
A robust mechanism for adaptive scheduling of

multimedia applications

TOMMASO CUCINOTTA∗, LUCA ABENI†, LUIGI PALOPOLI†, GIUSEPPE LIPARI∗

∗Scuola Superiore Sant’Anna, †University of Trento

We propose an adaptive scheduling technique to schedule highly dynamic multimedia tasks on a
CPU. We use a combination of two techniques: the first one is a feedback mechanism to track the
resource requirements of the tasks based on “local” observations. The second one is a mechanism
that operates with a “global” visibility, reclaiming unused bandwidth. The combination proves

very effective: resource reclaiming increases the robustness of the feedback, while the identification
of the correct bandwidth made by the feedback increases the effectiveness of the reclamation. We
offer both theoretical results and an extensive experimental validation of the approach.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-purpose
and application-based systems—Real-time and embedded systems; D.4.7 [Software]: Operating
systems - Organization and design—real-time systems and embedded systems; D.4.8 [Software]:
Operating systems - Performance—Stochastic analysis; J.7 [Computer applications]: Comput-
ers in other systems—real-time

General Terms: Design, Performance, Experimentation

1. INTRODUCTION

In recent years, personal computers have made inroad in the domain of multimedia
applications. The increasing computational power and flexibility of modern PCs
enable an effective sharing of hardware resources between concurrent applications
with obvious cost reductions. An interesting example is offered by video encoding:
using a computer endowed with a modern operating system, it is possible to en-
code multiple streams at once, using a different concurrent task for each stream,
operating with different qualities and different coding standards.

When the multimedia information has to be processed in real-time (e.g., for a
video-conferencing system), the ability for each task to meet its timing constraints
has a very important impact on the Quality of Service (QoS) perceived by the user.

Authors’ addresses: T. Cucinotta and G. Lipari, ReTiS Lab, Scuola Superiore Sant’Anna, Piazza
dei Martiri della Libertà, Pisa, Italy; L. Abeni and L. Palopoli, DISI, University of Trento, Via di
Sommarive 14, Povo (TN), Italy
This work has been supported by the European Commission by means of the FRES-
COR (http://www.frescor.org FP6/2005/IST/5-034026, IRMOS (http://www.irmosproject.
eu) FP7/2008/ICT/214777 and CHAT FP7/2008/ICT/224428 European Projects.
This project has also been supported by the Provincia Autonoma di Trento by means of the RoSE
PAT/CRS Project.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54929894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 · Tommaso Cucinotta et al.

Fig. 1. Trace of execution
times from the execution of a
MPEG encoder.

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
n

c
o

d
in

g
 t

im
e

 (
µ

 s
)

Frame number

Example trace

Contrary to the safety critical applications considered by the classical theory of real-
time systems [Liu and Layland 1973], occasional violations of timing constraints do
not invalidate the correctness of the computation as long as the anomaly is kept
in check. Designers are then confronted with a problem of challenging complexity:
how to schedule the CPU making an efficient use of its computation power and
providing the tasks with a controlled level of timing performance.

It is commonly argued that an effective tool to tackle this problem is a scheduling
algorithm enabling one to reserve a given fraction of the CPU to each task (from
here on referred to as bandwidth). However, bandwidth reservation is not per se a
conclusive solution. Indeed, the bandwidth reserved to each task has to be sufficient
to accommodate its computing requests, which are very much dependent on the data
the task processes and can be highly time–varying. As an example, consider the
trace of execution times for an MPEG encoding application reported in Figure 1.
As well as the “natural” variations due to the different type of frames in the Group
of Pictures (GOP), we can clearly see “structural variations” due to changes in the
scene. For instance, the average computation time clearly decreases from frame
1500 to frame 2500. This trend continues in the frames from 2500 to 5000. In a
situation like this, 1) it is difficult to make an initial choice for the bandwidth, 2)
even when this information is available, a static choice for the bandwidth could be,
at some point in time, wasteful and, at some others, insufficient.

A possible approach to deal with this problem is the so-called feedback scheduling :
a feedback controller operates on top of the scheduler adapting the scheduling
parameters according to the sensed evolution of the task’s timing behaviour. A
mechanism like this can be made more effective using a combination of sensing (on
the current state of the task) and of predictions (on the future evolution of the
workload). This idea underpins the approach known as “adaptive reservations”,
which is one of the cornerstones of the construction presented in this paper.

Adaptive reservations (AR), as presented in previous work [Abeni and Buttazzo
1999; Abeni et al. 2004], suffer two major limitations. The first one is on the per-
formance guarantees that can be provided: since an AR has a limited scope (it only
looks at the evolution of one task), it can offer performance guarantees only when
its bandwidth requests are totally granted. When the system is heavily loaded, as
a result of the interference with other adaptive reservations, such guarantees can
in principle be disrupted. The second limitation is that, since AR use predictions,

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 3

the performance can be weakened by prediction errors.

