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Improved acoustic word embeddings for
zero-resource languages using multilingual transfer

Herman Kamper Yevgen Matusevych Sharon Goldwater

Abstract—Acoustic word embeddings are fixed-dimensional
representations of variable-length speech segments. Such embed-
dings can form the basis for speech search, indexing and discovery
systems when conventional speech recognition is not possible. In
zero-resource settings where unlabelled speech is the only avail-
able resource, we need a method that gives robust embeddings
on an arbitrary language. Here we explore multilingual transfer:
we train a single supervised embedding model on labelled data
from multiple well-resourced languages and then apply it to
unseen zero-resource languages. We consider three multilingual
recurrent neural network (RNN) models: a classifier trained
on the joint vocabularies of all training languages; a Siamese
RNN trained to discriminate between same and different words
from multiple languages; and a correspondence autoencoder
(CAE) RNN trained to reconstruct word pairs. In a word
discrimination task on six target languages, all of these models
outperform state-of-the-art unsupervised models trained on the
zero-resource languages themselves, giving relative improvements
of more than 30% in average precision. When using only a
few training languages, the multilingual CAE performs better,
but with more training languages the other multilingual models
perform similarly. Using more training languages is generally
beneficial, but improvements are marginal on some languages. We
present probing experiments which show that the CAE encodes
more phonetic, word duration, language identity and speaker
information than the other multilingual models.

Index Terms—acoustic word embeddings, multilingual models,
transfer learning, zero-resource speech processing.

I. INTRODUCTION

The dependence of automatic speech recognition (ASR)
systems on transcribed speech data remains a major hurdle for
developing speech technology in new languages. Researchers
in zero-resource speech processing aim to develop unsuper-
vised methods that can learn directly from unlabelled speech
audio [1]–[3]. Several tasks have been tackled. In unsupervised
term discovery (UTD), the goal is to find recurring word- or
phrase-like patterns in an unlabelled speech collection [4]. In
query-by-example search, the aim is to identify utterances
containing instances of a given spoken query [5]–[7]. Full-
coverage segmentation and clustering aims to tokenise an entire
speech set into word-like units [8]–[11].

In these applications, speech segments of different durations
need to be compared. One approach is to use dynamic time
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warping (DTW), but this is computationally expensive and can
be inaccurate [12]. Levin et al. [13] therefore proposed an
alignment-free approach: a speech segment of arbitrary length
is embedded in a fixed-dimensional space. The resulting vectors
are referred to as acoustic word embeddings. Segments can then
be compared by simply calculating a distance between their
vectors in the embedding space. This requires a mapping such
that instances of the same word type (lexical item) have similar
embeddings. Several supervised and unsupervised acoustic
word embedding methods have since been proposed [14]–[18].

While unsupervised methods are useful in that they can be
used in zero-resource settings, there is still a large performance
gap compared to supervised methods [13], [18]. Here we
investigate whether supervised modelling can still be used
to obtain accurate embeddings on a language for which no
labelled data is available. Specifically, we propose to exploit
labelled resources from languages where these are available,
allowing us to take advantage of state-of-the-art supervised
modelling methods, but to then apply the resulting model to
zero-resource languages for which no labelled data is available.

For this transfer learning approach, we consider three
multilingual acoustic embedding models. A classifier recurrent
neural network (RNN) is trained on the joint vocabularies
of several well-resourced languages [19]. A Siamese RNN is
trained with a contrastive loss on multiple languages so that
word instances of the same type have similar embeddings while
others are pushed away [19]. Finally, the correspondence au-
toencoder RNN (CAE-RNN) uses an encoder-decoder structure
to reconstruct one word given another word of the same type
as input [20]. We use six well-resourced languages from the
GlobalPhone corpus [21] for training, and evaluate the models
using a word discrimination task on six target languages which
we treat as zero-resource.

Our goal is to find the best acoustic embedding approach for
zero-resource languages. To show that multilingual transfer is
the best in this setting, we need to compare it to an appropriate
unsupervised monolingual baseline. We extend [18], where an
unsupervised CAE-RNN was trained on discovered terms from
a UTD system, and use the same approach to train unsupervised
CLASSIFIERRNN and SIAMESERNN models on unlabelled data
from zero-resource languages, similar to [22]. For the first
time, these three unsupervised models are compared. The CAE-
RNN performs best. To answer our main research question,
we compare this unsupervised approach to the supervised
multilingual CAE-RNN, CLASSIFIERRNN and SIAMESERNN.
This is an extension of [23], where the first two were considered.
The SIAMESERNN—a popular method in the monolingual
supervised setting [19]—has not been previously used for
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multilingual transfer. Across the six zero-resource languages,
all three multilingual models outperform unsupervised CAE-
RNNS trained on the respective evaluation languages.

Of the three approaches, the multilingual CAE-RNN per-
forms better when only a few well-resourced training languages
are used, but with more languages there is little difference
between the models. Here we also introduce a new variant of
the multilingual CAE-RNN which conditions its decoder on
the training language identity. This gives small but consistent
improvements on the zero-resource languages. Finally, inspired
by the analysis of supervised monolingual acoustic word
embedding models presented in [24], we perform probing
experiments to see how the multilingual models organise
their embedding spaces. We find that, compared to the other
multilingual models, the CAE-RNN captures more phonetic,
word duration and speaker information. Source code is released
at https://github.com/kamperh/globalphone_awe.

