446 research outputs found

    Application of Visual Simulation in Communication Systems

    Get PDF
    A communications system is a collection of individual communications networks, transmission systems, relay stations, tributary stations, and data terminal equipment (DTE) usually capable of interconnection and interoperation to form an integrated whole. The components of a communications system serve a common purpose, are technically compatible, use common procedures, respond to controls, and operate in unison. A typical communication link includes, at a minimum, three key elements: a transmitter, a communication medium (or channel), and a receiver. The ability to simulate all three of these elements is required in order to successfully model any end-to-end communication system. In order to achieve this target we have used a simulation software “VisSim” ,or Visual Simulator ,that allows us to use a graphical approach to simulation and modeling. With graphical programming, the diagram is the source code, depicted as an arrangement of nodes connected by wires. Each piece of data flows through the wires, to be consumed by nodes that transform the data mathematically or perform some action such as I/O. The visual simulator allows us to model end-to-end communication systems at the signal or physical level. We use VisSim/ Comm to build both transmitter and receiver models, filters and equalizers, as well as channel models and coding techniques from a first principles perspective, by selecting and connecting predefined blocks. In this project work we simulate a variety of models including analog, digital and mixed mode designs, and quickly simulate their behavior using the VisSim/Comm software and graphical programming

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Integration of Digital Filters and Measurements

    Get PDF

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Sampling from a system-theoretic viewpoint

    Get PDF
    This paper studies a system-theoretic approach to the problem of reconstructing an analog signal from its samples. The idea, borrowed from earlier treatments in the control literature, is to address the problem as a hybrid model-matching problem in which performance is measured by system norms. \ud \ud The paper is split into three parts. In Part I we present the paradigm and revise the lifting technique, which is our main technical tool. In Part II optimal samplers and holds are designed for various analog signal reconstruction problems. In some cases one component is fixed while the remaining are designed, in other cases all three components are designed simultaneously. No causality requirements are imposed in Part II, which allows to use frequency domain arguments, in particular the lifted frequency response as introduced in Part I. In Part III the main emphasis is placed on a systematic incorporation of causality constraints into the optimal design of reconstructors. We consider reconstruction problems, in which the sampling (acquisition) device is given and the performance is measured by the L2L^2-norm of the reconstruction error. The problem is solved under the constraint that the optimal reconstructor is ll-causal for a given l0,l\geq 0, i.e., that its impulse response is zero in the time interval (,lh),(-\infty,-l h), where hh is the sampling period. We derive a closed-form state-space solution of the problem, which is based on the spectral factorization of a rational transfer function

    Cardinal Exponential Splines: Part II—Think Analog, Act Digital

    Get PDF
    By interpreting the Green-function reproduction property of exponential splines in signal processing terms, we uncover a fundamental relation that connects the impulse responses of allpole analog filters to their discrete counterparts. The link is that the latter are the B-spline coefficients of the former (which happen to be exponential splines). Motivated by this observation, we introduce an extended family of cardinal splines—the generalized E-splines—to generalize the concept for all convolution operators with rational transfer functions. We construct the corresponding compactly-supported B-spline basis functions, which are characterized by their poles and zeros, thereby establishing an interesting connection with analog filter design techniques. We investigate the properties of these new B-splines and present the corresponding signal processing calculus, which allows us to perform continuous-time operations, such as convolution, differential operators, and modulation, by simple application of the discrete version of these operators in the B-spline domain. In particular, we show how the formalism can be used to obtain exact, discrete implementations of analog filters. Finally, we apply our results to the design of hybrid signal processing systems that rely on digital filtering to compensate for the nonideal characteristics of real-world analog-to-digital (A-to-D) and D-to-A conversion systems
    corecore