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Cardinal Exponential Splines: Part II—Think Analog,
Act Digital

Michael Unser, Fellow, IEEE

Abstract—By interpreting the Green-function reproduction
property of exponential splines in signal processing terms, we un-
cover a fundamental relation that connects the impulse responses
of allpole analog filters to their discrete counterparts. The link is
that the latter are the B-spline coefficients of the former (which
happen to be exponential splines). Motivated by this observation,
we introduce an extended family of cardinal splines—the gen-
eralized E-splines—to generalize the concept for all convolution
operators with rational transfer functions. We construct the cor-
responding compactly supported B-spline basis functions, which
are characterized by their poles and zeros, thereby establishing
an interesting connection with analog filter design techniques. We
investigate the properties of these new B-splines and present the
corresponding signal processing calculus, which allows us to per-
form continuous-time operations, such as convolution, differential
operators, and modulation, by simple application of the discrete
version of these operators in the B-spline domain. In particular,
we show how the formalism can be used to obtain exact, discrete
implementations of analog filters. Finally, we apply our results
to the design of hybrid signal processing systems that rely on
digital filtering to compensate for the nonideal characteristics
of real-world analog-to-digital (A-to-D) and D-to-A conversion
systems.

Index Terms—Analog signal processing, A-to-D and D-to-A con-
version, differential systems, filter design, hybrid signal processing,
sampling, splines.

I. INTRODUCTION

THE GAP between the continuous- and discrete-time—or
analog versus digital—approaches to signal processing

and electronic instrumentation, in general, has been widening
ever since our technological society has entered the all-digital
era. There is a strong tendency nowadays to emphasize and
promote discrete signal processing techniques, as opposed
to analog solutions. This is certainly justified by the current
state of technology, as well as because there is a formal equiv-
alence with continuous-time processing that is backed by
Shannon’s sampling theory. However, one should not forget
that this equivalence, which holds for bandlimited functions
only, excludes many practically relevant signals, in particular,
those that are causal or of finite duration. The bandlimited
hypothesis is an idealization, which is extremely useful for
explaining basic concepts, but also has practical limitations;
indeed, ideal lowpass filters are theoretical constructs that do
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not exist in the physical world, and real-world signals, at best,
are only essentially bandlimited [1]. Interestingly enough, and
despite the fact that the technological move to digital is almost
complete, there has been a recent revival of continuous-time
signal processing thinking that has been triggered, for the
most part, by recent advances in wavelet theory [2]–[4]. The
powerful notions of multiresolution analysis [5], self-similarity
(e.g., fractals) [6], singularity analysis [7], and even the more
mundane task of signal interpolation [8], [9], are undissociable
from a continuous-time interpretation. It is therefore crucial
to have efficient mathematical tools at our disposal that allow
us to easily switch from one domain to the other—and this is
precisely the niche that splines, and to some extent wavelets,
are trying to fill.

Our purpose in this paper is to present a unifying contin-
uous/discrete approach to signal processing that departs from
the traditional bandlimited formulation. Our motivation and
general philosophy is summarized by the motto “think analog,
act digital.” Indeed, we believe that there are many signal
processing problems that are better suited for a continuous-time
domain formulation, even though one is ultimately looking for
solutions that should be transposable into efficient digital signal
processing algorithms. Typical examples are the implementa-
tion of fractional delays [10], [11], the evaluation of differential
operators [12]–[15], signal interpolation, and approximation for
sampling-rate conversion [16], [17], as well as the whole class
of wavelet-based signal analysis techniques. Another important
category that should benefit from a unifying formulation is
hybrid signal processing, which combines analog and discrete
components.

The starting point for the present formulation is the signal
processing theory of exponential splines that was developed in
a companion paper [18]. In Section II, we apply these results
to uncover a remarkable link between the elementary analog
signals of classical system theory (causal exponentials/polyno-
mials) and their discrete-time counterparts. Unlike the classical
bandlimited approach, the present formulation uses compactly
supported basis functions and allows for an exact representa-
tion of the continuous-time response of an allpole system. In
Section III, we extend the class of cardinal exponential splines
to encompass the reponse of operators with rational transfer
functions. Specifically, we show that the poles and zeros of
an analog filter uniquely specify a subspace of generalized
E-splines which admits a B-spline-like Riesz basis. We also
present an extended calculus for the exact computation of
continuous-time signal processing operators. In Section IV,
we apply these techniques to the discrete implementation of
analog filters. The approach that we propose constitutes an
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TABLE I
BASIC CONTINUOUS-TIME CONVOLUTION OPERATORS

TABLE II
ELEMENTARY CAUSAL DISCRETE-TIME SIGNALS

interesting alternative to more traditional analog-to-discrete
conversion techniques such as the impulse invariance method
(also included in our formulation) and the bilinear transform.
Finally, in Section V, we apply our formalism to the design
of hybrid signal processing systems that use digital tech-
niques to compensate for the distortions inflicted by nonideal
analog-to-digital (A-to-D) and D-to-A conversion.