II. RELATED WORK

Acoustic word embeddings are fixed-dimensional vector
representations of arbitrary-length spoken words [13]. The
goal is to map different instances of the same spoken word
to similar embeddings, while mapping words of different
types to embeddings that are far apart. This allows variable-
length speech segments to be efficiently compared directly in
a fixed-dimensional embedding space without any alignment
(which can be slow). Acoustic embeddings are therefore being
used increasingly in downstream tasks such as full-coverage
segmentation and clustering [11], query-by-example speech
search [7], [25], [26], and spoken content retrieval [17], [27].

Our goal is to learn an acoustic word embedding model that
can be applied in a zero-resource setting where no labelled data
is available in the target language. Unsupervised modelling
can be used directly in this setting. A simple but effective
early unsupervised approach is downsampling [13], [28]: a
fixed number of equally spaced frames are used to represent a
speech segment. More recent work has turned to neural methods.
Unsupervised auto-encoding recurrent neural networks (RNNs)
use an encoder-decoder structure to try to reconstruct variable-
duration input [14], [17], [28]. Instead of trying to reconstruct
the input exactly, the correspondence autoencoder RNN (CAE-
RNN) [18] is trained to reconstruct another speech segment
predicted to be of the same type as the input. Since labelled
data is not available, a UTD system—itself unsupervised—
is used to find word-like pairs predicted to be of the same
unknown type. This model outperformed downsampling and an
AE-RNN in [18]. However, it still falls far short from supervised
models trained on labelled data. Here we investigate whether
supervised modelling can still be used to obtain embeddings
on a language for which no labelled data is available.

Early supervised acoustic word embedding methods relied
on a reference vector approach: the DTW distances between an
input segment and a fixed reference set are calculated, followed
by supervised dimensionality reduction [13]. This has since
been outperformed by supervised neural approaches relying on
convolutional [15], [29] and RNN-based [16], [19] architectures.
These networks can be trained with a classification loss on

labelled isolated words, where features from an intermediate
layer before the final softmax are used as embeddings, or
with a contrastive loss, where a Siamese network with tied
branches explicitly pushes embeddings of words of the same
type together while pushing different words apart. Most studies
have reported that the contrastive loss performs better, although
improvements over the classifier are sometimes small [15],
[19]. More recent work has started to incorporate surrounding
context [26], [30], [31], in some cases specifically to capture
semantic relationships [27], [32]. Some models explicitly
embed written and spoken words together [17], [33]–[37].
Although these directions are important, we focus on the
original question of learning embedding models that map
together spoken words of the same type.

In all of the above studies, models were always subsequently
applied to the same language as the one used during training.
One approach we consider here is to train a supervised model on
(multiple) well-resourced languages and then apply it to a zero-
resource language. Our aim is to determine the best embedding
approach when confronted with a zero-resource setting: is it
better to apply a (potentially multilingual) supervised model on
an unseen language, or is it better to train in an unsupervised
fashion on the target language itself? Apart from studies
explicitly looking at acoustic embeddings, this question also
relates to several other lines of research.

Most importantly, our work is inspired by studies showing
the benefit of using multilingual bottleneck features as frame-
level representations for zero-resource languages [38]–[41]: a
frame-level network is trained jointly on several well-resourced
languages (normally to predict context-dependent triphone
HMM states) and is then applied to an unseen language. In [42],
multilingual data was also used for discovering acoustic units.
As in these studies, our findings show the advantage of learning
from labelled data in well-resourced languages when processing
an unseen low-resource language—here at the word rather than
subword level. We are also inspired by studies in ASR aiming to
build a single system that can transcribe speech from a number
of different input languages. Early approaches considered joint
training of a single set of HMM-GMM models on multiple
languages [43], [44], while more recent work has turned to
end-to-end neural networks [45]–[48]. While these models are
also typically trained jointly on multiple languages (as we do
here), they are then applied to test data from languages on
which they are trained. In contrast, the languages to which our
models are applied are never seen during training.

Training a machine learning model on one task and then
applying it to another related problem is becoming an attractive
way to leverage existing data or models—a methodology
referred to as transfer learning [49]. Our approach can be
described as multilingual transfer since we train a single
embedding model on labelled data from several well-resourced
languages and then embed speech from a target zero-resource
language. While in many transfer learning settings there is
a subsequent fine-tuning step with some (limited) labelled
data from the target domain (referred to as inductive transfer
learning), we directly apply a multilingual model to a new
language (called transductive transfer learning in [49], [50]).

https://github.com/kamperh/globalphone_awe
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III. ACOUSTIC WORD EMBEDDING MODELS

For obtaining acoustic word embeddings on a zero-resource
language, we compare unsupervised models trained on within-
language unlabelled data to supervised models trained on
pooled labelled data from multiple well-resourced languages.
We consider three different recurrent neural network (RNN)
architectures. All three uses gated recurrent units [51]. Below
we first describe how each architecture is used for supervised
multilingual modelling, and then explain how the same archi-
tectures are used for unsupervised monolingual modelling.

A. Supervised multilingual acoustic word embeddings

Given labelled data from several well-resourced languages,
we consider three supervised multilingual acoustic embedding
models. We use X = x1,x2, . . . ,xT to denote a sequence of
frame-level acoustic feature vectors, with each vector xt ∈ RD,
e.g. D-dimensional MFCCs.

1) Classifier RNN: Given a true isolated word segment X
from any of the training languages, the CLASSIFIERRNN predicts
the word type of that segment. Formally, it is trained using the
multiclass log loss, given as J(X) = −

∑K
k=1 yk log fk(X)

for a single training example, where K is the size of the joint
vocabulary over all the training languages, yk ∈ {0, 1} is an
indicator for whether X is an instance of word type k, and
f(X) ∈ [0, 1]K is the predicted distribution over the joint
vocabularies of all the languages. As shown in Figure 1, an
input sequence X is presented to an encoder RNN shared
between all training languages. A fixed-dimensional acoustic
word embedding z ∈ RM is then obtained by transforming the
final hidden state of the RNN [17]. This embedding is fed into
a softmax layer to produce f(X). Embeddings can therefore
be obtained for speech segments from a language not seen
during training.

