
Real-Time Syst (2012) 48:601–634
DOI 10.1007/s11241-012-9156-y

On-line schedulability tests for adaptive reservations
in fixed priority scheduling

Rodrigo Santos · Giuseppe Lipari · Enrico Bini ·
Tommaso Cucinotta

Published online: 1 June 2012
© Springer Science+Business Media, LLC 2012

Abstract Adaptive reservation is a real-time scheduling technique in which each ap-
plication is associated a fraction of the computational resource (a reservation) that
can be dynamically adapted to the varying requirements of the application by using
appropriate feedback control algorithms. An adaptive reservation is typically imple-
mented by using an aperiodic server (e.g. sporadic server) algorithm with fixed period
and variable budget. When the feedback law demands an increase of the reservation
budget, the system must run a schedulability test to check if there is enough spare
bandwidth to accommodate such increase. The schedulability test must be very fast,
as it may be performed at each budget update, i.e. potentially at each instance of a
task; yet, it must be as efficient as possible, to maximize resource usage.

In this paper, we tackle the problem of performing an efficient on-line schedula-
bility test for adaptive resource reservations in fixed priority schedulers. In the liter-
ature, a number of algorithms have been proposed for on-line admission control in
fixed priority systems. We describe four of these tests, with increasing complexity
and performance. In addition, we propose a novel on-line test, called Spare-Pot al-

T. Cucinotta is now at Alcatel-Lucent Bell Labs, Ireland.

R. Santos (�)
Dep. Ing. Eléctrica y Computadoras, Universidad Nacional del Sur, Bahía Blanca, Argentina
e-mail: ierms@criba.edu.ar

G. Lipari
Ecole Normale Supérieure, Cachan, France
e-mail: giuseppe.lipari@lsv.ens-cachan.fr

E. Bini
Department of Automatic Control, Lund University, Box 118, 221 00 Lund, Sweden
e-mail: bini@control.lth.se

T. Cucinotta
Scuola Superiore Sant’Anna, piazza Martiri della Libertà, 56124 Pisa, Italy
e-mail: tommaso.cucinotta@alcatel-lucent.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54934831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ierms@criba.edu.ar
mailto:giuseppe.lipari@lsv.ens-cachan.fr
mailto:bini@control.lth.se
mailto:tommaso.cucinotta@alcatel-lucent.com


602 Real-Time Syst (2012) 48:601–634

gorithm, which has been specifically designed for the problem at hand, and which
shows a good cost/performance ratio compared to the other tests.

Keywords Resource reservation · Adaptive scheduling · Fixed priority

1 Introduction

Embedded computing has emerged as an important engineering discipline with prin-
ciples rooted in electronics, real-time operating systems, software engineering. Many
embedded systems, including DVD and media players, digital TVs, teleconferencing
systems, video servers, VoIP, etc. can be categorized as soft real-time.

Real-time systems can be roughly categorized in hard (no deadlines can be
missed), soft (the number of missed deadlines influences the delivered Quality of
Service) and non real-time (just best effort). Soft real-time systems require a timely
behavior, but some deadlines may be missed without compromising the correctness
of the results (Buttazzo et al. 2005). For example, in a pipeline of tasks that processes
a video stream, it is possible to use intermediate buffers to store frames that must be
processed by a late task. In this way, data is preserved in case of missed deadlines, al-
though the end-to-end delay increases. However, the number and severity of deadline
violations may have a negative impact on the Quality of Service (QoS) experienced
by the user and on the amount of memory buffers that must be available. A large
amount of buffers also implies more memory and this represents an important cost
in embedded systems. There is a trade-off then between the deadline miss toleration,
QoS, cost and user appreciation. Therefore, designers of soft real-time embedded
systems must deal with two contrasting requirements: reduce the hardware resources
(processors and memory) to a minimum, while maintaining a low number of deadline
misses.

Scheduling is at the core of a real-time system, as it is the activity in charge of
guaranteeing the timely behavior of the applications. There are many scheduling dis-
ciplines but most of them work with completely defined systems in which the number
of tasks is fixed and each task is characterized by known parameters: worst-case exe-
cution time, period, deadline and release time. When some of these parameters are not
known, or using the worst case would produce a very pessimistic approach, the use of
the Resource Reservation Framework (RRF) (Rajkumar et al. 1998) is considered ap-
propriate. In this framework, each task is associated with a reservation characterized
by a budget Q and a period P . The soft real-time tasks associated to a reservation
execute under a virtual processor with a speed proportional to the ratio between the
budget and the period of the reservation Q/P . This approach can be seen as a trans-
formation of a periodic task into a sporadic one in which the worst case execution
time is no larger than Q and its minimum inter-arrival time is equal to the period
of the reservation independently of the actual parameters of the task. Before activat-
ing a reservation, an admission control mechanism checks if the system continues
to be schedulable. When the system is schedulable, the RRF provides the important
property of temporal isolation by which the task scheduled by means of a reservation
depends only on the reservation parameters to meet its timing constraints and not on



Real-Time Syst (2012) 48:601–634 603

the presence of other tasks in the system. Examples of such algorithms are the Con-
stant Bandwidth Server running on top of Earliest Deadline First (CBS+EDF); and
the Sporadic Server running on top of Fixed Priority (SS+FP). A complete interface
to RRF has been developed by the partners of the FRESCOR EU project.1

The budget assignment is critical for the good performance of the system; thus,
a careful profiling of the computational requirements of the task is necessary. In the
case of soft real-time tasks with large variations of computational requirements, a
static allocation may not be enough to guarantee a good performance. In some situa-
tions the budget will be excessive with the consequence of an under-utilization of the
system or, what is worst, not enough bandwidth for the rest of the tasks. On the other
end, the budget could be too small and the task will not fulfill its requirements. In
both cases the performance of the system is not satisfactory. Large variations in the
computational requirements of a task are caused by different amount of information
to be processed in each instance of the task. For example, the coding/decoding time
of an I frame in a mpeg video is much longer than the required by a P frame which is
longer than the required by the B frame.

To deal with this problem, the concept of adaptive resource reservation (ARR)
(Abeni et al. 2000; Lu et al. 2002) has been introduced. In an adaptive reservation the
budget follows the demand of the task by means of feedback and prediction mecha-
nisms. Basically, each reservation has a feedback control module that measures the
performance of the served task and tries to adjust the budget according to a certain
control law. The control variable is the scheduling error defined in Abeni et al. (2005)
as the difference between the actual finishing time of an instance of the task and its
deadline. A positive error, means the task has violated the deadline, or, equivalently,
that the assigned budget was insufficient. If the error is negative, the task completed
before its deadline and the budget was sufficient. In the first case, the budget should
be incremented while in the second case, it may be decremented to free resources for
the other tasks. The control law should keep the scheduling error as close as possible
to zero. It is important to highlight that, in this model, the change of budget is trans-
parent to the task: in other words, the task parameters (computation time, period, etc.)
do not depend on the assigned budget.

At the system level, the scheduler must guarantee that all reservations are schedu-
lable, i.e. each instance of the reservation always completes within the reservation’s
period. This means that upon any modification of the budgets, dictated by the feed-
back controllers, the system schedulability must be checked. In particular, it might be
the case that the increment determined by the controller can not be accommodated
because the spare bandwidth in the system is not enough. For example, the feedback
control module dictates that the budget of a reservation must be increased by �Q.
Before incrementing the budget, a on-line schedulability test should be run to en-
sure that by incrementing the budget all reservations remain schedulable. If the test
is not passed, the budget should be incremented to the maximum compatible with the
schedulability of the system; in this case, it is said that the reservation is saturated.
Since the test should be executed at each invocation of the control algorithm, it has
to be as simple as possible, otherwise the overhead associated with it would be so

1http://www.frescor.org.

https://ive.sssup.it/,DanaInfo=www.frescor.org+


604 Real-Time Syst (2012) 48:601–634

high that it will take a considerable portion of the processor bandwidth, nullifying
the benefits of adaptive reservations.

Many adaptive reservation schemes have been proposed in the past, mostly in the
context of EDF scheduling (Abeni et al. 2002; Palopoli et al. 2003a, 2008; Stankovic
et al. 1998; Lu et al. 2002). However, little attention have been dedicated to adaptive
reservation in fixed priority (FP) scheduling. Most RTOS provide POSIX compatibil-
ity, and the POSIX real-time profile provides FP and the Sporadic Server as standard
scheduling disciplines. It is therefore important to study the applicability of adaptive
reservation scheme on POSIX compliant RTOS (e.g. the Linux OS). In particular, it
is important to study an efficient on-line schedulability test to prevent the adaptive
reservation algorithm from overloading the system.

1.1 Contributions of this paper

This paper studies the problem of performing on-line schedulability test for adaptive
reservations in the context of fixed priority scheduling. First, the adaptive reservation
framework is proposed under fixed priorities. In particular, we will propose the use
of the Sporadic Server on a Fixed Priority scheduler; none of the previous papers
proposed this solution. In our framework, the schedulability test is encapsulated in a
module called Supervisor that, in addition to performing an efficient on-line schedu-
lability test, can be configured to implement specific allocation and mode change
policies.

For the purpose of on-line admission control and adaptive reservations, we propose
a family of schedulability tests based on the selection of a subset of the scheduling
points (Lehoczky et al. 1989; Bini and Buttazzo 2004) (the notion of scheduling
points is recalled later in Sect. 4.1). Also, we propose a novel on-line test, called
Spare-Pot, specifically designed for dealing with adaptive reservations. Finally, we
will compare the performance of all the aforementioned algorithms with simulation
experiments. There is a trade-off between complexity, speed and accuracy for the
schedulability evaluation after a variation in the system load. The experiments show
how each of the methods proposed perform and the computational cost of them so
the designer can resolve the trade-off. We will also compare with similar adaptive
reservations implemented on top of CBS+EDF. The results show that the Spare-Pot
algorithm is a good compromise between performance and complexity.