II. BRIDGING THE GAP BETWEEN THE

DISCRETE AND THE CONTINUOUS

In this section, we reinterpret some of the basic results in
[18] and show that the exponential B-splines have an important
conceptual role in that they connect some fundamental aspects
of discrete and continuous-time signal processing.

A. B-Splines as Discrete-to-Continuous Translators

The basic continuous-time convolution operators that are
encountered in most courses on signals and systems are listed in
Table I [19], [20]. These are characterized either by their impulse
response or their frequency response ,
which is defined as when .
The discrete-time counterpart of these operators are given in
Table II, togetherwith their -transform.TheFourier transformof
these sequences are obtained by making the substitution .
Note that the two upper rows in Tables I and II describe distor-
tion-free systems (identity or pure delay), while the four bottom
rows correspond to allpole systems. The link between the two

TABLE III
D-TO-A TRANSLATING B-SPLINES: THE INTEGER SHIFTS OF THESE B-SPLINES

ARE THE BASIS FUNCTIONS THAT ALLOW THE RECONSTRUCTION OF THE

IMPULSE RESPONSES IN TABLE I FROM THE DISCRETE SIGNALS IN TABLE II

tables is that, for each row, the poles are in exact correspondence
through the mapping , or , that connects the
Laplace and the -transform (cf. [20, p. 695]). We also note that
there is a family resemblance between the analog and discrete
signals in corresponding rows, even though the connection is not
necessarily as simple as the sampling relation that holds for the
first-order systems (unit step and simple exponential).

In fact, the mathematical relation between these two tables is
provided by the Green-function reproduction formula

(1)

that we have encountered in Part I of this paper [18]. The cor-
responding B-spline functions are represented in Table III. In
the present situation, the Green function

is the impulse response of the system , which
is the causal inverse of the exponential-spline defining operator

. This simply means that the discrete signals in Table II are
the B-spline coefficients of the impulse responses in Table I. The
case of the Dirac distribution is also covered by our formulation,
provided that we define (or, ) as a B-spline of order
zero.

Another perhaps even more illuminating way to understand
the connection is to observe that the Fourier transforms of the
B-splines in Table III are obtained by dividing the analog ones
in Table I by the discrete ones in Table II. The remarkable con-
sequence of forming this ratio is that the poles of the analog
system are cancelled by the -periodic zeros of the B-spline
numerator, which are precisely the poles of the discrete system
in Table II. Another beneficial side effect of this division is the
zeroing of the Dirac distributions appearing in the third and
fourth row of Table I.

To exemplify this link, we give the explicit time-domain for-
mulae that relate—and also specify—the signals in the bottom
row of Tables I–III:

(2)
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where the relevant B-spline of order and multiplicity is given
by

(3)

This latter formula is obtained by inverse Fourier transformation
of the expression in the bottom row in Table III. The crucial
step for this computation is to expand using the
binomial formula and to interpret each factor as a shift
operator. Note that (2) and (3) extend two well-known relations
for polynomial splines that correspond to the case .

B. Differential Interpretation of the Localization Operator

The spline-defining differential operator
is entirely characterized by the

zeros , of its characteristic polynomial
. These zeros also specify its null

space . The time-domain equivalent of the frequency-do-
main division process that has been described is the B-spline
generating formula , where is the
localization operator and the Green function of . This
is consistent with the property that the Fourier transform of

, which is given by

(4)

is the inverse of that of in (1). The Laplace transform
is obtained by making the formal substitution

in (4); this function vanishes for , ,
, meaning that it has zeros in perfect correspon-

dence with those of . Consequently, has the same
ability as to annihilate the exponential polynomials in .
We may therefore think of , which is equivalent to a dig-
ital FIR filtering with , as a discrete approximation of .
This interpretation is further justified by the remarkable distri-
butional identity

which is a direct consequence of the Fourier definition of the
B-spline. Here, stands for Schwartz’s class of tempered
distributions. This shows that the discrete operator pro-
vides a smoothed version (convolution with the corresponding
B-spline) of the continuous one. It also guarantees that the
distortion effect is maximally localized because of the min-
imum-support property of the B-spline. Likewise, we have the
scaled version of this equation

which characterizes the convergence of the discrete operator to
the continuous one as the sampling step goes to zero. In the limit,
we have a perfect identity due to the property that
converges to as .