2) Siamese RNN: In the CLASSIFIERRNN we obtain embed-
dings from an intermediate layer with the hope that instances
of the same word type will have similar embeddings. Rather
than doing this implicitly through a classification loss, the
SIAMESERNN explicitly optimises a similarity loss between
embeddings [19], [52]. Formally, input sequences Xa, Xp, Xn

are each passed through an RNN to produce embeddings za, zp,
zn, as illustrated in Figure 2. Xa and Xp are instances of the
same word type (subscripts indicate anchor word and positive
word) while Xn is a different word (negative). The RNN’s
parameters are optimised using the contrastive loss [53], [54]:

x1 x2 x3 xT

X

acoustic word
embedding

z

R
ussian

Polish
French

яблоки
бежать

courir
pommes

jab lka
biec

Fig. 1. The multilingual CLASSIFIERRNN is trained jointly on all the training
languages to classify which word type an input segment X belongs to. Our
model is trained on data from six languages (three shown here as illustration).

J(Xa, Xp, Xn) = max {0,m+ d(za, zp)− d(za, zn)}, with
d(·) the squared Euclidean distance and m a margin parameter.
This loss is at a minimum when all embedding pairs (za, zp)
of the same word type are more similar by a margin m than
pairs (za, zn) of different types. To sample negative items
we use the online semi-hard mining scheme [55]: for each
positive pair in a mini-batch the most difficult negative item is
used satisfying the constraint d(za, zd) < d(za, zn), except if
there is no such item in which case the negative example with
the largest distance is used. The multilingual SIAMESERNN is
trained jointly on all the well-resourced training languages.

3) Correspondence autoencoder RNN: The CAE-RNN was
originally developed as an unsupervised monolingual embed-
ding method [18], as explained below. But given true word
segments from forced alignments, it can also be trained in a
supervised way. Here we train a single CAE-RNN by pooling
word segments from several well-resourced training languages.
Formally, the CAE-RNN is trained on pairs of speech segments
(X,X ′), with X = x1, . . . ,xT and X ′ = x′

1, . . . ,x
′
T ′

containing different instances of the same word type. As
illustrated in Figure 3, X is fed into an encoder RNN, which
produces the acoustic word embedding z. This embedding
is used to condition a decoder RNN which attempts to

Xa

za

Xn

zn

Xp

zp

d(za, zp)

d(za, zn)

Fig. 2. The multilingual SIAMESERNN is trained jointly on all the training
languages so that the distance between the embedding of an anchor word
za and a positive example zp is smaller (by some margin) than the distance
between the anchor and a negative example zn. The three RNNs shown in
the figure share the same set of parameters.

acoustic word
embedding

x1 x2 x3 xT

f1 f2 f3
fT/T ′

z
Input

AE-RNN: X
CAE-RNN: X

Target output
AE-RNN: X

CAE-RNN: X ′

Fig. 3. The AE-RNN is trained to reconstruct its input X (a speech segment)
from the latent acoustic word embedding z. The CAE-RNN is trained to
reconstruct one segment X′ when presented with another segment X as input.
For the supervised multilingual CAE-RNN (§III-A3), true word pairs (X,X′)
are used from the well-resourced training languages. For the unsupervised
monolingual CAE-RNN (UTD) (§III-C1), an unsupervised term discovery
system is used to find word pairs (X,X′).
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reconstruct X ′. The loss for a single training pair is therefore
J(X,X ′) =

∑T ′

t=1 ||x′
t − f t(X)||2, where f t(X) is the tth

decoder output conditioned on the embedding z.
The idea is that CAE-RNN embeddings should be invariant

to properties not common to the two segments (e.g. speaker,
channel), while capturing aspects that are (e.g. word identity).
Here we hope that this type of invariance can be learned from
well-resourced languages and then transferred to an unseen
language. This motivation for the CAE-RNN is similar to
that of the SIAMESERNN. But the former relies on a softer
reconstruction loss while the latter uses an explicitly contrastive
loss. Also, the CAE-RNN is trained only on positive pairs, while
the SIAMESERNN incorporates negative items.

B. Language conditioning

As a contribution not considered in prior work, we present
model variants which use training language identity information
in the decoder of a model. The idea is that this would allow a
model to capture more language-specific properties after the
embedding layer, while common aspects across languages are
captured in the shared encoder. This could produce embeddings
that generalise better to unseen languages.

Instead of having only a single shared softmax layer after the
embedding layer in the multilingual CLASSIFIERRNN (§III-A1),
we consider a model where we add separate fully connected
layers for each training language, each language-specific branch
terminating in its own softmax output layer. For the multilingual
CAE-RNN (§III-A3), together with the acoustic embedding z,
we additionally append a language embedding at each decoder
time-step. The language embedding matrix is updated jointly
with the rest of the network.

C. Unsupervised monolingual acoustic word embeddings

An alternative to the transfer learning approaches in §III-A
for obtaining acoustic embeddings on a zero-resource language
is to train an unsupervised embedding model directly on
unlabelled data in the target language. Four unsupervised
monolingual embedding models are described below. The
unsupervised CLASSIFIERRNN and SIAMESERNN have not been
considered before. The experiment in §V-A is therefore also
the first comparison of these unsupervised approaches.