2 Related works

Many algorithms based on Resource Reservations have been introduced in the past.
Each reservation is assigned a period and a budget, and the relation between these
parameters is the bandwidth reserved. Examples of resource reservation scheduling
can be found in Abeni and Buttazzo (1998), Lipari and Baruah (2000), Marzario
et al. (2004) and Rajkumar et al. (1998). Resource reservations algorithms provide
the property of temporal isolation, which consists in protecting every application from
the possible overloads of the others.



Real-Time Syst (2012) 48:601–634 605

In previous approaches, the bandwidth assignment for each reservation was based
on heuristic approaches, like the average execution time of the task. However, this ap-
proach may not be optimal since very often the actual execution times differ greatly
from the average ones. Adaptive reservations are then a natural solution to the prob-
lem. In this sense, several algorithms have been proposed in the past. For example,
based on a precise dynamical model of a resource reservation scheduler, a feedback
law consisting in the switching of two traditional Proportional plus Integral (PI) con-
trollers is presented in Palopoli et al. (2003a). A control strategy that adjusts the band-
width according to both the past execution time of the previous job and a prediction
of the possible range of variation of the next execution time is given in Palopoli et al.
(2003b). Additional control approaches based on both deterministic and stochastic
control goals are presented in Palopoli et al. (2003b) and Cucinotta et al. (2004b).
The controllers are complemented by the use of a moving average filter to predict the
execution time. Formal proof of stability in the stochastic sense for generic families
of controllers is provided in Cucinotta et al. (2004a). All these papers, work under
Earliest Deadline First.

Many efforts have been made to apply traditional control techniques to optimize
the performance of real-time schedulers. Some of the ideas focused on the sampling
frequency of variables or task’s periods to cope with overruns on other tasks, can be
found in Buttazzo et al. (2002) and Caccamo et al. (2000a).

In Block et al. (2008), the authors introduced an adaptive feedback-controlled
global EDF scheduling algorithm for multiprocessors soft real-time systems where
the utilization of each task is time-variant and not known a priori. As the adaptive
feedback-controlled scheduling is based on dynamic priorities, the approach is com-
pletely different to the one proposed here, besides the framework is oriented to mul-
tiprocessor systems.

The use of adaptive reservations requires fast on-line schedulability tests to check
the feasibility of the system. In fact, it is not possible to increment the budget of
a reservation if by doing it, another task becomes unschedulable. In this paper we
present five different on-line schedulability tests for fixed priority real-time schedul-
ing. Our techniques are adaptations of well-know results to the problem at hand. The
literature on sufficient schedulability tests is very rich: we report here the most rel-
evant contributions. Burchard et al. (1995) proposed a linear time utilization upper
bound, which was demonstrated to be tighter than the one of Liu and Layland (1973).
Han and Tyan (1997) proposed then a o(n2 logn) test superior to the two previously
mentioned. Lauzac et al. (2003) proposed a utilization upper bound to be evaluated
after a o(n logn) transformation of the task periods is applied. Bini et al. (2003) pro-
posed the hyperbolic bound: a linear time test that is strictly superior to the Liu and
Layland bound. In more recent years, Bini et al. (2009) proposed a linear time test by
approximating the interference of higher priority tasks with a linear function. Mas-
rur and Chakraborty (2011) proposed to approximate the interference by a piecewise
linear function.

The authors of Almeida et al. (2007) propose to use a dynamic reconfiguration
method. In their model, a system is a collection of distributed subsystems interacting
through a time-triggered network. The system can be in one of several modes, and
in each mode a task can have different parameters. To allow fast switching between



606 Real-Time Syst (2012) 48:601–634

modes, the authors propose a mix of off-line analysis (to compute the Local Utiliza-
tion Bound) and dynamic analysis which simply uses the LUB calculated off-line to
decide which of the many configurations is feasible on-line. Compared to our ap-
proach, the model in Almeida et al. (2007) only considers discrete modes, while the
budgets of our reservations can vary on a continuous domain; also, the schedulability
test proposed in Almeida et al. (2007) consists of a linear bound, and it is comparable
to method upBound described in Sect. 4.1.3.

3 System model

In this section we introduce the system model used in the paper together with the
related definitions. We then describe the general architecture of the system and its
components. The section is concluded by a simple example that motivates our work.

An open system is one in which tasks may join or leave dynamically. When a task
wants to join the system, it negotiates a contract, specifying an execution budget Q

and a period P . The contract negotiation consists of an admission control test: if a
periodic server with an execution budget of Q every P instant can be scheduled in the
system without compromising the guarantee on the existing servers, the negotiation
is successful, the task can be admitted in the system, and a reservation Si = (Qi,Pi)

is created to serve the task. If the test fails, the task is rejected.
The ratio Qi

Pi
determines the utilization factor or bandwidth, Ui = Qi

Pi
. The reserva-

tions are implemented by means of appropriate server algorithms that are scheduled
in fixed or dynamic priority environments, for example the sporadic server algorithm
(Sprunt et al. 1989) with fixed priority (SS-FP) or the constant bandwidth server with
dynamic priority (Abeni and Buttazzo 1998) (CBS-EDF).

In this paper, we analyze fixed priority scheduling, and in particular the Sporadic
Server (Sprunt et al. 1989). This algorithm has been included in the real-time profile
of the POSIX standard, and hence is readily available in many real-time operating
systems that are POSIX compliant. Therefore, our technique can be readily applied
into many existing commercial systems.

The reservation deadlines are assumed to be equal to the period (implicit deadline
model). This simplification is made for ease of presentation, however the proposed
methods are also valid when a reservation is assigned a relative deadline less than the
period (constrained deadline model).

The admission control consists of a schedulability test: the reservations are treated
as sporadic tasks with worst case execution times equal to Qi and period equal to
Pi . The negotiation is a procedure that is seldom executed in the system because the
rate at which tasks ask to join or leave the system is very slow compared to the fre-
quency of the tasks in the system. Also, the negotiation process is usually non-urgent,
so it is often implemented by an appropriate service task2 with its own reservation
that can perform a complex schedulability test, like Response Time Analysis (Joseph
and Pandya 1986; Audsley et al. 1993) or Hyperplane analysis (Bini et al. 2007). If

2See the FRESCOR API implementation at http://www.frescor.org.

https://ive.sssup.it/,DanaInfo=www.frescor.org+


Real-Time Syst (2012) 48:601–634 607

Fig. 1 Architecture of the system

admitted, the new reservation is created and guaranteed to execute Qi unites of its
budget within the reservation period Pi .

In this paper we assume that each reservation only serves one single task; exten-
sions to hierarchical scheduling (where many tasks may be served by one reservation)
is out of the scope of this paper.

3.1 Adaptive reservations

Reservations may be fixed or adaptive. A fixed one keeps the budget constant along
the entire life of the reservation. Conversely, an adaptive reservation changes dynam-
ically the budget according to the demand of the task and the free bandwidth in the
system. The budget may be changed quite frequently, even at every reservation pe-
riod, provided there is enough available bandwidth in the system to accommodate for
such a change.

The general architecture of the system is shown in Fig. 1. A feedback controller
is associated to each reservation. It monitors the performance of the associated task
inside the reservation, and dynamically computes the minimum budget that suffices
for the task to keep its ideal behavior, or restore it in case of deviations. Basically,
the controller tries to keep the scheduling error (Abeni et al. 2005) as close to zero
as possible, by measuring how late or early a task completes with respect to its soft
deadline.

The use of such feedback mechanisms may seem overly complex for soft real-
time systems. However, soft real-time is not synonymous of “unimportant”. On the



608 Real-Time Syst (2012) 48:601–634

Table 1 System’s description.
Minimum, average and
maximum bandwidth
requirements

Umin Uavg Umax

Task 1 0.25 0.25 0.25

Task 2 0.25 0.25 0.25

Task 3 0.1 0.2 0.4

Task 4 0.1 0.2 0.4

Total 0.7 0.9 1.3

contrary, the objective of most soft real-time is to optimise resource usage, at the
same time minimising the number of deadline misses. This problem is important and
complex, as discussed in Lu et al. (2002), and as testified by the rich literature on the
subject (see Sect. 2).

3.2 Supervisor

Each feedback controller makes its requests independently of the others. The al-
located bandwidth should never exceed the schedulability bound, otherwise some
reservation could miss its timing constraint (i.e. may not be able to execute its entire
budget within the period). For this reason, the requests of the controllers are evaluated
by a supervisor that performs a quick schedulability analysis to validate the request
for budget change. In case the request can not be accommodated, the reservation is
saturated (i.e. the budget is set to the maximum possible value compatible with the
schedulability test).

Of course, to keep the overhead of this approach as low as possible, both the
schedulability analysis performed by the supervisor and the feedback control law
implemented by the controller must be simple and efficient. In fact, in the worst-case,
the feedback controller and the supervisor routine are invoked at each instance of a
reservation. At the same time, they must be effective, as one of the requirements is to
utilize the computational resource at its best.

The supervisor can also implement specific allocation policies: for example, each
reservation can be assigned minimum and maximum budgets and the supervisor can
enforce that the actual budget always stays within the limits. Also, the supervisor can
implement mode change policies: for example, when a new reservation wants to join
the system, the supervisor can reduce the current budgets of existing reservations to
make space for the new one. This procedure will be better explained in Sect. 4.3.

