8,648	1,988	1,823	I.	1,806	3,401
Total	system	utili-	zation	%	44,822	49,503	60,220	48,391	85,848	51,804	77,212
System System	cool	down		%	9,975	5,054	4,476	4,497	4,433	10,042	100/01
System	utili-	zation		%	24,486	39,170	51,062	39,190	76,779	31,330	56,823
System	setup			*	10,361	5,279	4,682	4,705	4,636	10,432	10,388
Machine Machine System	cool down	zation 2 tracking 2		×	9,958	5,032	4,521	4,527	4,432	10,005	9,999
Machine	utili			%	24,289	39,697	51,522	39,532	76,766	31,476	56,812
Machine	setup	tracking 2		%	10,347	5,255	4,730	4,736	4,638	10,392	10,388
Machine Machine	cool down	tracking 1 t		*	9,992	5,075	4,430	4,467	4,433	10,080	10,003
_	utili-	zation 1		×	24,682	38,643	50,602	38,848	76,793	31,184	56,834
Machine Machine	setup	tracking 1		%	10,376	5,303	4,634	4,673	4,634	10,472	10,389
Total AM	cost			£	161281	195676	226837	193128	300524	178079	250516
Total	penalty			ę	2875	2375	375	375	1583	83	375
Total	main-	tenance	cost	ę	58816	58433	58536	58438	58575	58897	58908
Total	operator	cost		ξ	10780	5389	4781	4795	4738	10794	10751
Consumed	energy cost			ę	11102	17647	23042	17653	34668	14225	25804
Consumed	material	cost		÷	58101	92354	120589	92386	181434	74446	135040
Consumed Consumed Consumed	energy			kWh	185036	294123	384042	294224	577816	237092	430066
Consumed	material			kg	726	1154	1507	1154	2267	930	1688
Total	ware-	housing	cost	ξ	90275	76559	75075	75201	75056	90227	90697
ŝ	5	le.	ą	8	75	33	0	ß	0	20	0

AM parts out	pcs.	216	107	95	96	85	216	215	1230
Parts in queue total	Ś	13,233	7,75	1,9	1,517	0,25	8,267	27,817	1017,07
Machine P depre- ciation	3	60064	59797	59728	59731	59798	60149	60217	60398 1
Average building volume	"mm	423489	1378738	2033402	1550195	3048625	548455	1000000	97336
Average number of parts in queue	pcs.	0,031	600'0	0,001	0,001	0'000	0,004	0,015	0,822
Average waiting n time in queue	hrs	19,772	8,853	4,405	3,125	1	3,968	4,591	6,974
Total system utili- zation	*	44,447	49,530	60,705	48,575	77,318	51,697	77,179	90,772
System cool down	*	9,978	5,033	4,468	4,486	3,992	10,039	9,997	29,113
System utili- zation	*	24,107	39,241	51,564	79E,95	69,146	31,238	56,801	31,534
System setup	*	10,362	5,256	4,673	4,692	4,181	10,420	10,381	30,124
Machine cool down tracking 2	×	9,913	4,919	4,454	4,465	3,988	10,014	9,996	29,111
Machine utili- zation 2	%	23,772	38,767	52,023	39,723	69,083	31,228	56,793	31,624
Machine setup tracking 2	*	10,295	5,140	4,658	4,672	4,177	10,389	10,384	30,120
Machine cool down tracking 1	*	10,042	5,147	4,482	4,507	3,995	10,064	9,998	29,116
Machine utili- zation 1	×	24,441	39,715	51,104	39,071	69,209	31,247	56,809	31,445
Machine setup tracking 1	%	10,430	5,373	4,688	4,712	4,185	10,451	10,378	30,128
Total AM cost	ę	161905	198649	230666	195556	279998	178438	254449	233128
Total penalty	÷	4708	4958	3208	2250	3375	875	4375	3333
Total main- tenance cost	3	58758	58497	58429	58433	58498	58841	58907	59085
Total operator cost	ę	10783	5373	4765	4784	4261	10780	10747	61484
Consumed energy cost	ę	10920	17698	23227	17745	31181	14170	25794	14363
Consumed (material e cost	•	S7149	92622	121559	92866	163182	74156	134988	75166
consumed Consumed Construction	kWh	182003	294975	387131	295752	519688	236167	429900	239384
Consumed Commenterial	kg	714	1157	1519	1160	2039	926	1687	686
Total Col ware- m nousing cost	ę	90648	76489	74836	75039	73685	90860	90886	219627
Reas- sign small h parts	8	75	33	0	50	0	50	0	100
Reas- F sign mid : parts	*	20	33	50	0	0	50	100	0
Reas- sign big parts	*	S	33	So	50	100	0	0	0
Mean arrival	hrs	40	80	90	90	100	40	40	7
Elapse time or volume filled	Switch	1	1	1	1	1	1	1	1
	Vame	Case 1 - Waiting 12	Case 2 - Waiting 8	Case 3 - Waiting 7	Case 4 - Waiting 7	Case 5 - Waiting 6	Case 6 - Walting 12	Case 7 - Walting 12	Case 8 Detail - Waiting 4

I aute 7-21. Incourts of part size simulations - Upp	hait si		Intari	- ette	n pp
	Elapse	Mean	Reas-	Reas-	Reas-
	time or	arrival	sign	sign	sign
	volume		big	mid	small
	filled		parts	parts	parts
Name					
	Switch	hrs	%	%	*
Case 1 - No waiting 12	0	40	5	20	75
Case 2 - No waiting 8	0	80	33	33	33
Case 3 - No waiting 7	0	90	So	50	0
Case 4 - No waiting 7	0	90	So	0	22
Case 5 - No waiting 7	0	90	100	0	0
Case 6 - No waiting 12	0	40	0	50	20
Case 7 - No waiting 12	0	40	0	100	0
Case 8 Detail - No waiting 3	0	80	0	0	100

Table 9-31: Results of part size simulations - Upper

Table 9-32: Results of part size simulations - Upper limit summary - Waiting

CURRICULUM VITAE

NAME:	Stefan Jedeck
ADDRESS:	Rembrandt-Straße 10 41549 Dormagen Germany
DOB:	Dormagen, NRW – May 09, 1981
EDUCATION	
& TRAINING	Electrical Assistant – specialized in data technology (Technical diploma)
	Werner-von-Siemens Schule, Köln
	1998 – 2001
	DiplIng. (FH), Design engineering
	Cologne University of Applied Sciences
	2002 - 2006
	DiplWirtIng. (FH), Business engineering
	Cologne University of Applied Sciences
	2006 - 2007
	Ph.D., Industrial engineering
	University of Louisville
	2009 - 2015

PROFESSIONAL

BACKGROUND:

Project engineer BIS Instandhaltung Neuss GmbH Department - Maintenance & Projects 2007 – 2009 Project engineer Hydro Aluminium Deutschland GmbH Department – Technology delivery and Smelter systems since 2009