III. GENERALIZED EXPONENTIAL SPLINES

The discrete-to-continuous connection that has been de-
scribed in Section II-A is appealing; unfortunately, in its
current version, it is only applicable to allpole systems. This
motivates us to extend the exponential spline family and the
corresponding signal processing framework by considering a
more general class of differential operators.

A. Extending the Family to Rational Operators

The exponential splines that we have investigated in [18] are
associated with ordinary differential operators whose transfer
functions are polynomials. To extend the family, we propose
to consider the richer class of operators with rational transfer
functions. To this end, we introduce the augmented parameter
vector with , which
specifies the new spline-defining operator , whose transfer
function is given by

(5)

with for all and . The null space of this operator,
which is denoted by , is determined by the zeros of ,
which do not depend on the denominator. Consequently, ,
which is of dimension , remains the same as before.

We can then define a generalized exponential spline in exactly
the same terms as before (cf. [18, Def. 1]): is a generalized
E-spline with parameter if and only if is a weighted
sum of Dirac impulses that are positioned at the knots (spline
singularities). Note that we are not imposing any restriction on

: The ’s can be freely chosen and need not be located in
the left complex plane.

To construct the corresponding splines, we must specify the
Green function of , which is equivalent to determining the im-
pulse response of the causal inverse operator , whose Laplace
transform is

(6)

This leads to the following generic representation of a gener-
alized E-spline with parameter and knots

(7)

with , where stands for the inverse
Laplace transform; is a global exponential poly-
nomial component that is selected such as to satisfy some ad-
ditional boundary conditions ( linear constraints). The Green
function takes essentially the same form as before:

(8)

where the ’s are the coefficients of the partial fraction de-
composition of in (6). The important difference, which
is is due to the presence of the numerator in (6), is that

(the class of functions with continuous derivatives up
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to order ), meaning that it has a lesser degree of differ-
entiability than before. While these splines still coincide with a
function in within each interval , their nature has
become somewhat different because the pieces are no longer
connected together as smoothly as before. Technically, they are
no longer T-splines nor even L-splines, according to the general
definition of these splines given in [21].

B. Generalized Exponential B-Splines

From now on, we focus again on the cardinal splines that
have their knots at the integers. The first important step is to
construct some local (i.e., compactly supported and shortest-
possible) basis functions for these spline spaces, which can be
done in essentially the same fashion as in the standard case. This
leads us to the definition of the generalized B-spline of order
with parameter :

(9)

where with specified by (5),
and where the localization operator is the same before, i.e.,

, where the Fourier transform
of is given by (4).

It is easy to see that these generalized th-order B-splines
are supported in . The argument is that they can be gener-
ated from the standard ones by applying the differential operator

, whose impulse response
is a point distribution. This also explains why their regularity is
reduced by , i.e, .

Note that the generalized exponential B-spline is well-
defined (bounded and compactly supported) as long as ,
irrespective of the stability of . Its Fourier transform
is given by

(10)

We will therefore refer to the ’s as the poles of the B-spline
and to the ’s as the (nonperiodic) zeros.

The class of these new B-splines is obviously much richer
that the standard E-splines, not to mention the polynomial
ones. Interestingly, the family contains some known basis
functions that have not been classified as splines so far.
A notable example is the family of maximum order, min-
imum support (MOMS) functions that has been characterized
in [22]. They correspond to the parametrization ,

and , . Three prominent
fourth-order members of the MOMS family are shown in
Fig. 1: the cubic B-spline with , the O-MOM
with , and the cubic Lagrange
interpolator with .

C. B-Spline Properties

The generalized B-splines have essentially the same proper-
ties as the standard ones (cf. [18, Sec. II.B]). The only critical
difference is that one has to adapt the B-spline composition rule,
keeping the poles and zeros separate. This means that the con-

Fig. 1. Three generalized B-splines of order N = 4. (a) Cubic B-spline. (b)
Cubic OMOMS. (c) Cubic Lagrange interpolator. To facilitate the comparison,
the B-splines have been normalized to have a unit integral.

catenation of the augmented parameter vectors and of size
and , respectively, now yields the vector

which is of size . With this convention,
we can write the generalized B-spline convolution formula

(11)

which is easily established in the Fourier domain.
As in the standard case, changing the sign of the roots (poles

and zeros) has a mirroring effect

(12)

Thus, in order to construct symmetric basis functions, we have
to select roots that are either zero or grouped in pairs of poles (or
zeros) of opposite sign. Symmetry is a property that is desirable
for image processing applications.