A second approach is endowing the scheduler with a reclaiming mechanism [Lipari
and Baruah 2000; Lin and Brandt 2005]. When a task uses less bandwidth than
the one it is allocated, the extra bandwidth can be redistributed to the other tasks.
Contrary to AR, this mechanism leverages a visibility of the state of the system
as a whole. However, its application is not sufficient for two reasons. First, the
mechanism can only operate when the system is not overloaded (otherwise there
is no bandwidth to reclaim). Second, if the bandwidth allocated to the tasks is
not close to their actual needs, the mechanism is not able to compensate. This is
particularly true for periodic tasks with different periods, as discussed in Section 6.

1.1 Paper contributions

The most important contribution of this paper is to show a beneficial synergy
between two different mechanisms: adaptive reservations and a global supervisor
that implements a reclaiming policy. On one hand the robustness of adaptive
reservations can be improved by providing additional bandwidth if available; on the
other hand the reclaiming mechanism can be more effective by a correct allocation
of bandwidth to the tasks. In order for these goals to be fulfilled, some important
conditions have to be met on the design of the two components. As far as the design
of adaptive reservations is concerned, the control law has to guarantee a level of
performance to each task regardless of the presence of other tasks, provided that “a
contract” with the global supervisor is respected. We propose a theoretical analysis
whereby such guarantees can indeed be offered as far as the contract is respected.

The supervisor is required to properly manage overload conditions, in which the
bandwidth requests of the different tasks have to be re-scaled without ever violating
the contract. When the available bandwidth exceeds the request of the adaptive
reservation control loop, the reclaiming mechanism of the supervisor has to re-
distribute it to the tasks with a small latency and “fairly”, so that the increased
robustness deriving from the extra bandwidth is received by all tasks. Another im-
portant contribution of this paper is a resource reclaiming algorithm, called SHRUB,
that operates with a policy of this kind.

1.2 Paper structure

The paper is organised as follows. In Section 2, we offer background information
on the tasking model, on the scheduling algorithm that we use and on how it is
used in the adaptive reservations approach. In Section 3 we provide an overview of
our approach. In Section 4, we describe the particular type of AR proposed in this
paper, putting the stress on its performance guarantees. In Section 5, we describe
our global supervisor showing how it can manage overload conditions and how it
reclaims bandwidth using the SHRUB algorithm. In Section 6, we highlight the
problem arising from the use of reclaiming alone through a simple example, then
in Section 7, we report results from our experimental validation conducted over a
real implementation of the proposed mechanism. Finally, In Section 8, we describe
the most relevant related work, and in Section 9 we offer our conclusions.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Tommaso Cucinotta et al.

2. BACKGROUND INFORMATION

In this paper, we consider a set of real-time tasks {τi} running on a shared CPU.
Even though the discussion that follows refers to a single CPU, the approach pre-
sented in this paper is equally applicable to the case of multi-processor systems,
scheduled by a partitioned real-time scheduling policy where real-time tasks are
statically bound to each CPU. An example of this kind is the partitioned EDF
scheduler proposed by Faggioli et al. [Faggioli et al. 2009].

A real-time task τi is activated multiple times, generating a sequence of jobs Ji,j .
Each job Ji,j arrives (becomes executable) at time ri,j , and finishes at time fi,j

after executing for a time ci, j . Job Ji,j is also characterised by a deadline di,j ,
that is respected if fi,j ≤ di,j , and is missed if fi,j > di,j . In this paper, we focus
on multimedia applications, for which deadlines are considered soft constraints,
i.e., a few violations are deemed acceptable and lead to a performance degradation,
rather than cause severe faults (like in hard real-time systems). In this case, reason-
able performance metrics can be related to the frequency (or the probability) of a
deadline miss or to the maximum deviation of the finishing-time from the deadline.

We focus on periodic tasks, where arrival times are spaced out by a task period Ti,
i.e., ri,j+1 = ri,j + Ti, and each activation time is also the deadline of the previous
instance di,j = ri,j + Ti = ri,j+1. For example, a video-conferencing application
where each frame is acquired from a camera at a fixed rate, encoded, transmitted,
decoded and displayed, fits well in this model.

As multiple real-time tasks may be concurrently active at the same time, a real-
time scheduling mechanism is used to properly schedule the CPU among them. To
this purpose, we advocate the use of resource reservations. Each task τi is associated
a reservation (Qi, Pi), with the meaning that τi is allowed to execute for Qi time
units (budget) in every interval of length Pi (reservation period). The bandwidth
allocated to the task is Bi = Qi/Pi. It is important not to confuse the reservation
period Pi with the task period Ti : although Pi = Ti is a perfectly reasonable
assignment, it is often useful to set the reservation period so that Ti = NiPi, Ni ∈ N.