3.3 Motivation for feedback scheduling

A system with four tasks is presented in Fig. 1. To simplify the presentation let us
suppose that all reservation periods are equal or multiple of each other. Under this
assumption, the schedulability test boils down to the well known Liu and Layland
(1973) with utilization bound equal to one,

∑
Ui ≤ 1. Two tasks require a constant

bandwidth of 0.25, so they negotiate two reservations with the same bandwidth, S1
and S2. The other two tasks demand a variable bandwidth. In both cases the min-
imum, average and maximum requirements are 0.1, 0.2 and 0.4, respectively. All
parameters are summarized in Table 1.



Real-Time Syst (2012) 48:601–634 609

With the admission of the first two tasks, only 0.5 of the bandwidth remains avail-
able. Henceforth, it is not possible to allocate the maximum requirements to the other
two tasks, as this would imply a total bandwidth of 1.3, greater than the Liu and
Layland bound. Allocating the minimum bandwidth is not a good option, because
the tasks will usually demand more. Another option consists in allocating a fixed
bandwidth equal to the average values, but this again, may not be an optimal solu-
tion, because quite often the reservation will not be able to satisfy the soft real-time
task requirements, and the task deadline will probably be missed. Even increasing
the fixed allocation for both tasks to 0.25 (thus reaching full utilization) may not be
enough to accommodate the QoS requirements of the tasks.

The solution is to dynamically adapt the budget of the reservations corresponding
to tasks 3 and 4, thus taking advantage of the statistical multiplexing property. This
means that, being tasks 3 and 4 independent, it is very unlikely that they require their
maximum bandwidths at the same time, hence adapting dynamically the allocation to
their instantaneous expected requests will allow for accommodating both of them.

3.4 Comparison with spare reclamation algorithms

One alternative solution to the previous example is to make use of techniques for
reclaiming the spare capacity. For example, task 3 requires less than its average, the
extra bandwidth can be reclaimed by task 4.

Reclaiming techniques can be divided into static and dynamic. In static reclaim-
ing, the excess bandwidth in the system is statically distributed across all applica-
tion according to some strategy. Such a mechanism was proposed in the FRESCOR
project (Zabos et al. 2009). Static allocation cannot deal with extra bandwidth due to
tasks executing less than expected. Moreover, the allocation is still static, and may
not be sufficient to accommodate large variations in execution time (as experienced,
for example, in many multimedia applications).

Dynamic reclaiming tracks the execution times of all tasks, and can take advan-
tage of spare bandwidth stemming from tasks that execute less than expected, or by
non-allocated bandwidth in the system. Examples of such algorithms are the GRUB
algorithm (Lipari and Baruah 2000), CASH (Caccamo et al. 2000b) and BASH (Cac-
camo et al. 2005). These algorithms redistribute the reclaimed bandwidth in a greedy
manner, or divide it among all active tasks according to some static weight. Since
these algorithms are greedy, a non-needing task may be assigned a large amount of
extra bandwidth.

In the framework proposed in this paper, the spare bandwidth is dynamically as-
signed to the tasks that most need it when when they need it. The feedback control
can in some cases anticipate the needs of a task thanks to application specific pre-
diction strategies. Also, since feedback scheduling is rooted in control theory, under
certain assumptions it is possible to analytically derive properties of the system like
stability (Cucinotta and Palopoli 2007), convergence, response time, etc.

A more specific comparison between dynamic reclamation and feedback control
techniques can be found in Palopoli et al. (2008) and Cucinotta et al. (2011), where
the two techniques have been integrated, in order to take advantage of both.



610 Real-Time Syst (2012) 48:601–634

4 The supervisor

The supervisor is perhaps the most important component of the framework. It is in
charge of checking that the requests made by the feedback controllers can be accom-
modated by running a quick schedulability test which returns yes if a specific request
for increasing the budget can be satisfied, or no if the request cannot be satisfied. In
the latter case, the test additionally indicates the maximum allowed budget increment
(saturation).

The schedulability test is at the heart of the supervisor and constitutes its most
important part. In this paper, many different tests for fixed priority scheduling, at
different levels of complexity, are evaluated. First, simple utilization bounds like
the ones proposed in Liu and Layland (1973), Chen et al. (2003) and Lee et al.
(2004). Then, more complex tests like the ones based on the concept of Schedul-
ing Points (Lehoczky et al. 1989; Bini and Buttazzo 2004). Third, the Response Time
Analysis (RTA) (Joseph and Pandya 1986; Audsley et al. 1993) which provides the
worst-case response time of each task in the system is considered. Based on it, a
new approximate schedulability test specifically devised for the problem of feedback
scheduling is presented. All these have different performances and different complex-
ities. Later, in Sect. 5, they are compared from a performance point of view and the
trade-off between complexity and performance is evaluated.

4.1 Scheduling Points algorithms

A schedulability test based on Scheduling Points consists in the following equation:

Theorem 1 (From Lehoczky et al. (1989)) A set of reservations {(Qi,Pi)} is schedu-
lable under FP if and only if

∀i = 1, . . . , n ∃t ∈ schedPi Qi +
i−1∑

j=1

⌈
t

Pj

⌉

Qj ≤ t (1)

where schedPi is the set of scheduling points (Lehoczky et al. 1989; Manabe and
Aoyagi 1998; Bini and Buttazzo 2004).

Since we are interested in modifications of the reservation bandwidth, we prefer
to write Eq. (1) in a way such that the relationship between the bandwidth is explicit.
By introducing the logical AND (∧) and the logical OR (∨) operators and a more
compact vectorial notation U = (U1, . . . ,Un), Eq. (1) can be rewritten as

∧

i=1,...,n

∨

t∈schedPi

α(i, t) · U ≤ 1 (2)

where the vector α(i, t) is defined as

α(i, t) =
(⌈

t

P1

⌉
P1

t
, . . . ,

⌈
t

Pi−1

⌉
Pi−1

t
︸ ︷︷ ︸

1,...,i−1

,
Pi

t︸︷︷︸
i

,0, . . . ,0
︸ ︷︷ ︸
i+1,...,n

)



Real-Time Syst (2012) 48:601–634 611

The complexity of testing the schedulability by Eq. (2) is essentially due to the
number of scheduling points in schedPi , which in the worst-case is 2i−1 (Manabe and
Aoyagi 1998; Bini and Buttazzo 2004). In Lehoczky’s initial formulation (Lehoczky
et al. 1989) the set schedPi was required to contain all the multiples of the periods
Pj in [0,Di], with priority higher than τi , plus the deadline Di . Formally, the initial
Lehoczky definition (Lehoczky et al. 1989) of schedPi was

schedPi =
{

r Pj : j = 1, . . . , i − 1, r = 1, . . . ,

⌊
Di

Pj

⌋}

∪ {Di} (3)

Later, Manabe and Aoyagi (1998) reduced the number of scheduling points. Bini
and Buttazzo (2004) provided a recurrent definition of the reduced set of scheduling
points. Thanks to these results schedPi can be set equal to Pi−1(Di), where Pi (t) is
defined as follows

{
P0(t) = {t}
Pi (t) = Pi−1(	 t

Pi

) ∪ Pi−1(t)

(4)

The advantage of using this test is that Eq. (2) can be immediately used to find the
maximum admissible variation of any reservation bandwidth which does not com-
promise the feasibility. In fact, from the sensitivity analysis of FP systems (Bini et al.
2007) it follows that the amount of admissible variation �Uk to the bandwidth of the
reservation Sk is

�Uexact
k = min

i=k,...,n
max

t∈schedPi

t − α(i, t) · U
αk(i, t)

(5)

where αk(i, t) denotes the kth component of the vector of coefficients α(i, t). We
refer to the evaluation of �Uexact

k by means of Eq. (5) as the exact method since it is
derived from a necessary and sufficient condition.

Below we propose a simple example with only two reservations. Suppose we have
Q1 = 2, P1 = 5 and Q2 = 1, P2 = 8. By applying the definition of the scheduling
points (Bini and Buttazzo 2004), we find that schedP1 = {5} and schedP2 = {5,8}.
Now it is possible to compute explicitly the inequalities resulting from Eq. (2) which
are

U1 + 8

5
U2 ≤ 1 from t = 5 (6)

5

4
U1 + U2 ≤ 1 from t = 8 (7)

and to represent them graphically (see Fig. 2(a)). In the figure the black dot at the
point U1 = 2

5 , U2 = 1
8 denotes the initial utilization requirement, whereas the dark

gray area denotes the region where the utilization will move into, during the run-time
of the system. Equation (5) allows to compute the maximum admissible variation to
each utilization starting from the initial point. For the values of this example we have:

�Uexact
1 = 2

5
= 0.4 (8)



612 Real-Time Syst (2012) 48:601–634

Fig. 2 Scheduling Point based methods. (a) Exact. (b) Intersect. (c) Scaling. (d) UpperBound

�Uexact
2 = 3

8
= 0.375 (9)

Although for the two tasks case the computation of the maximum variation is very
simple, as the number of tasks grows the evaluation of Eq. (5) requires very long
time. In fact, the complexity of the exact method is O(n2n) since it depends on the
number of points in the set schedPi . Hence the evaluation of the amount of �Uk at
run-time is impractical. For this reason, we investigate also other methods to trade
accuracy for an efficient computation.

