30 research outputs found

    MEG-BIDS, the brain imaging data structure extended to magnetoencephalography.

    Get PDF
    We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone

    Source Localization of Brain States Associated with Canonical Neuroimaging Postures

    Get PDF
    Cognitive neuroscientists rarely consider the influence that body position exerts on brain activity; yet, postural variation holds important implications for the acquisition and interpretation of neuroimaging data. Whereas participants in most behavioral and EEG experiments sit upright, many prominent brain imaging techniques (e.g., fMRI) require participants to lie supine. Here we demonstrate that physical comportment profoundly alters baseline brain activity as measured by magnetoencephalography (MEG)—an imaging modality that permits multipostural acquisition. We collected resting-state MEG data from 12 healthy participants in three postures (lying supine, reclining at 45°, and sitting upright). Source-modeling analysis revealed a broadly distributed influence of posture on resting brain function. Sitting upright versus lying supine was associated with greater high-frequency (i.e., beta and gamma) activity in widespread parieto-occipital cortex. Moreover, sitting upright and reclining postures correlated with dampened activity in prefrontal regions across a range of bandwidths (i.e., from alpha to low gamma). The observed effects were large, with a mean Cohen\u27s d of 0.95 (SD = 0.23). In addition to neural activity, physiological parameters such as muscle tension and eye blinks may have contributed to these posture-dependent changes in brain signal. Regardless of the underlying mechanisms, however, the present results have important implications for the acquisition and interpretation of multimodal imaging data (e.g., studies combining fMRI or PET with EEG or MEG). More broadly, our findings indicate that generalizing results—from supine neuroimaging measurements to erect positions typical of ecological human behavior—would call for considering the influence that posture wields on brain dynamics

    Incorporating transmission delays supported by diffusion MRI in MEG source reconstruction

    Get PDF
    International audienceWhite matter fibers transfer the information between brain regions with delays that are measurable with magnetoencephalography and electroencephalography (M/EEG). In the context of regularizing the dynamics of M/EEG and recovering electrical activity of the brain from M/EEG measurements, this article proposes a graph representation-based framework to solve the M/EEG inverse problem, where prior information about transmission delays supported by diffusion MRI (dMRI) are included to enforce temporal smoothness. Results of the reconstruction of brain activity from simulated MEG measurements are compared to MNE, LORETA and CGS methods and we show that our approach improves MEG source localization when compared to these three state-of-theart approaches. In addition, we show preliminary qualitative results of the proposed reconstruction method on real MEG data for a sensory-motor task

    Frequency-based brain networks: From a multiplex framework to a full multilayer description

    Get PDF
    We explore how to study dynamical interactions between brain regions using functional multilayer networks whose layers represent the different frequency bands at which a brain operates. Specifically, we investigate the consequences of considering the brain as a multilayer network in which all brain regions can interact with each other at different frequency bands, instead of as a multiplex network, in which interactions between different frequency bands are only allowed within each brain region and not between them. We study the second smallest eigenvalue of the combinatorial supra-Laplacian matrix of the multilayer network in detail, and we thereby show that the heterogeneity of interlayer edges and, especially, the fraction of missing edges crucially modify the spectral properties of the multilayer network. We illustrate our results with both synthetic network models and real data sets obtained from resting state magnetoencephalography. Our work demonstrates an important issue in the construction of frequency-based multilayer brain networks.Comment: 13 pages, 8 figure

    Unveiling the alterations in the frequency-dependent connectivity structure of MEG signals in mild cognitive impairment and Alzheimer’s disease

    Get PDF
    Producción CientíficaMild cognitive impairment (MCI) and dementia due to Alzheimer’s disease (AD) are neurological disorders that affect cognition, brain function, and memory. Magnetoencephalography (MEG) is a neuroimaging technique used to study changes in brain oscillations caused by neural pathologies. However, MEG studies often use fixed frequency bands, assuming a common frequency structure and overlooking both subject-specific variations and the potential influence of pathologies on frequency distribution. To address this issue, a novel methodology called Connectivity-based Meta-Bands (CMB) was applied to obtain a subject-specific functional connectivity-based frequency bands segmentation. Resting-state MEG activity was acquired from 161 participants: 67 healthy controls, 44 MCI patients, and 50 AD patients. The CMB algorithm was used to identify “meta-bands” (i.e., recurrent network topologies across frequencies). The meta-bands were used to extract an individualised frequency band segmentation. The network topology of the meta-bands and their sequencing were analysed to identify alterations associated with MCI and AD in the underlying frequency-dependent connectivity structure. We found that MCI and AD alter the neural network topology, leading to connectivity patterns both more widespread in the frequency spectrum and heterogeneous. Furthermore, the meta-band frequency sequencing was modified, with MCI and AD patients exhibiting sequences with increased complexity, suggesting a progressive dilution of the frequency structure. The study highlights the relevance of considering the impact of neural pathologies on the frequency-dependent connectivity structure and the potential bias introduced by using fixed frequency bands in MEG studies.Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)’ through ‘Instituto de Salud Carlos III’- FEDERERA-Net FLAG-ERA JTC2021 project ModelDXConsciousness (Human Brain Project Partnering Project