1) Unsupervised autoencoder and correspondence autoen-
coder RNNs: The unsupervised autoencoding RNN (AE-RNN)
of [14] is trained on unlabelled speech segments to reproduce its
input. Formally, given an input speech segment X , the loss for a
single training example is J(X) =

∑T
t=1 ||xt − f t(X)||2, with

f t(X) the tth decoder output, as also illustrated in Figure 3.
We next consider the unsupervised variant of the CAE-RNN,

first proposed in [18]. In contrast to the supervised multilingual
CAE-RNN (§III-A3), in the unsupervised setting we do not
have access to transcriptions from which to construct input-
output training pairs. We therefore apply an unsupervised term
discovery (UTD) system [4], [56] to an unlabelled speech
collection in the target zero-resource language, discovering
pairs of word segments predicted to be of the same unknown
type. These are used as input-output pairs (X,X ′) to the
CAE-RNN, as shown in Figure 3. We denote the resulting

unsupervised monolingual model as CAE-RNN (UTD). In all
cases, we first pretrain a CAE-RNN using the AE loss above
before switching to the CAE loss.

2) Unsupervised classifier and Siamese RNNs: This strategy
of using a UTD system to discover training targets for
the CAE-RNN (UTD) can also be employed with the other
architectures of §III-A. Instead of predicting the word type
of an input segment (§III-A1), the monolingual unsupervised
CLASSIFIERRNN (UTD) is trained to predict the cluster labels
from the UTD system. The unsupervised SIAMESERNN (UTD)
uses matching pairs from the UTD system as positive examples,
while sampling negative items randomly from UTD terms with
different cluster labels. These two unsupervised models have
not been considered in any previous work.

IV. EXPERIMENTAL SETUP

A. Data

We perform all our experiments on the GlobalPhone corpus
of read speech [21]. We treat six languages as our target zero-
resource languages: Spanish (ES), Hausa (HA), Croatian (HR),
Swedish (SV), Turkish (TR) and Mandarin (ZH). Each language
has on average 16 hours of training, 2 hours of development
and 2 hours of test data. For training supervised multilingual
embedding models, six other GlobalPhone languages are chosen
as well-resourced languages: Czech (CS), French (FR), Polish
(PL), Portuguese (PT), Russian (RU) and Thai (TH).1 Each
well-resourced language has on average 21 hours of labelled
training data.

B. Model training, architectures and implementation

We pool the data from the well-resourced languages and train
three supervised multilingual models (§III-A). The supervised
multilingual CLASSIFIERRNN is trained jointly on true word
segments from the six training languages, obtained from forced
alignments. The number of word types per language is limited
to 10k, giving a total of 70k output classes (more classes did
not give improvements). Rather than considering all possible
word pairs from all languages when training the multilingual
CAE-RNN and SIAMESERNN models, we sample 300k true
word pairs from the combined data. Using more pairs did not
improve development performance, but increased training time.

Since we do not use transcriptions for the unsupervised
monolingual embedding models (§III-C), we apply the UTD
system of [56] to each of the training sets of the six zero-
resource languages.2 Roughly 36k predicted word pairs are
extracted in each language. The unsupervised monolingual AE-
RNN, CAE-RNN, CLASSIFIERRNN and SIAMESERNN models
are all trained on the same set of UTD terms. For the AE-
RNN, an alternative would have been to use segments randomly
sampled from the speech audio, but UTD-discovered segments
gave slightly better performance in [18].

Since development data would not be available in a zero-
resource setting, we perform development experiments on

1In [23], Bulgarian was also used, but we decided to exclude it here because
of poor-quality forced alignments (determined through manual inspection).

2As described at https://github.com/eginhard/cae-utd-utils.

https://github.com/eginhard/cae-utd-utils
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labelled data from yet another language: German (DE). We used
this data to tune the vocabulary size for the CLASSIFIERRNN,
the number of pairs for the CAE-RNN and SIAMESERNNmodels,
the margin for the SIAMESERNN, the language embedding size
of the multilingual CAE-RNN, and the number of training
epochs. Other hyperparameters are set as in [18].

All models are implemented in TensorFlow. Speech audio is
parametrised as D = 13 dimensional static Mel-frequency cep-
stral coefficients (MFCCs). We use an embedding dimensional-
ity of M = 130 throughout, since downstream systems such as
the segmentation and clustering system of [11] are constrained
to embedding sizes of this order. All encoder-decoder models
have three encoder and three decoder unidirectional RNN layers,
each with 400 units. The same encoder structure is used for
the CLASSIFIERRNN and SIAMESERNN. The SIAMESERNN uses
a margin of m = 0.25. Pairs are presented to the CAE-RNN
models in both input-output directions. For the multilingual
CAE-RNN using language conditioning (§III-B), a language
embedding with 200 dimensions is used. Models are trained
using Adam optimisation [57] with a learning rate of 0.001.

C. Evaluation and baselines

We want to measure the intrinsic quality of the resulting
acoustic word embeddings without being tied to a particular
downstream system architecture. We therefore use a word
discrimination task designed for this purpose [58]. In the
same-different task, we are given a pair of acoustic segments,
each a true word, and we must decide whether the segments
are examples of the same or different words. To evaluate a
particular embedding method, a set of isolated test words are
first embedded. For every word pair in this set, the cosine
distance between their embeddings is calculated. Two words
can then be classified as being of the same or different type
based on some distance threshold, and a precision-recall curve
is obtained by varying the threshold. The area under this curve
is used as final evaluation metric, referred to as the average
precision (AP). We are particularly interested in obtaining
embeddings that are speaker invariant. As in [59], we therefore
calculate AP by only taking the recall over instances of the
same word spoken by different speakers (i.e., we consider the
more difficult setting since a model does not get credit for
recalling the same word if it is said by the same speaker).

