46,731 research outputs found

    Mesh-based video coding for low bit-rate communications

    Get PDF
    In this paper, a new method for low bit-rate content-adaptive mesh-based video coding is proposed. Intra-frame coding of this method employs feature map extraction for node distribution at specific threshold levels to achieve higher density placement of initial nodes for regions that contain high frequency features and conversely sparse placement of initial nodes for smooth regions. Insignificant nodes are largely removed using a subsequent node elimination scheme. The Hilbert scan is then applied before quantization and entropy coding to reduce amount of transmitted information. For moving images, both node position and color parameters of only a subset of nodes may change from frame to frame. It is sufficient to transmit only these changed parameters. The proposed method is well-suited for video coding at very low bit rates, as processing results demonstrate that it provides good subjective and objective image quality at a lower number of required bits

    Anisotropic Mesh Adaptation for Image Representation

    Get PDF
    Triangular meshes have gained much interest in image representation and have been widely used in image processing. This paper introduces a framework of anisotropic mesh adaptation (AMA) methods to image representation and proposes a GPRAMA method that is based on AMA and greedy-point removal (GPR) scheme. Different than many other methods that triangulate sample points to form the mesh, the AMA methods start directly with a triangular mesh and then adapt the mesh based on a user-defined metric tensor to represent the image. The AMA methods have clear mathematical framework and provides flexibility for both image representation and image reconstruction. A mesh patching technique is developed for the implementation of the GPRAMA method, which leads to an improved version of the popular GPRFS-ED method. The GPRAMA method can achieve better quality than the GPRFS-ED method but with lower computational cost.Comment: 25 pages, 15 figure

    Gap Processing for Adaptive Maximal Poisson-Disk Sampling

    Full text link
    In this paper, we study the generation of maximal Poisson-disk sets with varying radii. First, we present a geometric analysis of gaps in such disk sets. This analysis is the basis for maximal and adaptive sampling in Euclidean space and on manifolds. Second, we propose efficient algorithms and data structures to detect gaps and update gaps when disks are inserted, deleted, moved, or have their radius changed. We build on the concepts of the regular triangulation and the power diagram. Third, we will show how our analysis can make a contribution to the state-of-the-art in surface remeshing.Comment: 16 pages. ACM Transactions on Graphics, 201

    Spatially Adaptive Stochastic Multigrid Methods for Fluid-Structure Systems with Thermal Fluctuations

    Full text link
    In microscopic mechanical systems interactions between elastic structures are often mediated by the hydrodynamics of a solvent fluid. At microscopic scales the elastic structures are also subject to thermal fluctuations. Stochastic numerical methods are developed based on multigrid which allow for the efficient computation of both the hydrodynamic interactions in the presence of walls and the thermal fluctuations. The presented stochastic multigrid approach provides efficient real-space numerical methods for generating the required stochastic driving fields with long-range correlations consistent with statistical mechanics. The presented approach also allows for the use of spatially adaptive meshes in resolving the hydrodynamic interactions. Numerical results are presented which show the methods perform in practice with a computational complexity of O(N log(N))

    Sensitivity of night cooling performance to room/system design: surrogate models based on CFD

    Get PDF
    Night cooling, especially in offices, attracts growing interest. Unfortunately, building designers face considerable problems with the case-specific convective heat transfer by night. The BES programs they use actually need extra input, from either costly experiments or CFD simulations. Alternatively, up-front research on how to engineer best a generic night cooled office – as in this work – can thrust the application of night cooling. A fully automated configuration of data sampling, geometry/grid generation, CFD solving and surrogate modelling, generates several surrogate models. These models relate the convective heat flow in a night cooled landscape office to the ventilation concept, mass distribution, geometry and driving force for convective heat transfer. The results indicate that cases with a thermally massive floor have the highest night cooling performance
    • …
    corecore