    Spectral homogeneity cross frequencies can be a quality metric for the large-scale resting EEG preprocessing

    Get PDF
    The brain projects require the collection of massive electrophysiological data, aiming to the longitudinal, sectional, or populational neuroscience studies. Quality metrics automatically label the data after centralized preprocessing. However, although the waveforms-based metrics are partially useful, they may be unreliable by neglecting the spectral profiles. Here, we detected the phenomenon of parallel log spectra (PaLOS) that the scalp EEG power in the log scale were parallel to each other from 10% of 2549 HBN EEG. This phenomenon was reproduced in 8% of 412 PMDT EEG from 4 databases. We designed the PaLOS index (PaLOSi) to indicate this phenomenon by decomposing the cross-spectra at different frequencies into the common principal component spaces. We found that the PaLOS biophysically implied a prominently dominant dipole in the source space which was implausible for the resting EEG. And it may be practically resulted from excessive preprocessing. Compared with the 1966 normative EEG cross-spectra, the HBN and the PMDT EEG with PaLOS presented generally much higher electrode pairwise coherences and higher similarity of coherence-based network patterns, which went against the known frequency dependent characteristic of coherence networks. We suggest the PaLOSi should lay in the range of 0.4-0.7 for large resting EEG quality assurance

    How do spatially distinct frequency specific MEG networks emerge from one underlying structural connectome? The role of the structural eigenmodes

    Get PDF
    Functional networks obtained from magnetoencephalography (MEG) from different frequency bands show distinct spatial patterns. It remains to be elucidated how distinct spatial patterns in MEG networks emerge given a single underlying structural network. Recent work has suggested that the eigenmodes of the structural network might serve as a basis set for functional network patterns in the case of functional MRI. Here, we take this notion further in the context of frequency band specific MEG networks. We show that a selected set of eigenmodes of the structural network can predict different frequency band specific networks in the resting state, ranging from delta (1–4 Hz) to the high gamma band (40–70 Hz). These predictions outperform predictions based from surrogate data, suggesting a genuine relationship between eigenmodes of the structural network and frequency specific MEG networks. We then show that the relevant set of eigenmodes can be excited in a network of neural mass models using linear stability analysis only by including delays. Excitation of an eigenmode in this context refers to a dynamic instability of a network steady state to a spatial pattern with a corresponding coherent temporal oscillation. Simulations verify the results from linear stability analysis and suggest that theta, alpha and beta band networks emerge very near to the bifurcation. The delta and gamma bands in the resting state emerges further away from the bifurcation. These results show for the first time how delayed interactions can excite the relevant set of eigenmodes that give rise to frequency specific functional connectivity patterns

    Spectral homogeneity cross frequencies can be a quality metric for the large-scale resting EEG preprocessing

    Full text link
    The brain projects require the collection of massive electrophysiological data, aiming to the longitudinal, sectional, or populational neuroscience studies. Quality metrics automatically label the data after centralized preprocessing. However, although the waveforms-based metrics are partially useful, they may be unreliable by neglecting the spectral profiles. Here, we detected the phenomenon of parallel log spectra (PaLOS) that the scalp EEG power in the log scale were parallel to each other from 10% of 2549 HBN EEG. This phenomenon was reproduced in 8% of 412 PMDT EEG from 4 databases. We designed the PaLOS index (PaLOSi) to indicate this phenomenon by decomposing the cross-spectra at different frequencies into the common principal component spaces. We found that the PaLOS biophysically implied a prominently dominant dipole in the source space which was implausible for the resting EEG. And it may be practically resulted from excessive preprocessing. Compared with the 1966 normative EEG cross-spectra, the HBN and the PMDT EEG with PaLOS presented generally much higher electrode pairwise coherences and higher similarity of coherence-based network patterns, which went against the known frequency dependent characteristic of coherence networks. We suggest the PaLOSi should lay in the range of 0.4-0.7 for large resting EEG quality assurance
    corecore