In this paper, we use a novel reservation-based scheduler called SHRUB, that
may be considered as an evolution of the Constant Bandwidth Server (CBS) [Abeni
and Buttazzo 1998]. In CBS, reservations are realised by means of an Earliest
Deadline First (EDF) scheduler which schedules tasks {τi} based on their scheduling

deadlines {ds
i}, dynamically managed by the CBS algorithm. When a new job

Ji,j arrives, the server checks whether it can be scheduled using the last assigned
deadline, otherwise the request is assigned an initial deadline equal to ri,j + Pi.
Each time the job executes for Qi time units (i.e., its budget is depleted), its
scheduling deadline is postponed by Pi. Thereby, each task is prevented from
executing for more than Qi units with the same deadline, and it is guaranteed a
minimum bandwidth of Bi = Qi/Pi regardless of the behaviour of the other tasks,
under the assumption that the following schedulability condition holds:

∑

i

Bi ≤ Umax, (1)

where Umax ≤ 1 is a user defined constant. For scheduling algorithms based on
EDF (as CBS and SHRUB), in theory Umax can be set equal to 1. However, from

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 5

Symbol Meaning Symbol Meaning

τi i-th task Qi, j reservation budget for job Ji, j

Ji, j j-th job of task τi Bi, j =
Qi, j

Pi
reserved bandwidth for job Ji, j

ci, j computation time of job Ji, j ǫi, j scheduling error of job Ji, j

Ci = {Ci, j} stochastic process for {ci, j} Ei = {Ei, j} stochastic process for {ǫi, j}
Ti activation period of task τi Hi, j percentile estimate for Ci, j

Pi reservation period for τi Bi min. bandwidth guaranteed to τi

Ni integer number s.t. Ti = NiPi Qi min. budget guaranteed to τi

Table I. Main symbols used in the paper (subscript i is omitted in the paper when the discussion
refers to a specific task).

a practical perspective, one may want to limit the maximum amount of bandwidth
reserved to real-time tasks choosing a value for Umax smaller than 1. For example,
this may be useful to avoid starvation of the underlying OS activities in case of
overload of the real-time tasks. Further details about SHRUB follow in Section 5.2.

For the reader’s convenience, Table I summarises the most important symbols
used throughout the paper.

2.1 Dynamic model for the scheduling error

A CPU reservation can be considered as a discrete-event dynamic system whose
evolution is observed at the termination of each job Ji, j . In this work, we propose
to use the scheduling budget Qi as a control input: while the reservation period Pi

is held constant, the budget Qi, j can be freely assigned for each job Ji, j to meet the
QoS goals. This choice, as discussed next, allows us to build a clear dynamic model
describing the evolution of the QoS as a function of the control input Qi, j and of
an exogenous disturbance term given by the computation time ci, j . The parameter
Pi can be used to decide the granularity of the CPU allocation (a smaller value for
Pi corresponds to a more fluid allocation but to a greater overhead).

Instrumental to this construction is the definition of the scheduling error as the
difference between the server scheduling deadline ds

i, j (evaluated at the finishing-
time of each job) and the soft deadline of the task:

ǫi, j , ds
i,j − di,j = ds

i,j − ri,j − Ti. (2)

A positive value for ǫi, j means that Ji, j finished late, receiving less bandwidth than
it needed. Conversely, a negative value means that it finished earlier than its dead-
line, so the assigned bandwidth was greater than needed. A null value corresponds
to a perfect match between the task workload and the resource assignment.

As shown in previous work [Abeni et al. 2002], in a hard CBS an approximation
for the dynamic evolution of the scheduling error is given by:

ǫi, j+1 = S(ǫi, j) +

⌈

ci, j+1

Qi, j+1

⌉

Pi − Ti (3)

where the function S(·) is defined as: S(x) ,

{

x if x > 0
0 otherwise

.

Figure 2 shows an example of scheduling error evolution: a task with a constant
computation time of 240 time units for the first three jobs (c1, 1 = c1, 2 = c1, 3 = 240)
and a period of T1 = 100 time units (equal to its relative deadline) is served by

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Tommaso Cucinotta et al.

Fig. 2. Example of
scheduling error evo-
lution.

a reservation having a constant period of P1 = 10 time units (corresponding to
the tics on the x axis), and a variable budget equal to Q1, 1 = 3 time units for
the first job, Q1, 2 = 2 for the second one and Q1, 3 = 3 again for the third one
(corresponding to the height of the greyed boxes in the drawing). The corresponding
scheduling error values of ǫ1, 1 = −20, ǫ1, 2 = 30 and ǫ1, 3 = 0, computed by means
of Equation (3), are also highlighted in the drawing (horizontal thick little arrows).
The presence of the S(·) function in the dynamic model for the scheduling error
evolution models the fact that, if a job completes late (e.g., J1, 2 in the example),
then its tardiness accumulates on the response-time of the next job. However, if it
completes early (e.g., J1, 1 in the example), then the next job is not affected, because
its activation does not happen before the begin of the subsequent period. Therefore,
negative scheduling error values are immediately “forgotten” by the system, from
a scheduling error evolution perspective. Recording a negative value for ǫi, j can be
useful, from the perspective design perspective, because it can help reconstruct the
time series of the computation times used in our control scheme.