The following result allows us to simplify the computation of the admissible vari-
ation:

Corollary 1 Let {smallSeti}i=1,...,n be a family of subsets of schedPi (meaning that
for every τi , smallSeti ⊆ schedPi ), then the task set is schedulable if:

∀i = 1, . . . , n ∃t ∈ smallSeti Qi +
i−1∑

j=1

⌈
t

Pj

⌉

Qj ≤ t (10)

Proof The corollary is simply proved by observing that if Eq. (10) is true, then
∀i ∃t ∈ smallSeti such that the inequality is true. Since ∀i smallSeti ⊆ schedPi ,
then such a t is also in the set schedPi . So we have

∀i = 1, . . . , n ∃t ∈ schedPi Qi +
i−1∑

j=1

⌈
t

Pj

⌉

Qj ≤ t

which implies the schedulability of the task set (from Theorem 1). �

Corollary 1 suggests that, as we are able to find a smaller set of scheduling points,
the amount of admissible variation of the utilization can be efficiently computed at
the price of accuracy. The idea we will exploit next is to explore a neighborhood of
the initial point so that only the constraints which are “close” to the starting point are
considered.



Real-Time Syst (2012) 48:601–634 613

4.1.1 The intersect method

In this method we select a subset intersectSeti of the scheduling points. To build
the set intersectSeti , we analyze the maximum admissible variation of the utilization
Uk for k = 1, . . . , i so that the task τi is schedulable. For every pair (i, k), by using
sensitivity analysis (Bini et al. 2007), we compute the maximum admissible variation
of Uk that keeps task τi schedulable. Let then tk ∈ schedPi be a scheduling point
such that the inequality (1) holds with the equal sign (we know there must exist
one, otherwise Uk could be further increased). Then we add the instant tk to the set
intersectSeti . Following this procedure, the number of points in intersectSeti never
exceeds i. Since we have to consider all tasks, then the total number of constraints is
no more that

∑n
i=1 i = n(n+1)

2 . Therefore, the complexity of this test is O(n2).
The selection procedure is also depicted in Fig. 2(b). Starting from the initial as-

signed values (the black dot), the maximum variation along both the directions is
computed, and the hit constraints are stored in the set of reduced number of schedul-
ing points.

4.1.2 The scaling method

In this method, we select only one scheduling point for each task, which results in a
total of n constraints to be checked at run-time. As shown in Fig. 2(c) we select the
constraint which is hit when we scale linearly all the utilizations.

In the proposed example the constraint corresponding to the scheduling point t =
5 is selected, so that scalingSet2 = {5} ⊂ schedP2. If we compute the maximum
admissible variation by this method we find

�U
scaling
1 = 2

5
= 0.4 (11)

�U
scaling
2 = 1

4
= 0.25 < �Uexact

2 (12)

The complexity of this method is linear O(n).

4.1.3 The upBound method

The final method we propose is not based on the scheduling points, but on the idea of
utilization upper bound (Liu and Layland 1973; Chen et al. 2003). We remind that the
utilization upper bound for level-i tasks is the maximum U

(i)
ub such that the condition

i∑

j=1

Uj ≤ U
(i)
ub (13)

implies that the task τi is schedulable. The utilization upper bound can be computed
by linear programming (Park et al. 1995; Lee et al. 2004). Once the utilization up-
per bound is computed, Eq. (13) can be used to compute the maximum admissible
variation of the utilization.



614 Real-Time Syst (2012) 48:601–634

In the proposed example, the utilization upper bound is U
(2)
ub = 17

20 = 0.85 and the
resulting maximum admissible variation of the utilizations are

�U
upBound
1 = 0.325 (14)

�U
upBound
2 = 0.325 (15)

This method has constant complexity O(1).

4.2 Spare-Pot algorithm

In this section, a new algorithm named Spare-Pot is presented. It is based on the Re-
sponse Time Analysis (RTA) schedulability test (Audsley et al. 1993), but greatly
reduces the amount of computations required to determine if the required bandwidth
of a reservation can be granted or not. In fact, as it will be shown later, the algo-
rithm has linear complexity and can quickly manage the spare bandwidth in a SS-FP
scheduling policy.

The underlying idea can be described in the following way. Suppose there are n

adaptive reservations in the system, S1, S2, . . . , Sn, in decreasing order of priority.
Suppose there are also other non-adaptive reservations in the system with arbitrary
priority levels. During negotiation, the schedulability of such reservations is checked
using RTA: each reservation is considered as a sporadic task with worst-case com-
putation time Q and minimum inter-arrival time P . With the RTA, the worst-case
response time (WCRT) of each reservation is computed: it is important to notice that
this may be different to the actual response time of the task.

At start up, the system reserves an additional fake reservation S0 = (Q0,P0),
which we call spare pot (hence the name of the algorithm). This fake reservation has
higher priority than all adaptive reservations. Its only purpose is to reserve bandwidth
that can be collectively reclaimed by any of the adaptive reservations.

The algorithm has a start-up phase to be performed off-line; a negotiation phase
performed when a task joins the system; and a stationary phase part that is executed
during the normal run-time of the system. These phases are detailed in the next sec-
tions.

At run-time, an adaptive reservation may ask the supervisor to decrease or increase
its budget. In the first case we say that the reservation donates part of its budget, while
in the second one, it borrows a part of its future budget.

The reservations can only donate budget to lower priority ones, so a priority level
i may donate to priority levels i + 1, i + 2, . . . , n. Obviously, this means that they
can only borrow from higher priority reservations. To handle this, a data structure is
maintained by the algorithm to keep track of how much budget each reservation Si

has donated to each other reservation Sj .

4.2.1 Start-up phase

At system start up, the spare pot is created. This reservation will not execute any task;
it is used for preventing the admission control from allocating all spare bandwidth to
newly incoming reservations, and for distributing the spare bandwidth to the most



Real-Time Syst (2012) 48:601–634 615

needing reservations. We denote this reservation with S0, and its budget and period
are Q0 and P0, respectively. P0 can be arbitrarily small, as no actual server is associ-
ated with it. Therefore, P0 can be typically set equal to some fraction of the smallest
interval of time measurable in the system (e.g. 10 µs). Initially, no task is executing
in the system, and Q0 = P0 (i.e. all bandwidth is Available). We require that Q0 is
never less than a minimum Qmin

0 decided by the system administrator at start-up.
The values for Q0 and P0 are decided based on the characteristics of the system. In

particular,
Qmin

0
P0

represents the amount of bandwidth that is left free to account for

variations in the bandwidth requirements of the reservations. If
Qmin

0
P0

is too small, in
average there is not enough free bandwidth to account for temporary overloads of the
other reservations. An analysis of how to choose these values depends on the char-
acteristics of the applications: for example highly varying reservations will need a
larger Q0 to adapt; small variation can do with a small Q0. A complete analysis of
how to set Qmin

0 and P0 is out of the scope of this paper, and will be addressed in
future work.

4.2.2 Negotiation phase

We denote with QN
i the nominal budget of reservation Si , i.e. the budget requested

when the reservation joins the system.
When a new reservation Sn = (QN

n ,Pn) requests to join the system, a negotiation
algorithm is executed. We use the Scheduling Points method described in Sect. 4.1 to
check the schedulability of the new system comprising all existing reservations with
their nominal budget, the spare pot, and the new incoming reservation. We also use
the sensitivity analysis (Bini et al. 2007), based on the Scheduling Point method, to
compute the maximum fake QN

0 ≥ Qmin
0 such that the system remains schedulable.

If the new system is schedulable and QN
0 ≥ Qmin

0 , then the task can be admitted
into the system. Hence, the response times of all reservations are computed using the
classical RTA analysis:

∀i min

{

Ri |Ri =
i−1∑

j=0

⌈
Ri

Pj

⌉

QN
j + QN

i

}

(16)

where QN
j is the nominal budget of the j -th reservation, and all reservations are

sorted by decreasing priority. We assume that the fake reservation is the highest pri-
ority reservation, with index j = 0, and QN

0 as computed in the previous step. Ri is
the smallest solution of the fixed point equation.

The algorithm also prepares some variables that will be used after the reservation
is admitted. Variable preempt(j, i) represents the number of instances of adaptive
reservation Sj that can preempt reservation Si in the worst case:

preempt(j, i) =
⌈

Ri

Pj

⌉

(17)



616 Real-Time Syst (2012) 48:601–634

Fig. 3 Example: reservation Sj donates 3 units of execution to reservation Si

Fig. 4 Example with 3 reservations

This will be useful to compute the budget that Sj can donate to Si without jeopar-
dising the schedulability of the system. Of course, this variable only makes sense for
j < i. We extend it to include the case j = i: (i, i) = 1.

In Fig. 3 we depict an example with two reservations Si = (QN
i = 8,Pi = 20) and

Sj = (QN
j = 2,Pj = 5). In this case, (j, i) = 3. Therefore, if Sj donates 1 unit of

budget (the grey rectangles in the figure), reservation Si gets 1 · preempt(j, i) = 3
units of budget, and its response time will not increase. Vice versa, when Si gives
back 3 units of its budget, Sj gets 1 unit.

Unfortunately, in order to check that the system remains schedulable, we shall
take into account also the other reservations in the system. Consider the example
of Fig. 4 with 3 reservations Sj = (2,5), Si = (4,9) and Sh = (3,25). In this case
preempt(j, h) = 2, so it seems possible that when Sj donates 1 unit of budget to Si ,
the budget of Si may be increased by 2. Unfortunately, doing so will make Sh miss
its deadline: the resulting schedule is shown in Fig. 5, where Sh misses its deadline
at t = 25.

