research

Spatially Adaptive Stochastic Multigrid Methods for Fluid-Structure Systems with Thermal Fluctuations

Abstract

In microscopic mechanical systems interactions between elastic structures are often mediated by the hydrodynamics of a solvent fluid. At microscopic scales the elastic structures are also subject to thermal fluctuations. Stochastic numerical methods are developed based on multigrid which allow for the efficient computation of both the hydrodynamic interactions in the presence of walls and the thermal fluctuations. The presented stochastic multigrid approach provides efficient real-space numerical methods for generating the required stochastic driving fields with long-range correlations consistent with statistical mechanics. The presented approach also allows for the use of spatially adaptive meshes in resolving the hydrodynamic interactions. Numerical results are presented which show the methods perform in practice with a computational complexity of O(N log(N))

    Similar works

    Full text

    thumbnail-image

    Available Versions