As an additional unsupervised baseline embedding method,
we use downsampling [13], [28] by keeping 10 equally-spaced
MFCC vectors from a segment with appropriate interpolation,
giving a 130-dimensional embedding. Finally, we report same-
different performance when using DTW alignment cost to
predict whether word segments are the same or not. For this
baseline, we additionally include delta and double-delta MFCCs
(which was found to be beneficial).

V. EXPERIMENTAL RESULTS

Our main goal is to find the best acoustic word embedding
approach for an unseen zero-resource language. We hypothesise
that multilingual acoustic word embedding models trained on
labelled data from well-resourced languages will be superior to
monolingual unsupervised embedding models trained directly

on unlabelled data from the target zero-resource language.
To test this hypothesis, we first need to establish the best
unsupervised embedding approach to serve as an appropriate
baseline. We start, therefore, in §V-A by comparing different
monolingual unsupervised models. In section §V-B, we briefly
consider development experiments to find the best multilingual
model variants, specifically looking at the effect of language
conditioning (§III-B). We then answer our main research
question in §V-C by comparing the best unsupervised approach
to the best multilingual embedding approaches.

A. What is the best acoustic word embedding model in the
purely unsupervised case?

Table I shows the AP on development data for the un-
supervised monolingual models from §III-C applied to the
six zero-resource evaluation languages. All the neural models
are trained on UTD pairs. For reference, the performance of
supervised monolingual models trained using forced alignments
and ground truth labels is also given. This can be seen as an
upper bound where a perfect UTD system is available.

As in [18], we see that the unsupervised CAE-RNN outper-
forms downsampling and the AE-RNN on all six zero-resource
languages. Here we additionally show that it also outperforms
CLASSIFIERRNN and SIAMESERNN models when these are
trained on UTD terms (the only exception is the SIAMESERNN
on Mandarin achieving a higher AP of 28.4%). The CAE-RNN
(UTD) even outperforms DTW on five of the languages, which
is noteworthy since DTW has access to the full sequences for
discriminating between words.

The supervised model variants (bottom section, Table I)
still perform better than the unsupervised models (top section).
In the supervised setting, the best performance is achieved
by either the CAE-RNN or SIAMESERNN, depending on the
language. This is different from the unsupervised setting where
the CAE-RNN is better than the SIAMESERNN in most cases.
One interpretation could be that, since the SIAMESERNN is
trained in a discriminative fashion, it might be more susceptible

TABLE I
AP (%) ON DEVELOPMENT DATA FOR THE ZERO-RESOURCE LANGUAGES

USING UNSUPERVISED ACOUSTIC WORD EMBEDDING MODELS. FOR
REFERENCE, RESULTS FROM SUPERVISED MODEL VARIANTS (MAKING USE
OF GROUND TRUTH WORD SEGMENTS AND LABELS) ARE ALSO GIVEN. THE

BEST RESULTS OF UNSUPERVISED AND SUPERVISED MODELS ARE
HIGHLIGHTED.

Model ES HA HR SV TR ZH

Unsupervised models:

DTW 22.3 27.9 16.9 14.2 22.2 19.3
Downsampling 14.6 20.4 14.8 8.4 16.3 15.3
AE-RNN (UTD) 15.3 11.2 12.6 6.9 12.7 14.3
CAE-RNN (UTD) 28.8 36.0 23.6 15.6 20.4 20.8
CLASSIFIERRNN (UTD) 15.0 15.4 13.6 7.6 9.8 15.4
SIAMESERNN (UTD) 21.3 5.4 6.2 8.7 11.9 28.4
Supervised models:

CAE-RNN (GT) 71.9 77.8 76.0 59.7 68.7 84.6
CLASSIFIERRNN (GT) 68.3 70.4 75.3 50.3 61.0 83.5
SIAMESERNN (GT) 69.3 73.3 73.1 64.0 73.8 90.0
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TABLE II
AP (%) ON HAUSA DEVELOPMENT DATA WHEN SYSTEMATICALLY

REDUCING THE NOISE FROM THE UTD DISCOVERY PROCEDURE.

Training set CAE-RNN SIAMESERNN

1. UTD terms 36.0 5.4
2. UTD with corrected end-pointing 29.8 7.7
3. UTD with corrected pair labels 44.5 37.7
4. UTD with corrected end-pointing and
labels 69.7 60.7

TABLE III
AP (%) ON DEVELOPMENT DATA WHEN ADDING LANGUAGE

CONDITIONING (LC) IN THE DECODER OF THE MULTILINGUAL CAE-RNN.

Multilingual model ES HA HR SV TR ZH

CAE-RNN 50.0 53.7 41.3 30.1 38.9 50.8
CAE-RNN-LC 54.6 57.6 40.9 33.6 43.0 55.0

to erroneous matches by the UTD system; the CAE-RNN, in
contrast, is trained using a softer reconstruction-like loss which
could be more robust to UTD errors.

To support this claim, Table II presents results on Hausa,
where we systematically reduce the noise from the UTD system.
Using forced alignments, we compare each UTD term with
the ground truth word token with which it overlaps most. We
first correct end-pointing: the start and end frame positions
predicted by the UTD system are changed to match that of
the ground truth word with maximal overlap (row 2). We then
keep the UTD end-pointing, but only train on pairs where
the ground truth labels match (row 3). In row 4, we correct
both the end-pointing and only train on pairs with the same
true label. We see that as the UTD pairs are updated with
correct labels (row 3) and additionally also end-pointing (row
4), the difference in performance between the CAE-RNN and
SIAMESERNN shrinks to around 9% absolute in AP.