To solve the problem, consider the equation for the schedulability of Sh:

h−1∑

k=0

preempt(k,h)Qk + Qh = Rh ≤ Ph (18)

In other words, the workload of Sh and all higher priority reservations must be equal
to its response time and not greater than its period. Now, suppose we want to pass x



Real-Time Syst (2012) 48:601–634 617

Fig. 5 If reservation Sj donates 1 unit of budget to Si (which then receives 2 units), reservation Sh misses
its deadline

units of budget from Sj to Si . Let’s compute the y units of budget that Si can receive
without modifying the response time of Sh. Then the equation becomes:

Rh =
h−1∑

k=0

preempt(k,h)Qk + Qh − preempt(j, h)x + preempt(i, h)y

By substituting Eq. (18), we get:

y = preempt(j, h)

preempt(i, h)

In the example of Fig. 5, x = 1, preempt(j,h)
preempt(i,h)

= 5
3 , therefore y = 1.66. It is easy to

check that in this case Sh does not miss its deadline.
If we repeat this reasoning for all lower priority reservations, we can define the

reservation ratio rratio(j, i) as:

rratio(j, i) = min

{

preempt(j, i),min
h>i

(
preempt(j, h)

preempt(i, h)

)}

(19)

As before, this term only makes sense for j ≤ i.
To keep track of how much a server Si has received from (or given to) Sj , the

algorithm maintains a matrix of n×n elements, where n is the number of reservations
in the system, including the spare pot. Element (i, j) will be denoted by πi,j , and has
the following meaning:

– element πi,i represent the difference πi,i = QN
i − Qi , where QN

i is the nominal
budget and Qi is the current budget;

– if i �= j , element πi,j represent the credit (if negative), or debit (if positive) that Si

has with Sj . In particular: if πi,j < 0, then Si has given a budget of −πi,j to Sj ; if
πi,j > 0, then Si has received a budget of πi,j from Sj .

Initially, all elements of the matrix are set to 0, except for π0,0 that contains the
Spare Pot budget QN

0 (as Q0 is always null). Finally, we define the spare budget δi



618 Real-Time Syst (2012) 48:601–634

as:

δi =
n∑

j=0

πi,j (20)

The spare budget δi represents the amount of budget that reservation Si makes avail-
able to others.

4.2.3 Stationary phase

Whenever a feedback controller requires a change in the budget of reservation Si , our
algorithm is executed and the matrix is updated accordingly.

Algorithm 1 Increasing the budget
Require: �Qi > 0

j = i

sum = 0
while j ≥ 0 and �Qi > 0 do

if δj > 0 then
xj = min�Qi, δj rratio(j, i)

if i �= j then
πi,j ⇐ πi,j + xj

πj,i ⇐ πj,i − xj

rratio(j,i)
end if
�Qi ⇐ �Qi − xj

πi,i ⇐ πi,i − xj

sum ⇐ sum +xj

end if
j ⇐ j − 1

end while
return sum

– Suppose that the feedback controller needs to increase the budget of reservation
Si by �Qi > 0. The pseudo-code in Listing 1 describes what happens. The al-
gorithm looks at δj , with j = i, i − 1, . . . ,1,0. If δj = 0, then it is not possible
to borrow from this priority level, and we look at the next level j − 1. If δj > 0,
then the maximum amount of budget it is possible to borrow from this level is
xj = min{�Qi, δj rratio(j, i)}.

If xj < �Qi , then �Qi = �Qi − xj and we look at the next higher priority
level. If we reach the last priority level j = 0 and �Qi > 0, then the remaining
is discarded (saturation). The algorithm returns the cumulative sum of allocated
budget.

– Suppose that the feedback controller requires to decrease the budget of reservation
Si by �Qi < 0. In this case, the pseudo-code of Listing 2 is executed.



Real-Time Syst (2012) 48:601–634 619

First, the algorithm tries to give back the budgets that Si had borrowed from
higher priority levels to their respective owners. Hence, select j = 0,1, . . . , i −
1, and let xj = min{−πi,j ,−�Qi}. Then the matrix is updated accordingly and
�Qi = �Qi + xj . If �Qi is 0, then the algorithm stops, otherwise, we continue
with the next j . If after j = i − 1 we still have �Qi < 0, then we update πi,i =
�Qi , making the extra budget available to lower priority levels.

Algorithm 2 Decreasing the budget
Require: �Qi < 0

πi,i ⇐ πi,i − �Qi

j = 0
while j < i and �Qi < 0 do

xj = min−�Qi,πi,j

πi,j ⇐ πi,j − xj

πj,i ⇐ πj,i + xj

rratio(j,i)
�Qi ⇐ �Qi + xj

j ⇐ j + 1
end while

The following example shows how the algorithm works. The system presented in
Sect. 4.1 is used. It has two tasks, τ1 and τ2, with C1 = 2, T1 = 5 and C2 = 1, T2 = 8
respectively. The spare pot consists in a reservation with Qs = 2 and Ps = 5. The
response times of the two reservations are R1 = 4 and R2 = 5, respectively. Also,
rratio(0,1) = rratio(0,2) = rratio(1,2) = 1.

The matrix is initialised as shown in Fig. 6. The first reservation to change its
budget is S1 that releases 0.3 units of its budget. The matrix is updated accordingly
and the results are shown in Fig. 7. Suppose now that reservation S2 asks to increase
its budget by 0.5. In Fig. 8(c), the new values for the matrix are shown. Notice that,
in this particular case, πi,j = πj,i . However, this is not a general case as it depends
on the fact that all rratio(j, i) are equal to 1.

Fig. 6 Initial values in the
matrix for the example task set S0 S1 S2 δi Qi(t)

S0 2 0 0 2 0

S1 0 0 0 0 2

S2 0 0 0 0 1

Fig. 7 Matrix after reservation
S1 releases 0.3 units of budget S0 S1 S2 δi Qi(t)

S0 2 0 0 2 0

S1 0 0.3 0 0.3 1.7

S2 0 0 0 0 1



620 Real-Time Syst (2012) 48:601–634

Fig. 8 Matrix after reservation
S2 asks for increasing its budget
by 0.5 units

S0 S1 S2 δi Qi(t)

S0 2 0 −0.2 1.8 0

S1 0 0.3 −0.3 0 1.7

S2 0.2 0.3 −0.5 0 1.5

4.2.4 Formal analysis of correctness

To demonstrate the correctness of the algorithm, it must be shown that the worst-case
response times of all reservations do not change when changing the budget of any
adaptive reservation.

Lemma 1 Algorithms 1 and 2 guarantee that ∀i, δi ≥ 0 at all times.

Proof First, observe that a reservation can only borrow from higher priority reserva-
tions, and give to lower priority ones. Therefore

∀h < i πi,h ≥ 0 ∧ ∀h > i πi,h ≤ 0 (21)

Algorithm 1 tries to increase the budget of reservation Si : every time it increases some
πi,j , it also decreases variable πi,i of the same amount. When j = i (first iteration
in the loop), it only decreases πi,i if δi > 0, and by at most δi . Therefore, if δi ≥ 0
when the reservation is activated, it cannot become negative by invoking Algorithm 1.
Algorithm 2 tries to decrease the budget by first increasing πi,i , and then giving it
back to higher priority reservations. In any case, if δi ≥ 0 when the reservation is
activated, it cannot become negative by invoking Algorithm 1. �

Lemma 2 Consider a reservation Sj . Then

∀i > j πj,j ≥ −
i∑

h=0,h�=j

πj,h

Proof By using Lemma 1 and Eq. (21), we can write:

δj ≥ 0 πj,j ≥ −
j−1∑

h=0

πj,h −
n∑

h=j+1

πj,h ≥ −
j−1∑

h=0

πj,h −
i∑

h=j+1

πj,h

�

Theorem 2 For any reservation Si , let Qi be its budget at time t , as modified by
one or more iterations of the Spare Pot algorithm, and QN

i its nominal budget. If
the reservation is fixed, then Qi = QN

i at all times. Let RN
i be the nominal response

time (computed during the acceptance test considering the nominal budget for all
reservations) and Ri be the worst-case response time of reservation Si computed
considering each reservation Sj ,0 ≤ j ≤ i to have a budget Qj . Then, Ri ≤ RN

i .



Real-Time Syst (2012) 48:601–634 621

Proof The theorem is proved by induction. Equation (16) can be rewritten as:

R
(k)
i = Qi +

i−1∑

j=0

⌈
R

(k−1)
i

Pj

⌉

Qj .

Induction base. ∀i,R
(0)
i = 0 ≤ RN

i .

Induction hypothesis. ∀i,R
(k−1)
i ≤ RN

i .

Induction step. We will prove that R
(k)
i ≤ RN

i . By the induction hypothesis,

�R
(k−1)
i

Pj
� ≤ �Ri

Pj
� = preempt(j, i). Assuming preempt(i, i) = 1,

R
(k)
i =

i∑

j=0

⌈
R

(k−1)
i

Pj

⌉

Qj ≤
i∑

j=0

preempt(j, i)Qj

Since Qi = QN
i − πi,i , we can rewrite:

R
(k)
i ≤

i∑

j=0

preempt(j, i)
(
QN

j − πj,j

) = RN
i −

i∑

j=0

preempt(j, i)πj,j

Now we need to prove that
∑i

j=0 rratio(j, i)πj,j ≥ 0.
From Lemma 2, we can write:

πj,j ≥ −
j−1∑

h=0

πj,h −
i∑

h=j+1

πj,h =
j−1∑

h=0

rratio(h, j)πh,j −
i∑

h=j+1

πj,h

By substituting in the previous inequality:

R
(k)
i ≤ RN

i −
i∑

j=0

j−1∑

h=0

preempt(j, i)rratio(h, j)πh,j +
i∑

j=0

i∑

h=j+1

preempt(j, i)πj,h

We now swap the two summations in the second term and swap variables in the third
term of the left-hand side of the inequality:

R
(k)
i ≤ RN

i −
i∑

h=0

i∑

j=h+1

preempt(j, i)rratio(h, j)πh,j +
i∑

h=0

i∑

j=h+1

preempt(h, i)πh,j

By definition of rratio:

rratio(h, j) ≥ preempt(h, i)

preempt(j, i)

By substituting in the previous inequality:

R
(k)
i ≤ RN

i −
i∑

h=0

i∑

j=h+1

preempt(h, i)πh,j +
i∑

h=0

i∑

j=h+1

preempt(h, i)πh,j = RN
i

�



622 Real-Time Syst (2012) 48:601–634

4.2.5 Complexity of Spare-Pot

The complexity of this method is analysed in two different phases. During the admis-
sion control, it has the same complexity of SchedPoint. In some cases (large number
of tasks and long periods), this can be very large. As anticipate, admission control is
not a critical part of the system, and it can be performed by a appropriate service task.