Thanks to the fact that we keep the reservation period constant, we can simplify
the notation by normalising the scheduling error to the server period. Therefore,
ǫi, j will actually be a shorthand for

ǫi, j

Pi
and the model will be described by:

ǫi, j+1 = S(ǫi, j) +

⌈

ci, j+1

Qi,j+1

⌉

− Ni. (4)

Note that, with the boundary condition ǫi, 0 = 0 (the first job completion time
ǫi, 1 cannot be delayed by any previous job), in the above evolution model ǫi, j is
constrained to be an integer variable: ǫi, j ∈ N.

The model described above assumes a constant bandwidth throughout the job
execution. However, it can easily be generalised [Cucinotta et al. 2008] to the case
in which changes are allowed, without ever violating Condition (1).

3. APPROACH OVERVIEW

The solution we advocate to cope with time-varying and unknown workload from
the task is sketched in Figure 3. It consists of an adaptive scheduling mechanism
based on the combination of a set of task controllers that formulate bandwidth
requests for the each task, and of a global mechanism (resource supervisor) that
manages the CPU using a global visibility of the different requests from the tasks.

Local controllers use a combination of a feedback controller and of a predictor.
Each feedback controller monitors the so called scheduling error, which quantifies
the deviation of each job from its timing constraints, and is responsible for control-
ling the evolution of such quantity within proper bounds. The predictor provides

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 7

Fig. 3. The main architectural
blocks of the proposed solution

an estimate of the computation time expected for the next job.
The resource supervisor ensures a correct and efficient utilisation of the scheduler.

Namely, if the bandwidth requests coming from the different tasks exceed the total
availability of CPU, a compression function re-scales the value of the bandwidth
granted to the tasks within the limits. On the contrary, if at some point in time the
total required bandwidth is below the total availability, an expansion function is
used to maximise the CPU utilisation. The additional bandwidth received by each
task increases the robustness in meeting its timing constraints (e.g., alleviating the
adverse impact of an incorrect prediction).

Our proposed design for the task controller and the resource supervisor, along
with the performance guarantees that can be offered to each task making specific
assumptions on their interaction, will be discussed in the following sections.

4. CONTROL SCHEME AND ANALYSIS

Given the system in Equation (4), we aim at a control law providing guarantees
on the evolution of the scheduling error (and ultimately on the delays introduced
on each job). A hard real-time approach, based on the worst case execution time
of the tasks, would lead to an over-provisioning of resources, which for multimedia
applications is neither acceptable nor actually needed.

In contrast, for soft real-time systems, one can take two different approaches.
The first one is providing probabilistic guarantees: the deadline of each job is met
with a given probability. The second one is deterministic: a task can occasionally
fail to meet its deadline but the maximum delay is bounded and the duration of
this anomaly is limited.

As discussed next, we make a joint use of both techniques. Note that, for simpli-
fying notation, the subscript i will be henceforth removed whenever the discussion
is referred to a specific task τi.

4.1 Formal control goals

The probabilistic guarantees on the scheduling error evolution may be formalised
as follows. Let us consider the sequence of computation times {cj} as a particular
realisation of a stochastic process {Cj} , and the sequence of scheduling errors {ǫj}
resulting from Equation (4) as a realisation of the stochastic process {Ej} . Then,
whenever computing the control action at step j, we may state the following formal
control goal for the controller:

Pr {Ej+1 ≤ 0} ≥ π (5)

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Tommaso Cucinotta et al.

where π is the minimum desired probability of keeping the scheduling error evolu-
tion within a stability region {ǫj ≤ 0}, i.e., meeting the deadline constraint.

However, such requirement is not easy to fulfil, because of the difficulty in com-
puting in closed form the probability in the left-hand. Therefore, first we focus on
a weaker requirement, that, as it will be shown later, is easier to fulfil:

Pr {Ej+1 ≤ 0 | Ej = ǫj} ≥ π. (6)

In other words, we require that the probability of meeting the deadline in the
next step given the current value of the scheduling error be lower bounded. Since
the controller has to compensate for the accumulated delay using additional band-
width, the equation above can only be enforced if the scheduling error is inside a
region (attractivity basin) {ǫj ≤ R}, with R ∈ N ∪ {0}. The shortcoming of such a
requirement is that it specifies the behaviour of the system only when ǫj ≤ R.

For this reason, the requirement has been complemented with a deterministic
requirement on the trajectories followed by ǫj over a time horizon, which can be
formalised as follows. Assume that, at a time j0, the scheduling error exits the
attractivity basin, i.e., ǫj0−1 ≤ R ∧ ǫj0 > R. Then, we want: 1) to steer it back,
in a maximum number of steps L, into a region such that the requirement (6) can
be fulfilled; 2) the maximum deviation of the scheduling error to be bounded by a
value ǫMAX . These two requirements can be formally expressed as:

{

∃j̃ ∈ j0 + 1, . . . , j0 + L s.t. Pr

{

Ej̃+1 ≤ 0 | Ej̃ = ǫj̃

}

≥ π

∀j ∈ j0, . . . , j̃, ǫj ≤ ǫMAX .
(7)

As discussed at the end of the section, the attainment of both requirements in
Equations (6) and (7), whenever possible, allows us to compute a bound for the
unconditioned probability in Equation (5).