The formula for the cross-correlation of two generalized
B-splines also needs to be adapted slightly:

(13)

with the notation .

D. B-Splines Representation

The B-spline representation theorem in [18] can also be ex-
tended for the generalized E-splines.

Theorem 1: The set of functions provides a
Riesz basis of —the space of cardinal generalized E-splines
with finite energy—if and only if , for
all pairs of distinct, purely imaginary poles.

This is established by adapting the proof of [18], which car-
ries over without difficulty if we make use of the following prop-
erties.

1) The null space is the same as in the standard case, as
we have already mentioned.

2) The Green-function reproduction formula (1) is still
valid, provided that one uses the appropriate general-



UNSER: CARDINAL EXPONENTIAL SPLINES: PART II—THINK ANALOG, ACT DIGITAL 1443

ized B-spline. This is because the localization operator
is the same as in the standard case.

3) The exponential polynomial reproduction property is
still true as well. Indeed, we have already mentioned
that the generalized B-splines include a standard
B-spline convolution factor, which makes them inherit
the polynomial reproduction property (by [18, Prop.
1]). The necessary condition is for ,
which is obviously satisfied as long as ,

.
4) The Riesz-basis condition is satisfied. The upper bound

is well-defined because the Gram sequence is in .
The lower bound exists as well because the additional
factors ( ) in (10) cannot induce any -peri-
odic vanishing of .

The Riesz bounds can be computed as described in [18, Eqs.
(30) and (31)], provided that one uses the following extended
formula for the calculation of the Gram sequence:

(14)

To facilitate this type of computations, we have written Math-
ematica software that symbolically evaluates the generalized
B-splines and other related quantities for any given parameter
vector . This package is briefly described in the Appendix and
is made available to the research community over the World
Wide Web.

E. Continuous-Discrete Signal Processing

Many of the formulae in Part I, Section III, remain valid for
our generalized splines, the reason being that the effect of the
new zeros is entirely absorbed in the B-spline basis functions.
However, there are also a few additions to the spline calculus
because the class of functions has become richer.

1) Interpolation: The interpolation procedure is the same as
in the standard case. However, we now have considerably more
freedom for designing new basis functions, which could be ad-
vantageous for applications such as high-quality image inter-
polation [8]. In particular, we note that the best interpolation
methods known to date are either based on polynomial splines
or on OMOMS [22], which are both part of our enlarged family.
This opens up the quest for even better ones.

2) Convolution: The convolution procedure carries over di-
rectly because of the generalized B-spline convolution property
(11).

3) Modulation: The modulation property is unchanged,
except that its generalized version also requires the frequency
shifting of the zeros. Interestingly, our exponential spline
family is closed under an even more general operation, which
is the modulation with a complex exponential for arbitrary

.
Proposition 1: Let be a

spline signal with exponential parameter
. Then, the exponentially modulated signal

, with , is a spline with exponential parameter

that is given by

(15)

Proof: We compute the Laplace transform of the exponen-
tially modulated B-spline

which also yields the Fourier transform if we replace by .
This clearly shows that , where

. Next, we note that
, which we then substitute in the B-spline representation of the

modulated signal.
Note that this property can be used to derive the relation (3)

that connects the exponential B-spline of multiplicity to its
polynomial B-spline counterpart.

4) Differential Operators: The differential formula given by
[18, Eq. (37)] is still valid when consists of poles only. How-
ever, the family of B-splines is now rich enough so that we can
generalize the procedure for arbitrary differential operators.

Proposition 2: Let be the differential oper-
ator of order , whose Laplace transform is

. Then, we have the explicit B-spline differen-
tial relations

(16)

(17)

where the conditions for the validity of (16) are ,
, and ; there is no restriction for (17).

Proof: These relations are easily derived in the Fourier do-
main. The second one, for instance, is obtained through the fol-
lowing manipulation [cancellation of the factors ( )]

5) Dilation by : Here, there is a slight change that requires
an extended definition of the generalized spline scaling filter

(18)

which has a mild dependence on the zeros through their number
, meaning that the same filter is shared by different types of

splines. As in the standard case, the filter is FIR of size ,
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which is not immediately apparent from its rational representa-
tion.

Proposition 3: The generalized exponential B-spline with
parameter satisfies the -dilation relation

(19)

where is the impulse response of the filter
(18) with rescaled exponential parameter

.
Proof: The result is established by direct manipulation in

the Fourier domain:

(20)

where the two factors on the right-hand side can be readily iden-
tified. Note that the division/multiplication by
is legitimate even when there are roots on the unit circle since
the zeros of the denominator are cancelled by those of the nu-
merator—this is precisely the reason why the filter in
(18) and the exponential B-spline are both FIR!

