5 research outputs found

    Adaptive Transition Rates in Excitable Membranes

    Get PDF
    Adaptation of activity in excitable membranes occurs over a wide range of timescales. Standard computational approaches handle this wide temporal range in terms of multiple states and related reaction rates emanating from the complexity of ionic channels. The study described here takes a different (perhaps complementary) approach, by interpreting ion channel kinetics in terms of population dynamics. I show that adaptation in excitable membranes is reducible to a simple Logistic-like equation in which the essential non-linearity is replaced by a feedback loop between the history of activation and an adaptive transition rate that is sensitive to a single dimension of the space of inactive states. This physiologically measurable dimension contributes to the stability of the system and serves as a powerful modulator of input–output relations that depends on the patterns of prior activity; an intrinsic scale free mechanism for cellular adaptation that emerges from the microscopic biophysical properties of ion channels of excitable membranes

    Synaptic dynamics contribute to long-term single neuron response fluctuations

    Get PDF
    Firing rate variability at the single neuron level is characterized by long-memory processes and complex statistics over a wide range of time scales (from milliseconds up to several hours). Here, we focus on the contribution of non-stationary efficacy of the ensemble of synapses-activated in response to a given stimulus-on single neuron response variability. We present and validate a method tailored for controlled and specific long-term activation of a single cortical neuron in vitro via synaptic or antidromic stimulation, enabling a clear separation between two determinants of neuronal response variability: membrane excitability dynamics vs. synaptic dynamics. Applying this method we show that, within the range of physiological activation frequencies, the synaptic ensemble of a given neuron is a key contributor to the neuronal response variability, long-memory processes and complex statistics observed over extended time scales. Synaptic transmission dynamics impact on response variability in stimulation rates that are substantially lower compared to stimulation rates that drive excitability resources to fluctuate. Implications to network embedded neurons are discussed. \ua9 2014 Reinartz, Biro, Gal, Giugliano and Marom
    corecore