4.2 Control law

We now focus on how a task controller can be designed that formulates a correct
bandwidth requirement to attain the goals above looking at one task in isolation.

The control law implemented by the task controller relies on a bound Hj+1 of
the computation time for the next job. Such value is provided by a predictor com-
ponent. The predictor can use information on the past history of the computation
times (recorded by the scheduler) and use the standard general purpose techniques
developed for time-series prediction [Falk et al. 2006]. A different possibility for
the predictor is to use application specific techniques (such as the one developed
by Roitzsch and others [Roitzsch and Pohlack 2006] for MPEG decoding times)
that execute a very quick preliminary analysis on the data item to be processed
to infer the computation time required for processing it. Our particular solution is
discussed in Section 7.

At each step j, our control law assigns the budget (request) Qj+1 for the next
job based on the current value of the scheduling error ǫj and on the Hj+1 estimate
as follows:

Qj+1 = Q(ǫj , Hj+1) =

{

Hj+1

N−S(ǫj) if ǫj ≤ Ej

PUmax otherwise.
(8)

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
u

d
g

e
t

Scheduling error (server-period units)

Control Law

EjMj

Required budget
Minimum guaranteed budget

Fig. 4. Example of required
and granted budget values, at
varying ǫj values, for Hj+1 =
5, P = 10,N = 10.

where Ej , N −
⌈

Hj+1

PUmax

⌉

constitutes a limit value for the current scheduling

error over which the required bandwidth is saturated to Umax. The control law is
visualised by the dashed line in Figure 4, where the budget assignment is shown for
various values of ǫj , and for Hj+1 = 5, P = 10, N = 10. Clearly, if the task receives
more bandwidth than required in Equation (8), the robustness with respect to
prediction errors is increased, and so is the probability for ǫj to remain in the
stability region. This is consistent with the requirement in Equation (5), which
establishes a minimum probability π. This motivates the application of reclaiming
techniques as discussed in Section 5.2.

As shown in Figure 3, the bandwidth required by a task controller is not nec-
essarily granted by the supervisor, which enforces the schedulability constraint in
Equation (1) at all times. These two contrasting needs are reconciled by the notion
of minimum guaranteed bandwidth B ≤ Umax, and the corresponding minimum

guaranteed budget Q = B
P

: when a task controller issues a budget request lower

than Q, the request is granted by the supervisor; however, if the request is higher
than Q, then the supervisor grants at least a budget of Q, and exactly Q in the
worst-case. In the next subsections, we will discuss the closed loop guarantees that
each task can be offered depending on the value of the minimum guaranteed budget.

4.2.1 Conditioned probabilistic guarantee. If the budget assignment of a task is
governed by the law presented in Equation (8), then the controlled task meets
requirement in Equation (6) as formally stated in the following result (see the
appendix for the proof).

Theorem 4.1. Consider the system defined in Equation (4). If the following

conditions hold:

(1) the predictor produces an estimate Hj+1 of Cj+1 such that

Pr {Cj+1 ≤ Hj+1} ≥ π; (9)

(2) R satisfies R ≤ Ej , N −
⌈

Hj+1

PUmax

⌉

;

(3) Jj+1 is granted at least the budget Q(ǫj , Hj+1) as defined by Equation (8);

then, the requirement in Equation (6) is fulfilled.

Another way to look at the above statement is that, as long as ǫj is below the
point the control law saturates (point Ej in Figure 4), it is reduced in the stability
region with at least a probability equal to the one that the predictor succeeds.
This point Ej changes for each job, and it has to always be greater than the upper
bound R of the attractivity basin. Based on the result above, a more conservative

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Tommaso Cucinotta et al.

prediction (i.e., a larger Hj) allows for increasing the probability π, but it also
causes the increase of the required bandwidth.

Due to the above result, the just introduced control law is referred to as PDNV
controller (Probability of Deadline Non-Violation).

It is clear that this property is valid only as long as the supervisor grants the
budget required by the task controller. As an example, the continuous line of Fig-
ure 4 shows the actual budget assignment that may result, with a request indicated
by the dashed line, after the supervision action with a minimum budget of Q = 2.5.
In the worst-case in which no more than Q is available for the task, the budget
assignment is saturated to Q after the point ǫj = Mj where the requested budget
Q(ǫj , Hj+1) intercepts Q :

Mj , N −

⌈

Hj+1

Q

⌉

. (10)

It is not difficult to account for such supervisory action in Theorem 4.1, as shown
in the following result (see the appendix for the proof).

Theorem 4.2. If the following conditions hold:

(1) Pr {Cj+1 ≤ Hj+1} ≥ π;

(2) the minimum budget Q configured for the task within the supervisor satisfies

Q ≥
supj Hj

N − R
; (11)

then, the control law in Equation (8) fulfils the requirement in Equation (6).