IV. DISCRETE IMPLEMENTATION OF ANALOG FILTERS

Shannon’s sampling theory guarantees that there is a perfect
equivalence between continuous- and discrete-time signal pro-
cessing techniques for bandlimited functions. Unfortunately, the
bandlimited hypothesis excludes all physically realistic signals.
In particular, it is incompatible with causality,1 meaning that it is
impossible to exactly represent the impulse response of analog
filters, including all the elementary signals in Table I, within the
classical bandlimited framework. We will now show how the
present formalism can circumvent this limitation and yield exact
computational schemes for implementing continuously defined
signal processing operators in the discrete B-spline domain.

A. Analog Filtering in the B-Spline Domain

We consider the task of evaluating , where
is some continuously defined input signal and where is

a stable analog filter whose rational transfer function is given by
(6). Because of the stability hypothesis, the poles of are
in the open left complex plane (i.e., Re ), which en-
sures that the impulse response of the system
is in .

1In fact, it is much worse than that: One cannot construct a nonzero bandlim-
ited signal f(t) such that f(t) = 0, 8t 2 [t ; t ] for any t < t .

We assume that the input signal is an exponential spline with
parameter specified by its B-spline expansion:

This representation is either given to us or is fitted to a series
of input samples using the interpolation procedure
discussed in [18, Sec. III.B]. Note that this model also covers
the case of idealized sampling since is formally equivalent
to a B-spline of order 0.

From the theory in Section III, we know that is a gen-
eralized E-spline with parameter and that its B-spline repre-
sentation is given by (1) (Green-function reproduction formula).
Since the poles are in the left complex plane, the allpole digital
filter is stable as
well, implying that the B-spline coefficients in (1) are de-
caying exponentially fast.

The output signal can now be easily cal-
culated thanks to the B-spline convolution property

(21)

(22)

This shows that is an E-spline with parameter
and that its B-spline coefficients are obtained by ap-

plying the digital filter to the input coefficients .

B. Practical Considerations

In most practical applications, the samples of the output
signal are the desired end result. These can be calculated
efficiently by post-filtering with (the sampled version
of the basis functions). This operator can be combined with the
previous one into a single filter whose transfer function is

Note that the corresponding digital filter is causal, rational
of order , and that it can be implemented recursively. It
has poles that are in exact correspondence with those of its
continuous-time counterpart. Thus, the proposed discretization
procedure provides an efficient digital implementation that per-
fectly mimics the corresponding continuously defined system.

When the input signal is specified by its samples rather
than by its B-spline coefficients , we must also include the
initial interpolation step. The block diagram describing the com-
plete process is shown in Fig. 2. For the practitioner who is pri-
marily interested in computing from , these steps can all
be combined into one global digital filter whose transfer func-
tion is
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Fig. 2. Implementation of an analog filter in the B-spline domain.

It is interesting to note that for (the case of an ide-
ally sampled input), the proposed technique is computationally
equivalent to the impulse-invariance method, which produces a
recursive digital filter whose impulse response is . How-
ever, it is important to emphasize that the interpretation of the
process is quite different: The impulse-invariance method con-
siders that the output signal is discrete (or eventually, bandlim-
ited), whereas in our case, it is described by a continuous-time
model (E-spline).

At any rate, the case is quite extreme because the
bandwidth of the input signal is infinite, which can lead to
aliasing artifacts when the output is converted back to
discrete form. From our point of view, it makes better sense
to represent the input signal by a polynomial spline of order

; typically, (piecewise constant) or
(piecewise linear). By increasing the order , we can con-
struct an equivalent digital filter that is arbitrarily close to the
response of the continuous one over the entire Nyquist band.
This is because 1) the proposed discretization procedure is
exact for the underlying signal representation, and 2) the input
signal will tend to be increasingly more bandlimited as
increases [23].

C. Design Example

One of the preferred strategies for designing recursive filters
is to start with an analog filter prototype and to apply some A to
D mapping technique, such as the impulse-invariance method
or the bilinear transform, to transpose it into the discrete do-
main [20]. The reason for this is that there are powerful analog
design techniques that yield closed-form solutions (e.g., Butter-
worth and Chebyshev filters), which have no direct counterpart
in the discrete domain. Interestingly, low-order designs tend to
be the most challenging for the standard conversion techniques
because they are more prone to aliasing artifacts. The technique
that we are proposing here does not have this problem—the
implementation is exact provided that one thinks in terms of
splines—and may therefore be an interesting alternative.

