102 research outputs found

    Additional Shared Decoder on Siamese Multi-view Encoders for Learning Acoustic Word Embeddings

    Full text link
    Acoustic word embeddings --- fixed-dimensional vector representations of arbitrary-length words --- have attracted increasing interest in query-by-example spoken term detection. Recently, on the fact that the orthography of text labels partly reflects the phonetic similarity between the words' pronunciation, a multi-view approach has been introduced that jointly learns acoustic and text embeddings. It showed that it is possible to learn discriminative embeddings by designing the objective which takes text labels as well as word segments. In this paper, we propose a network architecture that expands the multi-view approach by combining the Siamese multi-view encoders with a shared decoder network to maximize the effect of the relationship between acoustic and text embeddings in embedding space. Discriminatively trained with multi-view triplet loss and decoding loss, our proposed approach achieves better performance on acoustic word discrimination task with the WSJ dataset, resulting in 11.1% relative improvement in average precision. We also present experimental results on cross-view word discrimination and word level speech recognition tasks.Comment: Accepted at 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU 2019

    Improved acoustic word embeddings for zero-resource languages using multilingual transfer

    Get PDF
    Acoustic word embeddings are fixed-dimensional representations of variable-length speech segments. Such embeddings can form the basis for speech search, indexing and discovery systems when conventional speech recognition is not possible. In zero-resource settings where unlabelled speech is the only available resource, we need a method that gives robust embeddings on an arbitrary language. Here we explore multilingual transfer: we train a single supervised embedding model on labelled data from multiple well-resourced languages and then apply it to unseen zero-resource languages. We consider three multilingual recurrent neural network (RNN) models: a classifier trained on the joint vocabularies of all training languages; a Siamese RNN trained to discriminate between same and different words from multiple languages; and a correspondence autoencoder (CAE) RNN trained to reconstruct word pairs. In a word discrimination task on six target languages, all of these models outperform state-of-the-art unsupervised models trained on the zero-resource languages themselves, giving relative improvements of more than 30% in average precision. When using only a few training languages, the multilingual CAE performs better, but with more training languages the other multilingual models perform similarly. Using more training languages is generally beneficial, but improvements are marginal on some languages. We present probing experiments which show that the CAE encodes more phonetic, word duration, language identity and speaker information than the other multilingual models.Comment: 11 pages, 7 figures, 8 tables. arXiv admin note: text overlap with arXiv:2002.02109. Submitted to the IEEE Transactions on Audio, Speech and Language Processin

    Audio self-supervised learning: a survey

    Get PDF
    Inspired by the humans' cognitive ability to generalise knowledge and skills, Self-Supervised Learning (SSL) targets at discovering general representations from large-scale data without requiring human annotations, which is an expensive and time consuming task. Its success in the fields of computer vision and natural language processing have prompted its recent adoption into the field of audio and speech processing. Comprehensive reviews summarising the knowledge in audio SSL are currently missing. To fill this gap, in the present work, we provide an overview of the SSL methods used for audio and speech processing applications. Herein, we also summarise the empirical works that exploit the audio modality in multi-modal SSL frameworks, and the existing suitable benchmarks to evaluate the power of SSL in the computer audition domain. Finally, we discuss some open problems and point out the future directions on the development of audio SSL

    Neural approaches to spoken content embedding

    Full text link
    Comparing spoken segments is a central operation to speech processing. Traditional approaches in this area have favored frame-level dynamic programming algorithms, such as dynamic time warping, because they require no supervision, but they are limited in performance and efficiency. As an alternative, acoustic word embeddings -- fixed-dimensional vector representations of variable-length spoken word segments -- have begun to be considered for such tasks as well. However, the current space of such discriminative embedding models, training approaches, and their application to real-world downstream tasks is limited. We start by considering ``single-view" training losses where the goal is to learn an acoustic word embedding model that separates same-word and different-word spoken segment pairs. Then, we consider ``multi-view" contrastive losses. In this setting, acoustic word embeddings are learned jointly with embeddings of character sequences to generate acoustically grounded embeddings of written words, or acoustically grounded word embeddings. In this thesis, we contribute new discriminative acoustic word embedding (AWE) and acoustically grounded word embedding (AGWE) approaches based on recurrent neural networks (RNNs). We improve model training in terms of both efficiency and performance. We take these developments beyond English to several low-resource languages and show that multilingual training improves performance when labeled data is limited. We apply our embedding models, both monolingual and multilingual, to the downstream tasks of query-by-example speech search and automatic speech recognition. Finally, we show how our embedding approaches compare with and complement more recent self-supervised speech models.Comment: PhD thesi

    Pre-training for Speech Translation: CTC Meets Optimal Transport

    Full text link
    The gap between speech and text modalities is a major challenge in speech-to-text translation (ST). Different methods have been proposed to reduce this gap, but most of them require architectural changes in ST training. In this work, we propose to mitigate this issue at the pre-training stage, requiring no change in the ST model. First, we show that the connectionist temporal classification (CTC) loss can reduce the modality gap by design. We provide a quantitative comparison with the more common cross-entropy loss, showing that pre-training with CTC consistently achieves better final ST accuracy. Nevertheless, CTC is only a partial solution and thus, in our second contribution, we propose a novel pre-training method combining CTC and optimal transport to further reduce this gap. Our method pre-trains a Siamese-like model composed of two encoders, one for acoustic inputs and the other for textual inputs, such that they produce representations that are close to each other in the Wasserstein space. Extensive experiments on the standard CoVoST-2 and MuST-C datasets show that our pre-training method applied to the vanilla encoder-decoder Transformer achieves state-of-the-art performance under the no-external-data setting, and performs on par with recent strong multi-task learning systems trained with external data. Finally, our method can also be applied on top of these multi-task systems, leading to further improvements for these models. Code and pre-trained models are available at https://github.com/formiel/fairseq.Comment: ICML 2023 (oral presentation). This version fixed URLs, updated affiliations & acknowledgements, and improved formattin
    corecore