From a practical standpoint, the supj Hj quantity in the just stated result is the
critical value to obtain: recalling that Hj is supposed to verify Equation (9), it is
reasonable to use, in such expression, an estimate of the π percentile of the com-
putation times distribution, as available from previous benchmarking runs of the
real-time task. Such approach will find its validation in our experimental results
shown in Section 7. However, in strongly dynamic systems in which the Cj distri-
bution is expected to be time-varying, the sup operator in the above result would
amount to requiring a value of Hj+1 representing a percentile estimation of Cj+1

under worst-case conditions. While such a value provides very robust guarantees
to the real-time task, we envision the possibility to configure the supervisor with
a value of Q which is actually lower, in order to increase the average saturation
level of resources. Clearly, the guarantees provided to the application would be
correspondingly weakened.

4.2.2 Deterministic guarantee. To complete the picture, we need to specify the
behaviour of the system when the scheduling error falls, at some point in time,
outside of the attractivity basin. Here, our requirement formalised in Equation (7)
comes into play: when the scheduling error is greater than R then it has to return
below R in a finite number of steps and its maximum value has to be limited. To
show a condition that guarantees this property, we need to introduce the maximum
error incurred by the predictor: ρ , supj

cj

Hj
, assumed to be > 1. We can then state

the following result, whose proof is in the appendix.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 11

Theorem 4.3. Consider the system (4), controlled by the control law in Equa-

tion (8) with a predictor characterised by ρ. Let φV denote the worst-case moving

average of the computation times over V samples: φV , suph
1
V

∑V
i=1 ch+i. If the

following conditions hold:

(1) for some V ∈ N,

Q >
φV

N − 1
; (12)

(2) 0 < R ≤ infj Mj , where Mj = N −
⌈

Hj+1

Q

⌉

;

then, the requirement in Equation (7) is satisfied with:

L =

(ρ−1)N+1−R

N−1−
φV

Q

ǫMAX =

⌈

V φV

Q

⌉

+ N(ρ − 1) − (N − 1).

(13)

In this theorem, we require a level of guaranteed bandwidth sufficient to outweigh
any “moving average” of the computation times over a time horizon of length V ,
and this value is generally greater than the mean value of the process. Therefore,
our condition is generally stronger than the classical stochastic stability condition
(commonplace in queueing theory [Kleinrock and Gail 1976]), but it also leads to
stronger guarantees. Indeed, not only do we guarantee that the scheduling error
will have a finite mean, but also that it remains bounded.

4.2.3 Unconditioned probabilistic guarantee. Now we are in the position to con-
sider jointly the probabilistic and deterministic results shown above, in order to
provide a bound to the unconditioned probability that the scheduling error resides
in the stability region ǫj ≤ 0. This way, the limitations of Theorem 4.2 may be
overcome by considering also Theorem 4.3.

In order to carry out the analysis, we assume that the process Cj is independent
(but non-necessarily identically distributed), and that Hj are deterministic func-
tions of j. This is possible, for instance, if the distributions of Cj can be known or
estimated by the predictor.

We are now able to state the following result, whose proof is in the appendix.

Theorem 4.4. Consider the system in Equation (4), controlled by the control

law in Equation (8). Assume that conditions of Theorems 4.2 and 4.3 hold, that Cj

is an independent process, and that ∀j, Mj ≥ 0. Then:

Pr {ǫj ≤ 0} ≥
π

1 + L(1 − π)
(14)

where L is the bound defined in Equation (13).

The bound introduced above can clearly be refined leveraging a better knowledge
of the computation times. For example, knowing their exact probability distribution
allows for a numerical analysis based on the resolution of a Markov chain with a

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Tommaso Cucinotta et al.

state for each possible ǫj value. However, Equation 14 establishes in closed form
clear limitations and minimal guarantees on the performance of our controller,
which may be conveniently leveraged at design time.

Finally, note that, if the process Cj were correlated, and if we had a model
describing the correlation (e.g., an ARMA or an ARMAX process), then we could
generalise the analysis proposed in this section. In this case, a punctual value of
the scheduling error would not be sufficient anymore to represent the state of the
MC, but we would need to augment the state to account for the past history of Cj .

5. GLOBAL SUPERVISOR

The main objectives of the supervisor can be summarised as follows.
First, when the task controllers implementing the adaptive reservation control

loops formulate bandwidth requests violating the constraint in Equation (1), the
supervisor enacts a compression to reduce the total bandwidth within the limit
Umax. Such condition is possible due to the independence among the various control
loops. Even when the admission control is based on conservative estimates for Q,
in our framework it may still happen that, temporarily, a task exhibits unforeseen
spikes of computation times and/or the scheduling error exhibits unforeseen delays,
therefore the associated task controller would submit to the supervisor a request
which is greater than Q.

Second, when the total request of the tasks is below Umax, or when a task finishes
a job without using all the allocated budget, a reclaiming mechanism redistributes
the unused budget to the other tasks. This expansion has the evident effect of
reducing the scheduling error. Therefore, it alleviates potential problems arising
from wrong predictions of the computation times, and increases the robustness of
the controllers.

