687 research outputs found

    Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

    Get PDF
    This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state equation depends on a countable number of parameters i.e., on σj\sigma_j with jNj\in\N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj\sigma_j. We establish sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the stochastic coordinate sequence σ=(σj)j1\sigma = (\sigma_j)_{j\ge 1} of the random inputs, and prove convergence rates of best NN-term truncations of these expansions. Such truncations are the key for subsequent computations since they do {\em not} assume that the stochastic input data has a finite expansion. In the follow-up paper [KS2], we explain two methods how such best NN-term truncations can practically be computed, by greedy-type algorithms as in [SG, Gi1], or by multilevel Monte-Carlo methods as in [KSS]. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K], see [KS2]

    Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz Domains

    Full text link
    We use the scale of Besov spaces B^\alpha_{\tau,\tau}(O), \alpha>0, 1/\tau=\alpha/d+1/p, p fixed, to study the spatial regularity of the solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains O\subset R^d. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.Comment: 32 pages, 3 figure

    Besov regularity of solutions to the p-Poisson equation

    Full text link
    In this paper, we study the regularity of solutions to the pp-Poisson equation for all 1<p<1<p<\infty. In particular, we are interested in smoothness estimates in the adaptivity scale Bτσ(Lτ(Ω)) B^\sigma_{\tau}(L_{\tau}(\Omega)), 1/τ=σ/d+1/p1/\tau = \sigma/d+1/p, of Besov spaces. The regularity in this scale determines the order of approximation that can be achieved by adaptive and other nonlinear approximation methods. It turns out that, especially for solutions to pp-Poisson equations with homogeneous Dirichlet boundary conditions on bounded polygonal domains, the Besov regularity is significantly higher than the Sobolev regularity which justifies the use of adaptive algorithms. This type of results is obtained by combining local H\"older with global Sobolev estimates. In particular, we prove that intersections of locally weighted H\"older spaces and Sobolev spaces can be continuously embedded into the specific scale of Besov spaces we are interested in. The proof of this embedding result is based on wavelet characterizations of Besov spaces.Comment: 45 pages, 2 figure

    Adaptive Low-Rank Methods for Problems on Sobolev Spaces with Error Control in L2L_2

    Full text link
    Low-rank tensor methods for the approximate solution of second-order elliptic partial differential equations in high dimensions have recently attracted significant attention. A critical issue is to rigorously bound the error of such approximations, not with respect to a fixed finite dimensional discrete background problem, but with respect to the exact solution of the continuous problem. While the energy norm offers a natural error measure corresponding to the underlying operator considered as an isomorphism from the energy space onto its dual, this norm requires a careful treatment in its interplay with the tensor structure of the problem. In this paper we build on our previous work on energy norm-convergent subspace-based tensor schemes contriving, however, a modified formulation which now enforces convergence only in L2L_2. In order to still be able to exploit the mapping properties of elliptic operators, a crucial ingredient of our approach is the development and analysis of a suitable asymmetric preconditioning scheme. We provide estimates for the computational complexity of the resulting method in terms of the solution error and study the practical performance of the scheme in numerical experiments. In both regards, we find that controlling solution errors in this weaker norm leads to substantial simplifications and to a reduction of the actual numerical work required for a certain error tolerance.Comment: 26 pages, 7 figure

    An optimal adaptive wavelet method for First Order System Least Squares

    Get PDF
    In this paper, it is shown that any well-posed 2nd order PDE can be reformulated as a well-posed first order least squares system. This system will be solved by an adaptive wavelet solver in optimal computational complexity. The applications that are considered are second order elliptic PDEs with general inhomogeneous boundary conditions, and the stationary Navier-Stokes equations.Comment: 40 page
    corecore