B. The effect of language conditioning

In §III-B we described model variants of the multilingual
CLASSIFIERRNN and CAE-RNN where the decoder of a model
has access to language-specific information. To see if this
leads to better generalisation to unseen languages, we compare
model variants with and without language conditioning. In
the CLASSIFIERRNN, we found that split prediction branches
give slightly worse performance than using a single shared
softmax layer. In contrast, Table III shows that the multilingual
CAE-RNN improves slightly on the development data of most
languages when a language embedding is added at each decoder
time-step. (This improvement was also obtained on the German
development data.) In the tables below we also denote the CAE-
RNN with language conditioning as CAE-RNN-LC.

C. Does transfer from a multilingual model produce better
embeddings than unsupervised learning on the target language?

Based on the above experiments, we use the CAE-RNN
(UTD) as our monolingual unsupervised baseline and we use

TABLE IV
AP (%) ON TEST DATA FOR THE ZERO-RESOURCE LANGUAGES. THE
UNSUPERVISED CAE-RNNS ARE TRAINED SEPARATELY FOR EACH

ZERO-RESOURCE LANGUAGE ON SEGMENTS FROM A UTD SYSTEM APPLIED
TO UNLABELLED MONOLINGUAL DATA. THE MULTILINGUAL MODELS ARE

TRAINED ON GROUND TRUTH WORD SEGMENTS OBTAINED BY POOLING
LABELLED TRAINING DATA FROM SIX WELL-RESOURCED LANGUAGES. THE

BEST OVERALL RESULT ON EACH LANGUAGE IS HIGHLIGHTED.

Model ES HA HR SV TR ZH

Unsupervised models:

DTW 36.2 23.8 17.0 27.8 16.2 35.9
Downsampling 24.0 15.9 14.2 18.9 11.0 26.6
CAE-RNN (UTD) 49.7 27.8 26.5 28.7 16.0 33.3

Multilingual models:

CAE-RNN-LC 72.8 47.3 42.9 46.4 35.1 51.6
CLASSIFIERRNN 68.8 47.7 43.5 45.1 35.0 54.5
SIAMESERNN 65.8 43.7 39.3 44.6 28.2 46.1

the variant of the multilingual CAE-RNN with language condi-
tioning. We now turn to our main question: is a multilingual
acoustic word embedding model trained on labelled but external
data (§III-A) superior to an unsupervised monolingual model
trained on unlabelled in-domain data from the target zero-
resource language?

Table IV shows the performance of monolingual unsuper-
vised and supervised multilingual acoustic word embedding
models applied to test data from the six zero-resource languages.
We see that the multilingual models consistently outperform
the unsupervised models across all six zero-resource languages.
Of the three supervised multilingual models, the SIAMESERNN
performs worst. The relative performance of the multilingual
CAE-RNN and CLASSIFIERRNN models is not consistent
over the six zero-resource evaluation languages, with one
model working better on some languages while another works
better on others. Nevertheless, all three multilingual models
consistently outperform the best unsupervised monolingual
model trained directly on the target languages, showing the
benefit of incorporating data from well-resourced languages
where labels are available.

Despite the improvements of the multilingual over the unsu-
pervised approach, the multilingual models never outperforms
the best monolingual supervised models of Table I.3 The
multilingual models are therefore still not reaching the upper
bound from supervised monolingual training.

It is interesting to note that, of the monolingual supervised
models (bottom section Table I), the SIAMESERNN is one of
the best models, outperforming the monolingual supervised
CAE-RNN on three languages. In contrast, the multilingual
SIAMESERNN never performs as well as the multilingual
CAE-RNN when applied to unseen zero-resource languages
(Table IV). This could again be due to the discriminative nature
of the SIAMESERNN: it is explicitly trained to discriminate
between pairs of words from several well-resourced training
languages. Even though it might succeed in this task, this

3The two tables here actually report performance on different sets (develop-
ment and test data, respectively). But this statement is true: the multilingual
models in Table IV are always worse than their supervised monolingual
counterparts when applied to the same development data.
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Fig. 4. AP (%) on development data for the six zero-resource language, as multilingual models are trained on one (RU), two (RU+CS), three (RU+CS+FR)
and all six (multiling.) training languages. Scores from unsupervised models trained on UTD segments from the evaluation language are also given.

TABLE V
AP (%) ACHIEVED BY MULTILINGUAL MODELS WHEN APPLIED TO

DEVELOPMENT DATA FROM THE SEEN TRAINING LANGUAGES.

Model RU CS FR PL TH PO

CAE-RNN-LC 45.6 62.6 46.9 45.3 80.8 64.7
SIAMESERNN 44.2 76.7 47.8 47.8 85.8 72.7

does not necessarily lead to generalisation to unseen languages.
Table V shows the results when the two models are compared
on development data from languages seen during training. The
results show that the multilingual SIAMESERNN outperforms the
CAE-RNN on five out of six of the training languages. This
does not happen even once in Table IV when considering
performance on unseen languages, which shows that the
multilingual SIAMESERNN does not generalise as well.

VI. FURTHER ANALYSIS

In this analysis section we look at how the number and
choice of training languages impact performance. We also
perform probing experiments to obtain a better understanding
of the resulting embedding spaces for the different models.

A. Are more languages beneficial for training multilingual
embedding models?

Figure 4 shows development performance on each of the zero-
resource language as multilingual models are trained on one
(RU), two (RU+CS), three (RU+CS+FR) and all six (multiling.)
well-resourced training languages. Here we use the multilingual
CAE-RNN without language conditioning (§III-B). For refer-
ence, the results from monolingual unsupervised models are
also given as the first point in each subplot. We can therefore
interpret each plot as giving the results as we increase the
number of training languages from zero (UTD) to six.