After the tasks have been admitted, the algorithm is run at every task instance. The
complexity of the method is linear in the number of reservations (O(n)). In the worst
case, the lowest priority reservation would have to check all δi of the higher priority
ones. Nevertheless, there are two reasons why this may be considerably lower in the
average case. First, the higher priority reservations have to check for less rows of
the matrix in the worst-case, so the complexity is proportional to the priority level,
that is (O(i)). Second, it may be the case that the next higher priority reservation
has enough spare budget to satisfy the demand, so the complexity in the best case is
constant (O(1)).

4.3 Reservation dynamically joining or leaving the system

At some point, a new reservation can ask to join the system. As described in
Sect. 4.2.2, the system performs admission control by using nominal budgets. If the
test is successful, we have to insert the reservation in the system in which all existing
reservations may have a budget that is different from their nominal one. Therefore,
there may not be enough free utilisation to insert the new reservation. This problem is
common to all algorithms presented till now as it depends on a structural property of
our framework: spare bandwidth is re-distributed to the needing tasks. The problem
is particularly relevant for the Spare Pot algorithm because all the rratio parameters
may need to be changed due to the new reservation joining. Therefore, before insert-
ing the new reservation, we have to wait for the system to return to the initial state.
It is possible to make use of the supervisor to force all reservations to return to their
nominal state, regardless of the control command. This may take at most Pmax units
of time, where Pmax is the largest reservation period. Once all reservations return to
their nominal budget, we can update the relevant variables (for example, in case of
the Spare-Pot algorithm, we can add the new row into the matrix and update all rratio
parameters) and then insert the new reservation in the system. Such procedure can be
seen as a mode-change.

The fact that the controller command is ignored during the mode change causes
additional errors in the control algorithms that drive the adaptive reservations. The
amount of error and the consequences of such an approach depend on the applica-
tion and on the feedback controller. However, the longest delay we have to wait is
equal to the longest period of any reservation in the system. If all reservations have
short enough periods, the problem can be limited by adding some robustness to the
controllers.

5 Simulation experiments

In this section we present the results of two set of simulation experiments. The al-
gorithms proposed in Sects. 4.1 and 4.2 are evaluated under different working condi-



Real-Time Syst (2012) 48:601–634 623

tions, following two different approaches. In the first one, we tested the performance
of all algorithms to follow random variations in the budget requirements for different
utilization factors. The simulation was performed using a MATLAB implementation
of all algorithms.

In the second approach, the general framework with the adaptive reservations con-
trolled by feedback control algorithms and a supervisor has been implemented in
RTSIM (Lipari and Bertolini). It is important to notice that RTSIM is a very com-
plete event oriented simulator that contemplates the kernel load. Thus, the results
it produces are quite close to a real implementation. In this experiment, the Spare-
Pot, the Scheduling Points’ Exact Method, and a fixed distribution of the band-
width among servers were implemented and confronted to two dynamic priority ap-
proaches: CBS-EDF and CBS-EDF with hard reservation (Abeni and Buttazzo 1998;
Marzario et al. 2004). The feedback control algorithm has been imported from the
ARSIM library (Cucinotta and Lipari).

5.1 Saturation points

For the first approach, five thousand systems of 10 tasks each were created with ran-
dom periods uniformly distributed in the interval [50,800]. Tasks have variable ex-
ecution times, and average execution times randomly selected as to give system’s
utilization factors varying from 0.65 to 0.85.

As explained in Sect. 4, a saturation occurs whenever a task demands a certain bud-
get that can not be provided by the supervisor. In that case, the supervisor computes
the maximum amount of budget allowed, and the reservation is said to be saturated.

Each task is allocated to a reservation with period equal to the task’s period, and
budget equal to its average execution time. The schedulability of the system was
verified and a Spare Pot Sporadic Server with period equal to the lowest period among
all reservations was created. The budget of the Spare Pot server has been maximized
keeping the entire system schedulable, according to Eq. (2).

For each system, the Exact, Intersect, Scaling, UpBound and SparePot methods
were run according to the following conditions.

A clairvoyant feedback control algorithm was assigned to each task, which knows
in advance the execution time of each instance of the tasks and asks the supervisor for
the correct budget to the next task instance. The supervisor checks if the request can
be satisfied, and updates the corresponding reservation budget. If the reservation is
saturated, a variable is incremented that counts the total number of saturations. This
variable indicates the ability of the supervisor to satisfy the task requests, and hence
to take advantage of the available spare bandwidth in the system. The more effective
is the supervisor, the least the number of saturations; therefore, this variable can be
considered one direct performance index of the schedulability test implemented by
the supervisor.

Figure 9 shows the results of the first set of experiments. As can be seen, the exact
method has always the lowest amount of saturation points, as expected. Therefore, it
acts as a reference optimal algorithm. However, as we will see in Sect. 5.2, its high
complexity makes it impractical for use in a on-line supervisor.

The intersect method shows very similar performance, and in most cases it is indis-
tinguishable from the Exact method. This means that the algorithm selects almost all



624 Real-Time Syst (2012) 48:601–634

Fig. 9 Saturation in random variations. o Upper bound. × Spare Pot. � Scaling. * Intersect. � Exact

important scheduling points from the complete (exponential) set of points. However,
it still has quadratic complexity O(n2) in the number n of tasks in the system, which
could make it unfit when n is particularly large. The upBound and Scaling algorithms
show the worst results: although they show low complexity, in many cases their per-
formance may not be considered good enough for the job, especially at high load.
Algorithm Spare-Pot shows better performance under high load conditions, while it
does not behave very well in small loads. One reason for this behavior may be due to
the fact that in Spare-Pot a reservation can only donate to low-priority reservations:
this means that if a low priority reservation executes less than its nominal budget, its
extra budget cannot be reused by higher priority reservations.

5.2 Complexity

In this section, we measure experimentally the computational cost of every algorithm.
In particular, we measured the number of multiplications (or divisions) required to
reach the result for each one of the 5 schedulability tests presented in this paper, using
the MATLAB simulator. We only measured the complexity of the stationary phase.
The preparation phase is different for each algorithm and in some cases requires the
solution of an optimization problem with linear programming routines like in the
upBound method.

Two different approaches were followed for the evaluation of the complexity. In
the first one, the amount of multiplications are measured for each different utilization
factor. In the second approach, the utilization factor is fixed to 70 % and the number
of tasks is varied from 10 to 50. For each system the amount of multiplications are
counted and represented.

Table 2 shows the theoretical complexity, the expected amount of multiplications
and the actual average amount of multiplications obtained from the simulation for
the set of ten tasks. The actual amount of multiplications is lower than the expected
one. The improvement in the performance comes from the fact that many scheduling
points are repeated and so it is not necessary to repeat the multiplications. In par-
ticular, for the case of the Exact and Intersect methods, an important memory space
should be reserved for storing the intermediate results.



Real-Time Syst (2012) 48:601–634 625

Table 2 Computational costs
Method O(.) Expected Simulated

Exact n2n 10240 815

Intersect n2 100 58

Scaling n 10 5.5

UpBound 1 1

SparePot n 10 4.2

Fig. 10 Multiplications performed. o Upper bound. × Spare Pot. � Scaling. * Intersect. � Exact

Figure 10 shows the average amount of multiplications for different utilization
factors. Please notice that the y axis is in logarithmic scale. The results show that the
complexity is independent of the utilization factor.

Figure 11 shows the variation in the complexity as the number of tasks is incre-
mented. Again, please notice that the y axis is in logarithmic scale. As can be seen
UpBound has a constant complexity, while Scaling and the SparePot have a linear
increment with the amount of tasks. In the case of Intersect and Exact methods, the
complexity soon becomes much higher than the others: therefore, their use must be
carefully considered depending on the number of active reservations in the system.

The selection of a method to determine the variations in the reservations capacities
should be based on different aspects one of which is the complexity. Obviously, the
Exact method gives the best results and the system can accommodate more variations
and the amount of saturations is reduced. However, there is an important cost asso-
ciated both in the preparation phase and in the stationary one. The Intersect method
reduces the complexity and provides similar results to the Exact one. However, for
this particular example, it still is one order of magnitude more expensive in terms of
complexity than the other methods. The Scaling and Upper Bound methods are very
simple, but they results are not good for an adaptive system as they easily reach the
saturation. Finally, the Spare-Pot algorithm proposed in this paper, has a complex-
ity similar to the Scaling method, and it can be a good option in terms of perfor-
mance/cost ratio.



626 Real-Time Syst (2012) 48:601–634

Fig. 11 Multiplications performed. o Upper bound. × Spare Pot. � Scaling. * Intersect. � Exact

5.3 Tardiness

In the second set of experiments, the entire framework was simulated with RTSIM.
For the experiments, seven tasks were defined. Four of them represent a fix load while
the other three represent a variable load. The last ones are named multimedia tasks,
and their computation times are obtained from true video-frames decoding times of
the Matrix movie. The computation times of these have a great variability and the
worst case can vary between 1.5 and 4 times the average one.

