22,115 research outputs found

    Adaptive Resource Management Made Real

    Get PDF
    The adaptive resource management framework implemented in the European ACTORS project is presented. A resource manager has been developed that collaborates with a new Linux scheduler providing support for hard constant bandwidth server reservations, in order to adapt applications to changes in resource availability and to adapt the resource allocation to changes in application requirements. The focus of this paper is the three demonstrators developed based on the framework. The demonstrators presented are an adaptive video quality demonstrator, a feedback control demonstrator, and a video decoding demonstrator. All of these execute under the control of the resource manager

    On-line schedulability tests for adaptive reservations in fixed priority scheduling

    Get PDF
    Adaptive reservation is a real-time scheduling technique in which each application is associated a fraction of the computational resource (a reservation) that can be dynamically adapted to the varying requirements of the application by using appropriate feedback control algorithms. An adaptive reservation is typically implemented by using an aperiodic server (e.g. sporadic server) algorithm with fixed period and variable budget. When the feedback law demands an increase of the reservation budget, the system must run a schedulability test to check if there is enough spare bandwidth to accommodate such increase. The schedulability test must be very fast, as it may be performed at each budget update, i.e. potentially at each instance of a task; yet, it must be as efficient as possible, to maximize resource usage. In this paper, we tackle the problem of performing an efficient on-line schedulability test for adaptive resource reservations in fixed priority schedulers. In the literature, a number of algorithms have been proposed for on-line admission control in fixed priority systems. We describe four of these tests, with increasing complexity and performance. In addition, we propose a novel on-line test, called Spare-Pot al- gorithm, which has been specifically designed for the problem at hand, and which shows a good cost/performance ratio compared to the other tests

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    Reaching Out to Tribal Communities: Lessons Learned and Approaches to Consider

    Get PDF
    When transportation safety decision-making is desired, the involvement and engagement with a community is essential. A streamlined delivery of a project or program is more likely to occur when active dialogue and an exchange of ideas occurs in advance and occurs frequently. This is particularly important in tribal communities, who value sustained relationships and represent the focus population of this study. The research team, on six separate occasions, met with local and regional tribal leaders to explore and discuss transportation safety needs within and outside tribal communities, as well as discern the recommended approaches to foster ongoing dialogue about these needs. In all cases these discussions closely correlated with existing research studies or activities; transportation safety and equity is not seen as separate from other tribal foci and community needs. Specific recommendations to consider, in no particular order, included the following: invest respectfully enough time for people to talk; tribes think long-term and consider the impact of any decision from a long-term viewpoint so an iterative process and re-sharing of ideas is critical; the power of decision is in the hands of the tribe and its members; do not lump tribes together as each tribe is sovereign and unique and every community should be expected to think differently; all tribes are unique as is the environmental and social context; to disseminate information widely and iteratively, do so when there is a large group or event; be sure to understand the Tribal governance, decision making, and organizational structure; know who is the tribal Chairman or Chairwoman; and develop an emic and etic understanding of the community

    A robust mechanism for adaptive scheduling of multimedia applications

    Get PDF
    We propose an adaptive scheduling technique to schedule highly dynamic multimedia tasks on a CPU. We use a combination of two techniques: the first one is a feedback mechanism to track the resource requirements of the tasks based on local observations. The second one is a mechanism that operates with a global visibility, reclaiming unused bandwidth. The combination proves very effective: resource reclaiming increases the robustness of the feedback, while the identification of the correct bandwidth made by the feedback increases the effectiveness of the reclamation. We offer both theoretical results and an extensive experimental validation of the approach

    An Integer Linear Programming Solution to the Telescope Network Scheduling Problem

    Full text link
    Telescope networks are gaining traction due to their promise of higher resource utilization than single telescopes and as enablers of novel astronomical observation modes. However, as telescope network sizes increase, the possibility of scheduling them completely or even semi-manually disappears. In an earlier paper, a step towards software telescope scheduling was made with the specification of the Reservation formalism, through the use of which astronomers can express their complex observation needs and preferences. In this paper we build on that work. We present a solution to the discretized version of the problem of scheduling a telescope network. We derive a solvable integer linear programming (ILP) model based on the Reservation formalism. We show computational results verifying its correctness, and confirm that our Gurobi-based implementation can address problems of realistic size. Finally, we extend the ILP model to also handle the novel observation requests that can be specified using the more advanced Compound Reservation formalism.Comment: Accepted for publication in the refereed conference proceedings of the International Conference on Operations Research and Enterprise Systems (ICORES 2015

    AQuoSA - adaptive quality of service architecture

    Get PDF
    This paper presents an architecture for quality of service (QoS) control of time-sensitive applications in multi-programmed embedded systems. In such systems, tasks must receive appropriate timeliness guarantees from the operating system independently from one another; otherwise, the QoS experienced by the users may decrease. Moreover, fluctuations in time of the workloads make a static partitioning of the central processing unit (CPU) that is neither appropriate nor convenient, whereas an adaptive allocation based on an on-line monitoring of the application behaviour leads to an optimum design. By combining a resource reservation scheduler and a feedback-based mechanism, we allow applications to meet their QoS requirements with the minimum possible impact on CPU occupation. We implemented the framework in AQuoSA (Adaptive Quality of Service Architecture (AQuoSA). http://aquosa.sourceforge.net), a software architecture that runs on top of the Linux kernel. We provide extensive experimental validation of our results and offer an evaluation of the introduced overhead, which is perfectly sustainable in the class of addressed applications

    Coalition Formation and Combinatorial Auctions; Applications to Self-organization and Self-management in Utility Computing

    Full text link
    In this paper we propose a two-stage protocol for resource management in a hierarchically organized cloud. The first stage exploits spatial locality for the formation of coalitions of supply agents; the second stage, a combinatorial auction, is based on a modified proxy-based clock algorithm and has two phases, a clock phase and a proxy phase. The clock phase supports price discovery; in the second phase a proxy conducts multiple rounds of a combinatorial auction for the package of services requested by each client. The protocol strikes a balance between low-cost services for cloud clients and a decent profit for the service providers. We also report the results of an empirical investigation of the combinatorial auction stage of the protocol.Comment: 14 page
    • …
    corecore