To illustrate the procedure, we consider the discrete im-
plementation of the first-order Butterworth filter

with . The corre-
sponding localization filter is . The
recursive filters obtained for three input spline models
of increasing order are

• ideal sampling model with :
;

• piecewise-constant input with and :
;

• piecewise-linear input with and :
.

Fig. 3. Comparison of the frequency responses (amplitude and phase) for three
filter designs using input models of increasing order. The response of the analog
prototype (first-order Butterworth filter) is represented with a thick line.

Fig. 4. Approximation of the frequency response of a first-order Butterworth
filter for input spline models of increasing orders N = 2, 4, and 8.

Their amplitude and phase responses are shown in Fig. 3 and
compared to the characteristics of the analog filter . As
expected, the least favorable response is obtained for

, which also corresponds to the standard impulse invariance
method. This filter does not even reproduce the unit gain at the
origin, which is not very satisfactory for a lowpass design. The
filters based on higher order splines do not have this defect be-
cause the underlying input models (polynomial splines) can re-
produce the constant (polynomial of degree 0). The amplitude
characteristic of the second filter is quite good, but its phase
response is significantly different from the reference one. The
third filter has by far the best phase response, as well as the am-
plitude response that is the closest to the analog one at low fre-
quencies. However, it tends to attenuate higher frequencies more
strongly than the prototype (which is not necessarily bad for a
lowpass filter). Fig. 4 illustrates the property that we can match
the frequency response of the analog filter as closely as we wish
by increasing the order of the input spline model. However,
there is a catch: The filters associated with these higher order
models (here, cubic with and septimic splines with

) are no longer causal; yet, they can still be implement
recursively using the algorithm described in [24].
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Unlike the impulse-invariance method, the proposed proce-
dure is also applicable for the design of bandpass or even high-
pass filters. In such cases, it is judicious to replace the polyno-
mial spline input model by a modulated one with poles matching
the resonance frequencies of the analog filter. This will have two
beneficial effects: 1) It will ensure a good match of the discrete
and analog frequency responses around those frequencies, and
2) it will help reducing aliasing artifacts because the bandwidth
of the input signal is adapted to the filter characteristics.

V. HYBRID SIGNAL PROCESSING

The proposed framework is ideally suited for designing hy-
brid systems that combine analog and discrete signal processing
components. In this section, we describe three such systems that
rely on digital filtering techniques to correct for distortions in-
curred by nonideal A-to-D and D-to-A conversion. Their de-
sign is based on the generalized sampling theory for nonideal
acquisition devices proposed in [25], which is briefly reviewed
in Section V-A. All three systems reconstruct an analog signal

that is undistinguishable from the original input, at least,
as far as the measurement system (nonideal sampling device) is
concerned.

A. Review of Generalized Sampling

The generalized sampling theory presented in [25] provides
a method for reconstructing an unknown input signal

from a series of measurements
in a given “shift-invariant” function space span

. Among all possible reconstructions of the form
, there is only one that is consistent with

in the sense that it has exactly the same measurements:
, . Theorem 1

in [25] states that the coefficients of this optimal solution are
given by , where is the digital filter whose
transfer function is

(23)

This solution corresponds to the oblique projection of onto
perpendicular to span (see also [26]).

The sampling theory guarantees that the filter is stable and well-
defined, provided that the cosine of the angle between the two
spaces and is nonzero. It also provides an optimal error
bound that compares this solution to the optimal least-squares
approximation that is typically not realizable.

B. Consistent Sampling System

We consider the application of this theory to the case of a re-
alistic A-to-D conversion system that uses an analog lowpass
filter prior to sampling to reduce aliasing artifacts. We seek to
reconstruct an output signal that is a E-spline with pa-
rameter that corresponds to the choice in
our generalized sampling formulation. We also assume that the
analog prefilter is given to us and that it has a rational transfer
function of the form (6) with poles and
zeros . This model is rich enough to specify
any physical system described by ordinary differential equations

Fig. 5. Consistent sampling system: the input signal x(t) is prefiltered in the
continuous-time domain prior to sampling (A-to-D conversion). The measured
samples are then corrected by digital filtering so that the underlying signal model
y(t) = c [k]� (t � k) is a consistent spline approximation of the
input.

