3 research outputs found

    Adaptive sliding windows for improved estimation of data center resource utilization

    Get PDF
    Accurate prediction of data center resource utilization is required for capacity planning, job scheduling, energy saving, workload placement, and load balancing to utilize the resources efficiently. However, accurately predicting those resources is challenging due to dynamic workloads, heterogeneous infrastructures, and multi-tenant co-hosted applications. Existing prediction methods use fixed size observation windows which cannot produce accurate results because of not being adaptively adjusted to capture local trends in the most recent data. Therefore, those methods train on large fixed sliding windows using an irrelevant large number of observations yielding to inaccurate estimations or fall for inaccuracy due to degradation of estimations with short windows on quick changing trends. In this paper we propose a deep learning-based adaptive window size selection method, dynamically limiting the sliding window size to capture the trend for the latest resource utilization, then build an estimation model for each trend period. We evaluate the proposed method against multiple baseline and state-of-the-art methods, using real data-center workload data sets. The experimental evaluation shows that the proposed solution outperforms those state-of-the-art approaches and yields 16 to 54% improved prediction accuracy compared to the baseline methods.This work is partially supported by the European ResearchCouncil (ERC) under the EU Horizon 2020 programme(GA 639595), the Spanish Ministry of Economy, Industry andCompetitiveness (TIN2015-65316-P and IJCI2016-27485), theGeneralitat de Catalunya, Spain (2014-SGR-1051) and Universityof the Punjab, Pakistan. The statements made herein are solelythe responsibility of the authors.Peer ReviewedPostprint (published version

    Embracing corruption burstiness: Fast error recovery for ZigBee under wi-Fi interference

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The ZigBee communication can be easily and severely interfered by Wi-Fi traffic. Error recovery, as an important means for ZigBee to survive Wi-Fi interference, has been extensively studied in recent years. The existing works add upfront redundancy to in-packet blocks for recovering a certain number of random corruptions. Therefore the bursty nature of ZigBee in-packet corruptions under Wi-Fi interference is often considered harmful, since some blocks are full of errors which cannot be recovered and some blocks have no errors but still requiring redundancy. As a result, they often use interleaving to reshape the bursty errors, before applying complex FEC codes to recover the re-shaped random distributed errors. In this paper, we take a different view that burstiness may be helpful. With burstiness, the in-packet corruptions are often consecutive and the requirement for error recovery is reduced as ”recovering any k consecutive errors” instead of ”recovering any random k errors”. This lowered requirement allows us to design far more efficient code than the existing FEC codes. Motivated by this implication, we exploit the corruption burstiness to design a simple yet effective error recovery code using XOR operations (called ZiXOR). ZiXOR uses XOR code and the delay is significantly reduced. More, ZiXOR uses RSSI-hinted approach to detect in packet corruptions without CRC, incurring almost no extra transmission overhead. The testbed evaluation results show that ZiXOR outperforms the state-of-the-art works in terms of the throughput (by 47%) and latency (by 22%)This work was supported by the National Natural Science Foundation of China (No. 61602095 and No. 61472360), the Fundamental Research Funds for the Central Universities (No. ZYGX2016KYQD098 and No. 2016FZA5010), National Key Technology R&D Program (Grant No. 2014BAK15B02), CCFIntel Young Faculty Researcher Program, CCF-Tencent Open Research Fund, China Ministry of Education—China Mobile Joint Project under Grant No. MCM20150401 and the EU FP7 CLIMBER project under Grant Agreement No. PIRSES-GA- 2012-318939. Wei Dong is the corresponding author
    corecore