In the first place, each multimedia task is scheduled through a Sporadic Server and
the whole system under Rate Monotonic. The percentage of missed deadlines and the
average tardiness is measured for each one of the multimedia tasks as the fixed load
increments its participation in the system’s utilization factor from 0.32 to 0.57. For
each combination, three different policies for the budget of the sporadic servers are
considered:

– In the first one, fixed reservations are considered. The amount of spare bandwidth
is evenly distributed among the three multimedia servers.

– In the second and third ones, adaptive reservations are considered. In the sec-
ond case, the supervisor used the Spare-Pot algorithm to handle the incre-
ment/decrement of the budgets.

– In the third case, and the one used as benchmark, the exact computation of the
budgets’ increments/decrements is performed following the SchedPoints method.

For the adaptive reservation cases, the bandwidth is dynamically adjusted follow-
ing some kind of predictor/controller mechanism. In particular, the feedback con-
troller is configured with a predictor estimating the maximum of the next job com-
putation time as the maximum observed over a moving window including the last
24 jobs, and a control algorithm aiming to guarantee a probability of deadline non-
violation (PDNV controller) of 1.0, based on such estimate (see Palopoli et al. 2008
for details about this control algorithm).

In the second place, the same configuration for load tasks and multimedia ones was
scheduled with a dynamic priorities approach. The reservations were implemented
through CBS (Abeni and Buttazzo 1998) and CBS-HR (Marzario et al. 2004). The



Real-Time Syst (2012) 48:601–634 627

Table 3 System’s description
Type Cmin Cmax Cavg T p

L – 35000 1

M 1502 14177 4250 40000 2

L – 50000 3

M 1494 6908 4327 60000 4

L – 70000 5

M 1493 6934 4323 80000 6

L – 100000 7

Table 4 % M1 missed deadlines

Method 32 37 42 47 52 57

Fix 0.200 0.300 0.281 3.928 37.273 49.55

SparePot 0.492 0.492 0.492 12.866 16.799 43.734

SchedPoint 0.492 0.492 0.492 0.492 0.492 2.607

CBS-EDF 0 0 0 0 0.010 0.030

CBSHR-EDF 0.503 0.503 0.503 0.503 0.503 0.503

Table 5 % M2 missed deadlines

Method 32 37 42 47 52 57

Fix 0 0 0.45 2.113 45.241 60.264

SparePot 0.528 0.528 0.528 0.664 13.094 45.029

SchedPoint 0.528 0.573 0.573 0.573 0.604 2.49

CBS-EDF 0 0 0 0 0 0.060

CBSHR-EDF 0.528 0.528 0.528 0.528 0.573 0.573

controller was the same used for the fixed priority case. These experiments were
included because EDF scheduling allows for a better utilization of the processor so it
can be used as a general benchmark.

Table 3 presents the tasks priorities, periods and mean, max and minimum com-
putation times for the multimedia tasks. For the fix load tasks only the periods and
priorities are presented because their computation times will vary in the experiments
to evaluate the performance of the SparePot algorithm. Multimedia tasks are marked
with “M” and fix load tasks with “L”.

The results for the second set of experiments are presented in Tables 4, 5, 6, 7, 8
and 9 and Figs. 12, 13, 14, 15, 16 and 17. In the first three tables, the percentage of
missed deadlines for the different multimedia tasks scheduled with the five methods
for the different fixed loads are presented. In the last three tables, the tardiness for the
multimedia tasks are presented in the same way. The simulation time was set as to
have 10000 instances for the first multimedia task, 6667 instances for the second one
and 5000 instances for the third one.



628 Real-Time Syst (2012) 48:601–634

Table 6 % M3 missed deadlines

Method 32 37 42 47 52 57

Fix 0 0 0 0.1 38.034 55.135

SparePot 0.543 0.543 0.543 1.420 9.601 79.376

SchedPoint 0.543 0.543 0.543 0.543 0.624 3.262

CBS-EDF 0 0 0 0 0 0

CBSHR-EDF 0.543 0.543 0.543 0.543 0.543 0.543

Table 7 % M1 tardiness

Method 32 37 42 47 52 57

Fix 0.000026 0.000115 0.000190 0.000948 0.009398 0.013706

SparePot 0.000387 0.000392 0.000398 0.000640 0.004151 0.012200

SchedPoint 0.000387 0.000392 0.000398 0.000403 0.000409 0.000963

CBS-EDF 0.000000 0.000000 0.000000 0.000000 0.000008 0.000027

CBSHR-EDF 0.000404 0.000410 0.000417 0.000423 0.000435 0.000459

Table 8 % M2 tardiness

Method 32 37 42 47 52 57

Fix 0.000000 0.000000 0.000025 0.001446 0.030512 0.043177

SparePot 0.000288 0.000310 0.000334 0.000581 0.009585 0.032271

SchedPoint 0.000288 0.000393 0.000422 0.000436 0.000460 0.002264

CBS-EDF 0.0 0.000000 0.000000 0.000000 0.000000 0.000064

CBSHR-EDF 0.000304 0.000332 0.000385 0.000426 0.000503 0.000584

Table 9 % M3 tardiness

Method 32 37 42 47 52 57

Fix 0.000000 0.000000 0.000000 0.000146 0.046148 0.067784

SparePot 0.000496 0.000511 0.000537 0.002113 0.022102 0.106333

SchedPoint 0.000992 0.001014 0.001073 0.001151 0.003592 0.025089

CBS-EDF 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

CBSHR-EDF 0.000480 0.000493 0.000517 0.000559 0.000645 0.000804

Results show that dynamic priorities methods outperform fixed priorities ones,
and this is no news. However, it is important to mark here that the utilization of
the Exact Scheduling Point method is not far in performance from the CBS with
Hard Reservation one. Percentage of deadlines missed and tardiness are naturally in
accordance. The Spare-Pot algorithm has a good behavior when the system has a
middle utilization factor.



Real-Time Syst (2012) 48:601–634 629

Fig. 12 M1 percentage deadlines missed. × Fix. + SparePot. o SchedPoints. � CBS. � CBS-hard

Fig. 13 M2 percentage deadlines missed. × Fix. + SparePot. o SchedPoints. � CBS. � CBS-hard

Fig. 14 M3 percentage deadlines missed. × Fix. + SparePot. o SchedPoints. � CBS. � CBS-hard

6 Conclusion and future work

In this paper the problem of managing the spare bandwidth in the system to handle
the budgets of adaptive reservations through feedback control under fixed priority



630 Real-Time Syst (2012) 48:601–634

Fig. 15 M1 tardiness. × Fix. + SparePot. o SchedPoints. � CBS. � CBS-hard

Fig. 16 M2 tardiness. × Fix. + SparePot. o SchedPoints. � CBS. � CBS-hard

Fig. 17 M3 tardiness. × Fix. + SparePot. o SchedPoints. � CBS. � CBS-hard

scheduling has been addressed. Five different solutions to this problem have been
presented and compared. The solutions have different performances and complexi-
ties in their implementations. Four of them are simplification of the exact schedu-



Real-Time Syst (2012) 48:601–634 631

lability test based on the Scheduling Points method. The fifth algorithm is a novel
algorithm presented in this paper, the Spare Pot, which has been proved correct. The
experiments conducted over random varying sets of tasks and on a particular appli-
cation like MPEG decoding, show that this solution is quite robust specially at high
utilization factors.

The proper choice of the method depends on the kind of system to be controlled
and the computational power of the hardware platform.

As future work, these algorithms will be implemented in the FRESCOR frame-
work to evaluate them under real loads. Also, a careful evaluation of the real compu-
tational requirements should be done because the theoretical bounds are rarely meet
in actual implementations.

References

Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-time systems. In: Proc 19th
IEEE real time systems symposium

Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-time systems. In: Proceedings
of the 19th IEEE real-time systems symposium, Madrid, Spain, December 1998, pp 4–13

Abeni L, Palopoli L, Buttazzo G (2000) On adaptive control techniques in real-time resource allocation.
In: Proceedings of the 12th Euromicro conference on real-time systems, Stockholm, Sweden, June
2000, pp 129–136

Abeni L, Palopoli L, Lipari G, Walpole J (2002) Analysis of a reservation feedback scheduler. In: Proc
23rd IEEE real time systems symposium

Abeni L, Cucinotta T, Lipari G, Marzario L, Palopoli L (2005) Qos management through adaptive reser-
vations. Real-Time Syst, 29(2–3):131–155

Almeida L, Anand M, Fischmeister S, Lee I (2007) A dynamic scheduling approach to designing flexible
safety-critical systems categories and subject descriptors. In: Proc of the 7th annual ACM conference
on embedded software EMSOFT

Audsley NC, Burns A, Richardson M, Tindell KW, Wellings AJ (1993) Applying new scheduling theory
to static priority pre-emptive scheduling. Softw Eng J 8(5):284–292

Bini E, Buttazzo GC (2004) Schedulability analysis of periodic fixed priority systems. IEEE Trans Comput
53(11):1462–1473

Bini E, Buttazzo GC, Buttazzo GM (2003) Rate monotonic scheduling: the hyperbolic bound. IEEE Trans
Comput 52(7):933–942

Bini E, Di Natale M, Buttazzo GC (2007) Sensitivity analysis for fixed-priority real-time systems. Real-
Time Syst 39(1–3):5–30

Bini E, Huyen T, Nguyen C, Richard P, Baruah SK (2009) A response-time bound in fixed-priority schedul-
ing with arbitrary deadlines. IEEE Trans Comput 58(2):279–286

