4 research outputs found

    Variability in electricity consumption by category of consumer: the impact on electricity load profiles

    Full text link
    Residential electrification of transport and heat is changing consumption and its characteristics significantly. Previous studies have demonstrated the impact of socio-techno-economic determinants on residential consumption. However, they fail to capture the distributional characteristics of such consumer groups, which impact network planning and flexibility assessment. Using actual residential electricity consumption profile data for 720,000 households in Denmark, we demonstrate that heat pumps are more likely to influence aggregated peak consumption than electric vehicles. At the same time, other socio-economic factors, such as occupancy, dwelling area and income, show little impact. Comparing the extrapolation of a comprehensive rollout of heat pumps or electric vehicles indicates that the most common consumer category deploying heat pumps has 14% more maximum consumption during peak load hours, 46% more average consumption and twice the higher median compared to households owning an electric vehicle. Electric vehicle show already flexibility with coincidence factors that ranges between 5-15% with a maximum of 17% whereas heat pumps are mostly baseload. The detailed and holistic outcomes of this study support flexibility assessment and grid planning in future studies but also the operation of flexible technologies.Comment: 37 pages, 18 figures, journal articl

    From passive to active: Flexibility from electric vehicles in the context of transmission system development

    Full text link
    Electrification of transport in RES-based power system will support the decarbonisation of the transportsector. However, due to the increase in energy demand and the large peak effects of charging, the passiveintegration of electric cars is likely to undermine sustainability efforts. This study investigates three differentcharging strategies for electric vehicle in Europe offering various degrees of flexibility: passive charging,smart charging and vehicle-to-grid, and puts this flexibility in perspective with the flexibility offered byinterconnections. We use the Balmorel optimization tool to represent the short-term dispatch and long-terminvestment in the energy system and we contribute to the state-of-the-art in developing new methodologiesto represent home charging and battery degradation. Our results show how each step of increased chargingflexibility reduces system costs, affects energy mix, impacts spot prices and reduces CO2 emissions untilthe horizon 2050. We quantify how flexible charging and variable generation mutually support each other(¿100TWh from wind and solar energy in 2050) and restrict the business case for stationary batteries, whereaspassive charging results in a substitution of wind by solar energy. The comparison of each charging schemewith and without interconnection expansion highlights the interplay between European countries in terms ofelectricity prices and CO2 emissions in the context of electrified transport. Although the best outcome isreached under the most flexible scenario at the EU level, the situation of the countries with the cheapest andmost decarbonised electricity mix is damaged, which calls for adapted coordination policy at the EU level

    Adequabilidade dos carros elétricos para fornecimento de serviços de sistema à rede elétrica

    Get PDF
    Tese de mestrado integrado em Engenharia da Energia e do Ambiente, 2021, Universidade de Lisboa, Faculdade de CiênciasO aumento do consumo de eletricidade e a consequente produção de gases de efeito de estufa, tem realçado a importância dos compromissos internacionais com vista à redução de CO2 através de crescentes níveis de penetração de fontes de energia renováveis. A integração de energias renováveis em larga escala, nomeadamente as fontes de energia variáveis no tempo como o vento e o sol, detêm características de difícil previsão e controlabilidade na disponibilidade de recurso. Devido a este facto, a adoção destas fontes de energia induz a uma diminuição da estabilidade do sistema elétrico e de garantia de potência no sistema de energia. As redes inteligentes de energia elétrica e a integração de sistemas de geração, armazenamento e consumo distribuído compreendem uma solução à nova realidade do sistema de energia. A integração de redes inteligentes de energia elétrica e sistemas distribuídos permitirá a redução de perdas de energia na rede elétrica e introdução de novas fontes e tecnologias de geração. Porém, esta integração exige a transição para um sistema elétrico mais dinâmico e a introdução de serviços de regulação mais rápidos para fazer face aos desequilíbrios existentes entre a procura e a geração de energia. Os veículos elétricos podem tornar-se parte integrante de uma rede inteligente uma vez que são capazes de fornecer serviços essenciais ao sistema de energia elétrica. Para além de serem considerados como um recurso distribuído, são reconhecidos como uma solução para equilibrar as flutuações de potência causadas pela elevada penetração de fontes de energia variáveis no tempo. Os veículos elétricos quando agregados têm potencial para contribuir para a fiabilidade dos sistemas de energia, nomeadamente como fornecedores de serviços de sistema, também designados por serviços auxiliares de rede, criando desta forma novas oportunidades de gestão. Os serviços auxiliares são essenciais ao funcionamento seguro e fiável do sistema de energia uma vez que visam garantir o equilíbrio entre a procura e oferta de energia. Deste modo, a presente dissertação tem por objetivo simular e otimizar a resposta de um agente agregador de veículos elétricos na prestação do serviço de reserva secundária, por forma a avaliar o desempenho em termos de potência disponibilizada e tempo de resposta deste agregado.The increase in electricity consumption and the consequent production of greenhouse gases has driven international CO2 reduction commitments to adopt increasing levels of penetration of renewable energy sources. The integration of renewable energies on a large scale, namely the intermittent variable renewable sources such as wind and sun, have characteristics that are difficult to predict and control. Due to this, the implementation of intermittent renewable energy sources induces a decrease in both the stability of the electrical system and guarantee of power in the energy system. Smart grids and the integration of generation, storage and distributed consumption systems comprise a solution to the new reality of the energy system. The integration of smart grids and distributed systems will allow the reduction of energy losses in the electricity grid and the introduction of new sources and generation technologies. However, this integration requires the transition to a more dynamic electrical system and the introduction of faster regulation services to address the imbalances between demand and energy generation. Electric vehicles can become an integral part of a smart grid as they are able to provide essential services to the electric system. In addition to being considered as a distributed resource, they are recognized as a solution that allows them to be used to balance the power fluctuations caused by the high penetration of intermittent renewable energy sources. Electric vehicles when aggregated have the potential to contribute to the reliability of energy systems by providing management opportunities, namely as providers of system services, also called ancillary services. Ancillary services are essential for the safe and reliable operation of the energy system as they aim to ensure a balance between energy demand and supply. Thus, the present dissertation aims to simulate and optimize the response of an aggregator of electric vehicles in the provision of the secondary regulation reserve, in order to evaluate the performance in terms of the available power and the time response of this aggregate
    corecore