Results are not entirely consistent across the evaluation
languages, but we can identify the following general trends.

Firstly, using labelled data from a single training language
(Russian) gives improvements over unsupervised embeddings
for all six evaluation languages and all three model variants
(except for the Russian SIAMESERNN applied to Mandarin).
Secondly, when using fewer training languages, the multilingual
CAE-RNN outperforms the multilingual CLASSIFIERRNN and
SIAMESERNN in most cases. But, as we increase the number of
training languages, all three models improve and it becomes less
clear which is superior. On several languages the multilingual
CLASSIFIERRNN gives similar or better performance than the
CAE-RNN. Although the SIAMESERNN also improves as we
add training languages, it is not the top-performing model
on any of the six evaluation languages. Thirdly, the effect of
additional training languages differs based on the evaluation
language. Focusing only on the CAE-RNN, AP improves
systematically as we add languages for Spanish, Turkish and
Mandarin. But on Hausa, Croatian and Swedish, performance
seems to plateau with two training languages (on Croatian this
might not be surprising since both Russian and Czech are from
the same language family).

Generally speaking, we can therefore conclude that adding
more training languages does not deteriorate performance, but
on some languages improvements are marginal. In all cases,
however, using labelled training data from even a single well-
resourced language improves performance over an unsupervised
model trained only on the target language.

B. Is the training language choice important?

To investigate the impact of the particular choice of training
language, we train supervised monolingual CAE-RNNs on
each of the well-resourced languages and then apply these
to each of the zero-resource languages. Results are given in
Figure 5. The choice of well-resourced language can greatly
impact performance. On Spanish, using Portuguese is better
than any other language, and on Croatian the monolingual
Czech system performs, showing the benefit of training on
languages from the same family. The supervised Thai model
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Fig. 5. AP (%) on development data for the six zero-resource languages
(columns) when applying different monolingual CAE-RNN models, each
trained on labelled data from a well-resourced language (rows). Heatmap
colours are normalised for each zero-resource language (i.e. per column).

performs worst on all the Indo-European languages but not on
Hausa and Mandarin.

Although performance can differ dramatically based on the
source-target language pair, all of the systems in Figure 5
outperform the unsupervised monolingual CAE-RNNs trained
on UTD pairs from the target language (Table I), except for the
Thai-Spanish pair. Thus, training on just a single well-resourced
language (even if it is not in the same language family) is
beneficial. Furthermore, although adding languages does not
always lead to improvements in Figure 4, the multilingual
CAE-RNN trained on all six languages (Table IV, Figure 4)
outperforms all of the supervised monolingual models in
Figure 5 on the evaluation languages. The performance effects
of training language choice therefore diminish as more training
languages are used.

C. How are the embedding spaces organised?

In previous sections we compared models using the same-
different task. In some cases there was little to separate
the models, e.g., there are only small differences between
the supervised multilingual CAE-RNN, CLASSIFIERRNN and
SIAMESERNN when training on all six languages (right-most
points, Figure 4). Rather than using the same-different task, here
we try to directly characterise the organisation of the models’
embedding spaces. This is valuable, not only for the sake of
the analysis itself, but also from a technological perspective: it
can help us anticipate potential failure modes when using the
embeddings in downstream speech systems. As in the analysis
of acoustic word embeddings in [24], we use a number of
tests to probe the embedding spaces. The focus in [24] was on
monolingual models, while here we focus on the multilingual
embedding models (§III-A). Instead of reporting the findings
from all the tests we performed, we only report those that
showed some differences between the multilingual models.

We first consider whether the embedding spaces encode the
degree of similarity between words. High AP in the same-
different task indicates that instances of the same word are
closer to each other in an embedding space than different words.
But this does not tell us whether words that are similar but not
identical are close to each other. To measure this, we consider
the distance between pairs of embedded words as a function
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Fig. 6. Average cosine distances between pairs of embedded Hausa words as a
function of their phone edit distance (development data, multilingual models).

TABLE VI
GOODNESS OF FIT (R2 , PROPORTION OF VARIANCE EXPLAINED) OF THE

REGRESSION MODELS PREDICTING ABSOLUTE WORD DURATION ON
DEVELOPMENT DATA FOR THE ZERO-RESOURCE LANGUAGES.

Model ES HA HR SV TR ZH

Unsupervised models:

Downsampling 0.47 0.72 0.57 0.36 0.51 0.69

Multilingual models:

CAE-RNN 0.94 0.96 0.96 0.95 0.95 0.94
CLASSIFIERRNN 0.79 0.76 0.81 0.78 0.71 0.71
SIAMESERNN 0.82 0.78 0.84 0.81 0.75 0.76

of the phone edit distance between them. The result for Hausa
is shown in Figure 6. For all three multilingual embedding
models, the average cosine distance between word pairs is
lowest when the words are identical (a phone edit distance
of 0), and this distance systematically increases as the words
become more phonetically different. This effect seems strongest
for the CAE-RNN, which has the lowest embedding distance
when words are identical, but the largest distance when words
differ by 5 or more edits. This suggests that embedding spaces
are organised according to the words’ phonetic similarity, and
that this is more so in the multilingual CAE-RNN.

Next, we consider whether the embedding spaces capture
information about word duration and speaker identity. To do
this, we train and test linear classifiers (multi-class logistic
regression models) and linear regression models to, respectively,
predict the speaker identity of an embedded test word and its
duration in milliseconds. In each case, we train a model on
80% of the embedded words from the development data of a
language and then test the model on the held-out 20%.