In the rest of the section, we will show how the proposed supervisor achieves these
goals. Then, we will briefly discuss some important implementation details related
to the interaction between AR and the reclaiming mechanism, which introduce
latency in actuating the control decision.

5.1 Compression

In managing overload conditions (i.e., the bandwidth requests Bi exceed Umax),
the supervisor, in order to not violate Equation (1), grants to each task at least its
minimum guaranteed bandwidth if requested, i.e., a value of Bm

i , min
{

Bi, Bi

}

.

Then, it distributes the available bandwidth Ua , Umax−
∑

i Bm
i according to some

system-wide policy, accounting for a set of weights {wi} representing the relative
importance of applications, obtaining the granted bandwidth figures Bg

i :

Bg
i = Bm

i + fi

(

Ua,
{

Bj − Bm
j

}

j
, {wj}

)

(15)

with the constraint that
∑

i fi = Ua. We do not mandate any particular function to
use as fi(·), for example a simple linear decrease of the additional bandwidth from
(Bi − Bm

i) to 0, which starts with a gradient oriented along the vector of weights
may be used (as done in the experiments shown in Section 7).

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 13

5.2 The reclaiming mechanism

The expansion mechanism was designed considering two important requirements.
The first requirement is to have a very reduced latency between the time the spare
bandwidth becomes available and the time it is received by the tasks. The second
one is to fairly distribute the extra bandwidth between the tasks, so as to increase
the robustness of all controllers.

To this purpose, we developed SHRUB (Shared Reclamation of Unused Bandwidth),
a variant of GRUB (Greedy Reclamation of Unused Bandwidth [Lipari and Baruah
2000]), which in turn is based on the CBS [Abeni and Buttazzo 1998]. GRUB is
known to be very responsive in reclaiming the unused bandwidth, however it does
it in a greedy way. SHRUB, instead, performs a fair redistribution of the unused
bandwidth. Before describing SHRUB, it is useful to quickly overview GRUB.

5.2.1 GRUB in a nutshell. As for the CBS algorithm, in GRUB each task is
assigned a reservation (Qi, Pi). Like in the CBS algorithm, every reservation has a
current budget qi and a scheduling deadline ds

i , both initialised to 0. For reservations
whose corresponding task is not active, GRUB also defines the idling instant Ii =
ds

i −
qi

Pi
.

In GRUB we introduce the concept of state of a reservation. At any time, a
reservation can be in one of the following states: inactive if the corresponding task is
not active and its idling instant is in the past; activeContending if the corresponding
task is active (i.e., it has a pending job); activeNonContending if the corresponding
task is not active and the idling instant is in the future.

Initially, all reservations are in the inactive state. For a given reservation we have
the following state transitions:

(1) when a task is activated at time t : a) if the reservation is inactive it changes
to the activeContending state, the budget is updated to qi = Qi and the scheduling
deadline is set to ds

i = t + Pi; b) if the reservation is in the activeNonContending

state, it moves to the activeContending state maintaining its budget and deadline
unchanged;

(2) when a job completes, if there are no more pending jobs, the reservation
changes its state to a) activeNonContending if the idling instant is in the future; b)
to the inactive state if the idling instant is in the past or at the current time;

(3) when the budget is depleted, following the CBS rule, it is immediately recharged
to qi = Qi and the scheduling deadline is postponed to ds

i = ds
i + Pi;

(4) finally, a reservation remains in activeNonContending state until its idling
instant, then it moves to the inactive state.

All reservations in the activeContending and in the activeNonContending state are
said to be active. The sum of the bandwidths of the active reservations Bact(t)
represents the total amount of used bandwidth in the system at a given time.
Bact(t) is increased every time a reservation goes from inactive to activeContending,
and is decreased every time a reservation enters the inactive state.

The main idea behind GRUB is that the bandwidth (Umax − Bact(t)) is not
used and can be re-distributed among needing reservations. The re-distribution is
performed by acting on the rule to update the budgets.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Tommaso Cucinotta et al.

0 2 4 6 8 10 12 14 16 18 20 22 24

S1

S2

S3

0 2 4 6 8 10 12 14 16 18 20 22 24

S1

S2

S3

Fig. 5. Example of schedule with GRUBand with SHRUB. GRUB assigns all the excess bandwidth
to S1, while SHRUB fairly distributes it between S1 and S3

In GRUB all the reclaimed bandwidth is greedily assigned to the current executing
reservation. The rule1 for updating the budget is:

dqi =

{

(1 − Umax + Bact)dt for executing reserv.
0 for non exec. reserv.

(16)

5.2.2 The SHRUB algorithm. GRUB is a greedy algorithm because all excess
bandwidth is assigned to the executing reservation. Therefore, in certain patholog-
ical cases it may happen that one reservation gets all the spare bandwidth, and the
others get nothing.

An example is shown in the left side of Figure 5. Consider three reservations S1,
S2, and S3, with bandwidth B1 = 0.25, B2 = 0.5, and B3 = 0.25, and with periods
P1 = 8, P2 = 4, and P3 = 12, respectively. We assume that Umax = 1. Also,
for the sake of clarity, and to highlight the properties of GRUB, we assume that
reservations S1 and S3 are always activeContending, while reservation S2 serves a
sporadic task with constant execution time equal to C2 = 2 and arrivals at t = 4,
t = 8, t = 14 and t = 18.