Block A, Brandenburg B, Anderson JH, Quint S (2008) An adaptive framework for multiprocessor real-
time system. In: Euromicro conference on real-time systems. ECRTS’08, July 2008, pp 23–33

Burchard A, Liebeherr J, Oh Y, Son SH (1995) New strategies for assigning real-time tasks to multipro-
cessor systems. IEEE Trans Comput 44(12):1429–1442

Buttazzo G, Lipari G, Caccamo M, Abeni L (2002) Elastic scheduling for flexible workload management.
IEEE Trans Comput 51(3):289–302

Buttazzo G, Lipari G, Abeni L, Caccamo M (2005) Soft real-time systems: predictability vs. efficiency.
Springer, Berlin

Caccamo M, Buttazzo G, Sha L (2000a) Elastic feedback control. In: IEEE proceedings of the 12th Eu-
romicro conference on real-time systems, pp 121–128

Caccamo M, Buttazzo G, Sha L (2000b) Capacity sharing for overrun control. In: Proceedings of the 21st
IEEE real-time systems symposium, Orlando (FL), USA, December 2000, pp 295–304

Caccamo M, Buttazzo GC, Thomas DC (2005) Efficient reclaiming in reservation-based real-time systems
with variable execution times. IEEE Trans Comput 54(2):198–213

Chen D, Mok AK, Kuo T-W (2003) Utilization bound revisited. IEEE Trans Comput 52(3):351–361
Cucinotta T, Lipari G Adaptive reservation simulator. http://gna.org/projects/arsim

https://ive.sssup.it/projects/,DanaInfo=gna.org+arsim


632 Real-Time Syst (2012) 48:601–634

Cucinotta T, Palopoli L (2007) Feedback scheduling for pipelines of tasks. In: Proceedings of the 10th
international conference on hybrid systems: computation and control, HSCC’07. Springer, Berlin, pp
131–144

Cucinotta T, Palopoli L, Marzario L (2004a) Stochastic feedback-based control of qos in soft real-time
systems. In: 43rd IEEE conference on decision and control, 2004. CDC, vol 4, pp 3533–3538

Cucinotta T, Palopoli L, Marzario L, Lipari G, Abeni L (2004b) Adaptive reservations in a Linux environ-
ment. In: Proc of 10th IEEE real-time and embedded technology and applications symposium

Cucinotta T, Abeni L, Palopoli L, Lipari G (2011) A robust mechanism for adaptive scheduling of multi-
media applications. ACM Trans Embed Comput Syst 10(4):1–24

Han C-C, Tyan H-y (1997) A better polynomial-time schedulability test for real-time fixed-priority
scheduling algorithm. In: Proceedings of the 18th IEEE real-time systems symposium, San Fran-
cisco (CA), USA, December 1997, pp 36–45

Joseph M, Pandya PK (1986) Finding response times in a real-time system. Comput J 29(5):390–395
Lauzac S, Melhem R, Mossé D (2003) An improved rate-monotonic admission control and its applications.

IEEE Trans Comput 52(3):337–350
Lee C-G, Sha L, Peddi A (2004) Enhanced utilization bounds for QoS management. IEEE Trans Comput

53(2):187–200
Lehoczky JP, Sha L, Ding Y (1989) The rate-monotonic scheduling algorithm: exact characterization and

average case behavior. In: Proceedings of the 10th IEEE real-time systems symposium, Santa Monica
(CA), USA, December 1989, pp 166–171

Lipari G, Baruah SK (2000) Greedy reclamation of unused bandwidth in constant bandwidth servers. In:
Proceedings of the 12th Euromicro conference on real-time systems, Stockholm, Sweden, June 2000

Lipari G, Bertolini C Real-time simulator. http://rtsim.sssup.it/
Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard real-time environment.

J Assoc Comput Mach 20(1):46–61
Lu C, Stankovic J, Tao G, Son S (2002) Feedback control real-time scheduling: framework, modeling and

algorithms. Real-Time Syst 23:85–126
Manabe Y, Aoyagi S (1998) A feasibility decision algorithm for rate monotonic and deadline monotonic

scheduling. Real-Time Syst 14(2):171–181
Marzario L, Lipari G, Balbastre P, Crespo A (2004) Iris: A new reclaiming algorithm for server-based

real-time systems. In: IEEE real-time and embedded technology and applications symposium, pp
211–218

Masrur A, Chakraborty S (2011) Near-optimal constant-time admission control for DM tasks via non-
uniform approximations. In: Proceedings of the 17th IEEE real-time and embedded technology and
applications symposium (RTAS), Chicago, IL, USA, pp 57–67

Palopoli L, Abeni L, Lipari G (2003a) On the applications of hybrid control to CPU reservations. In: Proc
of hybrid systems computation and control HSCC03. LNCS

Palopoli L, Cucinotta T, Bicchi A (2003b) Quality of service control in soft real-time application. In: Proc
42nd IEEE conference on decision and control, December 2003 pp 664–669

Palopoli L, Abeni L, Cucinotta T, Lipari G, Baruah SK (2008) Weighted feedback reclaiming for multi-
media applications. In: IEEE/ACM/IFIP workshop on embedded systems for real-time multimedia.
ESTImedia 2008, October 2008 pp 121–126

Park D-W, Natarajan S, Kanevsky A, Kim MJ (1995) A generalized utilization bound test for fixed-priority
real-time scheduling. In: Proceedings of the 2nd international workshop on real-time systems and
applications, Tokyo, Japan, October 1995, pp 73–77

Rajkumar R, Juvva K, Molano A, Oikawa S (1998) Resource kernels: A resource-centric approach to real-
time and multimedia systems. In: Proc of the SPIE/ACM conference on multimedia computing and
networking, January 1998

Sprunt B, Sha L, Lehoczky JP (1989) Aperiodic task scheduling for hard-real-time systems. Real-Time
Syst 1:27–60

Stankovic JA, Lu C, Son SH (1998) The case for feedback control in real-time scheduling. In: Proceedings
of the IEEE Euromicro conference on real-time, York, England, June 1998

Zabos A, Davis R, Burns A, Gonzalez Harbour M (2009) Spare capacity distribution using exact response-
time analysis. In: 17th international conference on real-time and network systems, Paris, France,
October 2009

https://ive.sssup.it/,DanaInfo=rtsim.sssup.it+


Real-Time Syst (2012) 48:601–634 633

Rodrigo Santos is Adjunt Professor at the Department of Electrical
Engineering and Computers at Universidad Nacional del Sur of Com-
puter Architectures and Networks and Adjunt Researcher at Instituto
de Investigaciones en Ingeniería Eléctrica of CONICET. His research
interests are centered around embedded systems and mobile communi-
cation protocols in the real-time field. In 2003, 2005, 2007 and 2010
he has been a visiting scholar at the Scuola Superiore Sant’Anna, Uni-
versity of Pisa, Italy. He is the President of the Latin American Cen-
ter of Studies in Informatics (CLEI) (2008–2012) and Vice-chair for
the Working Group 6.9 of TC 6 IFIP: Communications in Developing
Countries.

Giuseppe Lipari is Associate Professor of Computer Engineering (sci-
entific sector ING-INF/05) at Scuola Superiore Sant’Anna. He is part
of the RETIS lab of the Center of Excellence for Information, Commu-
nication and Perception Engineering. He is Senior IEEE member, and
associate editor of Journal of System Architecture. His research inter-
ests are in real-time systems, real-time operating systems, scheduling
algorithms, embedded systems, wireless sensor networks. He has re-
cently moved to the Ecole Normal Supérieure at Cachan France for a
two year period.

Enrico Bini is Marie-Curie fellow at Lund University. He was assistant
professor at Scuola Superiore Sant’Anna in 2006–2012. He achieved
a Computer Engineering degree at University of Pisa in 2000, and the
PhD at Scuola Superiore Sant’Anna in 2004 on Real-Time Systems. In
2010 he also achieved a second Master degree in Mathematics with a
thesis on optimal sampling for control systems. He visited the Univer-
sity of North Carolina at Chapel Hill (10 months in 2003) and INRIA
Rocquencourt (4 months in 2009).
His research interests include: scheduling algorithms, optimization, dis-
crete mathematics, real-time operating systems, and control systems.
He published more than 70 papers in journals and international confer-
ences, won 2 best paper awards, and was invited in 36 program com-
mittees of international conferences.



634 Real-Time Syst (2012) 48:601–634

Tommaso Cucinotta graduated in Computer Engineering at the Uni-
versity of Pisa in 2000, and received the PhD degree in Computer En-
gineering from the Scuola Superiore Sant’Anna of Pisa in 2004. He has
been Assistant Professor of Computer Engineering at the Real-Time
Systems Laboratory (ReTiS) of Scuola Superiore Sant’Anna, with re-
search activities in the areas of real-time and embedded systems, with
a particular focus on realtime support for general-purpose Operating
Systems, and security, with a particular focus on smart-card based au-
thentication. Since January 2012, he is a Researcher at Alcatel-Lucent
Bell Laboratories in Dublin, Ireland.


	On-line schedulability tests for adaptive reservations in fixed priority scheduling
	Abstract
	Introduction
	Contributions of this paper

	Related works
	System model
	Adaptive reservations
	Supervisor
	Motivation for feedback scheduling
	Comparison with spare reclamation algorithms

	The supervisor
	Scheduling Points algorithms
	The intersect method
	The scaling method
	The upBound method

	Spare-Pot algorithm
	Start-up phase
	Negotiation phase
	Stationary phase
	Formal analysis of correctness
	Complexity of Spare-Pot

	Reservation dynamically joining or leaving the system

	Simulation experiments
	Saturation points
	Complexity
	Tardiness

	Conclusion and future work
	References