We first consider word duration prediction, looking at the
goodness of fit (R2) of the corresponding linear regression
models. Table VI shows that, while all three multilingual
models perform well on this task, the CAE-RNN performs
best on all six languages. Note that better performance on
this task does not necessarily imply better word discrimination
performance; this could depend on the language and the specific
downstream setting under consideration. Nevertheless, this
analysis shows that the CAE-RNN seems to capture differences
in duration more than the other models (at this salient level
measured by linear regression).

We next consider whether the embeddings allow for accurate
speaker classification. Table VII shows that embeddings from
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TABLE VII
SPEAKER CLASSIFICATION ACCURACY (%) ON DEVELOPMENT DATA FOR

THE ZERO-RESOURCE LANGUAGES. THE HIGHEST SCORES ARE
HIGHLIGHTED IN RED (UNDERLINE) AND THE LOWEST IN BLUE (ITALICS).

Model ES HA HR SV TR ZH

Unsupervised models:

Downsampling 31.0 43.8 38.3 30.9 29.8 53.0

Multilingual models:

CAE-RNN 34.3 38.7 33.9 36.4 36.4 42.1
CLASSIFIERRNN 28.3 28.5 27.9 24.9 30.4 32.0
SIAMESERNN 25.7 25.4 26.4 27.3 26.4 31.0

the multilingual CAE-RNN allow for the best speaker classifica-
tion results of the three multilingual models. The SIAMESERNN
generally performs the worst. This indicates that, at a level
that can be captured by a linear classifier, the multilingual
SIAMESERNN’s embeddings are more speaker-invariant then
those of the CAE-RNN. This is surprising since the CAE-RNN
generally performs better in cross-speaker word discrimination
(Table IV, Figure 4). However, being able to classify speaker
using a linear projection of the embeddings does not necessarily
imply worse word discrimination performance. Furthermore,
for some downstream tasks it could actually be beneficial to
retain some speaker information in the embeddings.

Finally, we are interested to see whether the multilingual
embedding models separate the embedding spaces according to
language. Again, being able to partition the embedding space
according to language does not necessarily imply better or
worse word discrimination performance, but it can be useful to
know whether this happens for settings where words from
multiple languages might be embedded at the same time.
Moreover, if the models did perfectly separate the embedding
spaces according to training language, the models would
presumably not transfer to unseen languages. For the analysis,
we embed at the same time triphones from five languages: RU,
CS, FR, DE and ZH. Three of these languages are seen training
languages, while two are unseen. This allows us to determine
if the embeddings encode language identity information better
for seen languages. A set of 25 common triphones are used,
e.g., [ana] and [tam]. To ensure that the triphones are genuinely
identical across languages, we unified the existing GlobalPhone
transcriptions for these languages by converting them into the
International Phonetic Alphabet format. As before, we apply a
linear classifier on the models’ embeddings.

Table VIII shows that the multilingual CAE-RNN’s embed-
dings allows for the best language identification. Adding more
training languages generally improves language classification
performance, but this effect is stronger for the CLASSIFIERRNN
and SIAMESERNN than for the CAE-RNN (which actually
performs best when only trained on three languages). An
analysis of the individual F1-scores (not shown here) per
language shows there are no consistent differences between seen
(RU, CS, FR) and unseen (DE, ZH) languages. Figure 7 shows
a visualisation of the embedded instances of the [tat] triphone
in all five languages for the multilingual CAE-RNN. While
triphones from the same language seem to cluster together, there

TABLE VIII
ACCURACY (%) OF LINEAR CLASSIFIERS PREDICTING THE LANGUAGE

IDENTITY OF TRIPHONES FROM THE DEVELOPMENT DATA OF FIVE
LANGUAGES (THREE SEEN, TWO UNSEEN).

Model RU RU+CS RU+CS+FR Multilingual

CAE-RNN 61.8 63.7 66.8 65.2
CLASSIFIERRNN 54.3 54.2 56.2 61.8
SIAMESERNN 57.4 60.2 57.3 65.0

Language

CS

DE

FR

RU

ZH

Fig. 7. Two-dimensional t-SNE plots of the triphone [tat] in five languages
embedded using the multilingual CAE-RNN.

is a lot of overlap across languages, potentially enabling the
model to generalise the acquired phonetic properties of training
languages to unseen languages. Note, however, that such
generalisation may not work equally well for all languages: in
the figure there seems to be more overlap between the training
languages (RU, CS, FR) and DE (another Indo-European
language) than between the training languages and ZH (a
Sino-Tibetan language).

To summarise, our probing experiments suggest that the
multilingual CAE-RNN’s embeddings encode more information
about phonetic content, word duration, language identity, and
speaker identity compared to the other multilingual models.

VII. CONCLUSION

We proposed multilingual transfer as a way to obtain acoustic
word embeddings for zero-resource languages. We applied
multilingual models trained jointly on six well-resourced
languages to six zero-resource languages without any labelled
data. Three multilingual models—a Siamese recurrent neural
network (RNN), a classifier RNN and a correspondence autoen-
coder (CAE) RNN with a reconstruction-like loss—consistently
outperformed monolingual unsupervised models trained directly
on the zero-resource language. When fewer training languages
are used, we showed that the multilingual CAE outperforms
the other models and that performance is affected by the
combination of training and test languages. These effects
diminish as more training languages are used. Since there was
little to distinguish between the three multilingual models, we
performed further analysis to determine the types of properties
captured by the different models. This revealed that the CAE
is more sensitive than the other models to phonetic content,
word duration information and language identity, but also
(surprisingly) speaker identity. Future work will look to apply
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these models in downstream systems and to consider more
low-resource languages.
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