(e.g., electric circuit). The sampling is performed by a standard
sample-and-hold, A-to-D converter, which yields the discrete
samples (measurements). What we are proposing here is
to add a digital post-filtering step to compensate for the fact that
the analog prefilter is nonideal and that it introduces am-
plitude and phase distortions. The corresponding block diagram
is represented in Fig. 5. As in Section IV, we use the fact that

(the impulse response of ) is an E-spline
with parameter that satisfies the Green-function reproduction
formula (1). To determine the optimal correction filter ,
we evaluate the convolution product

(24)

(25)

which is a spline of increased order . By plugging this
result into (23) and recalling that , we ob-
tain the transfer function of the optimal correction filter for the
system in Fig. 5:

(26)

where . Based on the interpre-
tation given in Section II-B, we see that this latter FIR filter is
a discrete approximation of the differential operator that com-
pensates the allpole component (denominator) of . The
B-spline part in the numerator of (26) refines this correction to
have a consistent solution while also taking into account the
differential part (numerator) of . In fact, it corresponds
to the interpolation filter for the augmented-order spline space

. In most cases, the corresponding infinte impulse re-
sponse (IIR) correction filter will be stable—but not necessarily
causal—meaning that it can be implemented recursively using
the procedure described in [18, Sec. IV.A]. For special situations
where the interpolation problem is ill-posed, it is, in principle,
possible to introduce a noninteger shift in the response to stabi-
lize the filter, as discussed in [18].

C. Digitally Compensated D-to-A Conversion

We now consider the D-to-A conversion problem that is the
converse of the preceding one. We are given a discrete input
signal , and we want to design a D-to-A conversion system
that generates a continuously defined output signal that in-
terpolates these samples exactly, i.e., , .
Our system utilizes standard electronic components: 1) an
off-the-shelf D-to-A converter that produces a piecewise-con-
stant output (first-order polynomial spline interpolator) and
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Fig. 6. Digitally compensated D-to-A convertor: The signal samples are
digitally prefiltered prior to D-to-A conversion to ensure that the output signal
y(t) is a correct interpolation of the input.

2) an analog postfilter that smoothes out the response of the
convertor. There are two well-documented problems associated
with such a circuit: First, the D-to-A converter, which uses

as basis function, will distort the in-band portion of the
Fourier spectrum of the input signal by multiplying it with a
sinc function—the so-called “droop” effect. Second, the analog
output filter, which is intended to suppress the out-of-band fre-
quency components, will necessarily introduce distortions; in
particular, some phase distortion because its impulse response
is causal. Here, we are proposing to include a digital prefilter
in the chain to compensate for these effects. The corresponding
system is shown in Fig. 6.

As in the previous case, we assume that the analog filter has
a rational transfer function of the form (6) with poles

and zeros . Its impulse re-
sponse, which is denoted by , is an E-spline with pa-
rameter , which can be represented by its B-spline expan-
sion (1). We now reformulate the problem so that we can apply
the sampling theory in Section V-A to derive the digital cor-
rection filter. To this end, we note that the required interpola-
tion condition can be rephrased as a consistency requirement
with . The digital filtering of the input signal
yields the coefficients , which are fed into
the D-to-A convertor. After analog filtering, the resulting output
signal is given by with

. Next, we evaluate the cross-correlation func-
tion using our
B-spline calculus. By plugging this result into (23) and recalling
that , we obtain the transfer function of the
optimal correction filter for the system in Fig. 6:

(27)

As example of design, we consider the case of a second-
order, allpole smoothing filter with . The cor-
responding digital filter that is obtained from (27) is

It is composed of a stable, causal filter (with a pole at
) that can be implemented recursively in real time. The

presence of the factor in the transfer function is not too sur-
prising since the system needs to correct for the phase distorsion
of the analog filter. Practically, this means that the output will
be delayed by one sample with respect to the input. Fig. 7 illus-
trates the type of output signal that is provided by this system
and compares the solution to a simple sample-and-hold recon-
struction. Despite the fact that the analog filtering is relatively

Fig. 7. Comparison between the outputs of two D-to-A convertors. (a)
Piecewise-constant reconstruction. (b) Second-order digitally compensated
system with ~� = (�1;�2).

Fig. 8. High-fidelity reproduction. This system produces a consistent
reconstruction of an analog input signal from a series of equally spaced
measurements (samples). It includes a digital correction filter that compensates
the distortions introduced by the two analog filters that are used in conjunction
with the A-to-D and D-to-A converters.

mild, the output signal is smooth (in fact, is twice-differ-
entiable) and does not present visible reconstruction artifacts.
The generated output signal is such that it interpolates the input
samples perfectly.

We believe that the present solution is an interesting alterna-
tive to the more complex quadratic spline interpolation circuit
that has been proposed by Kamada et al. [27], [28]. The advan-
tage of the present design is that it requires no active components
such as integrators, which tend to drift.

D. High-Fidelity Reproduction System

Finally, we consider a beginning-to-end system where the
input and output signals are analog, but the intermediate rep-
resentation (storage or transmission) is digital. The standard ap-
proach for this type of problem is modular. For instance, one
may simply combine the solutions for A-to-D and D-to-A con-
version that have just been proposed. We believe that we can do
better by looking at the problem in its entirety and applying the
same methodology as before to specify a solution that is glob-
ally optimal.

The corresponding hybrid system is summarized in Fig. 8;
it qualifies as a high-fidelity reproduction system because its
output is undistinguishable from its input on the basis of the
measurements that are performed. For instance, if this was a hy-
pothetical sound recording/reproduction system with an input
microphone and an output speaker, the system specification
would ensure that one would record exactly the same sound
again if one would replace the initial source by the acoustic
output of the system. Because the solution of the generalized
sampling problem is unique, there is only one digital filter
that can ensure this property for arbitrary input signals, with
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no restriction whatsoever (in particular, the input need not be
bandlimited).

The relevant analysis and synthesis functions are now
and , which is a mix

between the formulations in Sections V-B and C. To determine
the optimal solution, we compute the cross-correlation function

, which is done by using the same technique
as before. This ultimately yields the globally optimal correction
filter

which is generally IIR and can be implemented recursively.

VI. CONCLUSION

In this paper, we introduced an extended family of cardinal
E-splines, where each type is associated with a continuous-time
differential system. Practically, this means that a spline family
is specified by a list of poles and zeros in essentially the same
way as one describes an analog filter. Schoenberg’s polynomial
splines, for instance, correspond to a system whose poles are all
placed at the origin.

Cardinal E-splines have several important properties that
make them particularly attractive for signal processing.

• B-spline representation: They can be expressed very
efficiently in terms of compactly supported basis func-
tions (B-spline expansion).

• Continuous-time signal processing: The family is
closed with respect to the primary continuous-time
signal processing operations: convolution, differen-
tial operators (including analog filters with rational
transfer function), and modulation. These can be
implemented directly by applying the discrete coun-
terparts of these operations in the B-spline domain.

• Ease of manipulation: E-splines are as simple to ma-
nipulate as polynomial splines. In particular, spline
fitting and approximation procedures can be imple-
mented efficiently via recursive digital filtering.

• Generality: Our extended E-splines family contains all
known brands of cardinal splines (polynomial, trigono-
metric, hyperbolic, and exponential splines), as well as
other families of functions such as the OMOMS that
had not been catalogged as splines thus far. The ban-
dlimited model is also included as a limiting case since
it can be assimilated to a spline of infinite order [23].

The proposed formalism has an interesting conceptual role in
that it really brings together the continuous and discrete aspects
of signal processing. In particular, it explains why there is such
a strong resemblance between the basic continuous-time and
discrete-time results of linear systems’ theory. There are also
practical benefits because the proposed spline calculus simpli-
fies the mathematical analysis of hydrid signal processing sys-
tems while, at the same time, suggesting some new solutions.
We believe that these methods may also be useful for the dig-
ital simulation of analog circuits and that they are well-suited

for control applications that are increasingly relying on digital
controllers.

We have presented some examples of hybrid signal pro-
cessing to illustrate the ease of use of our spline-based
formalism. The designs were kept simple on purpose to demon-
strate the type of signal processing tasks that could benefit
from our techniques. To make these systems really practical,
one would need to optimize the analog filter parameters and
consider higher order models. These applications also raise a
number of theoretical issues that call for further investigations.
What is the best analog reconstruction filter for a hybrid system?
How can one take into account, and eventually reduce, the ef-
fect of measurement noise? Are there high-order configurations
of poles and zeros that lead to compensation or interpolation
filters that are causal, which would be advantageous for online
processing? The answer to the last question, which is likely to
be positive, is practically quite relevant and could represent a
new interesting challenge for filter designers.

APPENDIX

SOFTWARE FOR THE COMPUTATION OF B-SPLINES

To obtain the analytical expression of the generalized expo-
nential B-splines and other related quantities, we recommend
using a mathematical software package for symbolic manipu-
lations. We have made an implementation available for Math-
ematica at http://bigwww.epfl.ch/demo/Esplines/. The spline
type in each routine is specified by two list variables: poles, and
zeros (which is optional). For example, the OMOMS in Sec-
tion III-C corresponds to the parameters
and .

The available functions follow:

• BsplineE[ , poles, zeros] evaluates the generalized
B-spline from (9);

• B[ , poles, zeros] returns the discrete B-spline filter
;

• A[ , poles, zeros] returns the -transform of the Gram
sequence (14);

• Localization[ , poles] returns the -transform of the
localization operator (4);

• GreenE[ , poles, zeros] evaluates or returns the sym-
bolic form (8) of the Green function , which is
obtained by inverse Laplace transformation of (6).
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