At time t = 0, only S1 and S3 are active, hence Bact = 0.5. S1 is the reservation
that executes, because its deadline is the earliest, and its budget is decreased at a
rate of Bact. Hence, its budget is exhausted at time t = 4 (instead of t2 as in the
CBS algorithm), and its deadline is postponed to d1 = 16. The reclaiming intervals
are highlighted by a grey colour in the execution time. At this time, reservation S2

is activated (the sporadic task arrives at t = 4), so Bact = 1. The active bandwidth
remains equal to 1 until t = 12, when the idling instant for S2 is reached, and the
reservation becomes inactive. At this point, reservation S1 can execute decreasing
its budget at a rate Bact = 0.5, and thus its budget is exhausted at time t = 14.

In this example all excess bandwidth is reclaimed by S1, while S2 does not get any
advantage. It has been shown with extensive simulations [Lipari and Baruah 2000]
that, if tasks are independent and computation times uniformly distributed, in the
long period the excess bandwidth is distributed among all reservations in proportion
to their bandwidth Bi. However, such fair distribution cannot be controlled.

To overcome this problem, we present the SHRUB algorithm that fairly distributes
the unused bandwidth among all active reservations in proportion to their weights.

1Due to space constraints, we cannot report the full rationale for the updating rule. The interested
reader can refer to [Lipari and Baruah 2000] for further details.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 15

In SHRUB, every reservation is assigned a weight wi ≥ 0.
Then, SHRUB is almost identical to GRUB, the only difference being in the rule

to update the budgets. Instead of using Equation (16), it uses a more fair rule:

dqi =

{
(

−1 + (Umax − Bact)
wi

Wact

)

dt for exec. reserv.

(Umax − Bact)
wi

Wact
dt for non exec. reserv.

(17)

where Wact(t) ,
∑

act wi is the sum of the weights of all active reservations. Note
that, in case one or more weights is null, the budget update rule must only be
applied if Wact(t) > 0, otherwise dqi = −dt for the currently executing server, and
dqi = 0 for the others.

To show how this new rule enables a fair distribution of the extra bandwidth,
consider again the example of Figure 5. Suppose that all reservations are assigned
equal weights wi = 1. By scheduling the same system with SHRUB we obtain the
schedule shown in the right side of the figure. Notice that S1 now executes for less
than in the previous case, and part of the excess bandwidth is now assigned to S3.

It can be shown that the introduction of this new feature in SHRUB does not
invalidate the basic properties of GRUB. In particular, with SHRUB:

— the temporal isolation property holds, that is each reservation is always allo-
cated at least the reserved amount of execution Qi = BiPi every period Pi;

— the hard schedulability property holds, which states that if a hard real-time
periodic task with worst case computation time Ci and period Ti is assigned a
reservation with Qi ≥ Ci and period Pi ≤ Ti, then it will respect all its deadlines;

— no assumption is necessary on the task model; both algorithms can be used
for periodic, sporadic and aperiodic tasks.

In addition, by properly assigning the weights, it is possible to obtain a range of
possible behaviours with respect to the reclaiming. For example, by assigning a null
weight, the reservation simply does not receive any extra bandwidth. With a very
large weight, instead, almost all extra bandwidth will be assigned to the correspond-
ing reservation. Therefore, it is possible to precisely control the extra bandwidth
allocation by simply assigning the appropriate weights to the reservations.

A comprehensive description of SHRUB is out of the scope of this paper and can
be found in [Baruah et al. 2008].

5.3 Combining feedback and reclaiming

Feedback scheduling can be applied on top of any resource reservation scheduler,
including the ones that provide expansion through reclaiming. However, we must
ensure that the two mechanisms do not interfere with each other, and instead work
together by re-enforcing their good properties.

The first condition regards the control goal. In certain cases, the control goal is
to maintain the scheduling error around 0, or more generally, to control both the
upper and the lower bound of the scheduling error. This implies that the finishing
time of the task is always within a certain interval of time. Therefore, controlling
both the lower and the upper bound of the scheduling can be used to control the
finishing time jitter of a task.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Tommaso Cucinotta et al.

In such cases, while the control law tends to assign small budgets to prevent the
task from completing too early, the reclaiming algorithm tends to reclaim unused
bandwidth thus increasing the reservation budget and nullifying the effects of the
feedback. When using SHRUB, it is possible to assign to these tasks an AR with
a weight wi = 0. Thus, this task will never receive any extra bandwidth, and the
control strategy will not be disturbed.

Instead, a controller whose goal is to control only an upper bound of the schedul-
ing error (like the one used in this paper) is perfectly compatible with reclaiming
policies. Furthermore, reclaiming can greatly reinforce the control action, since they
are in the same direction: in case of positive scheduling error, or in case of increas-
ing execution time prediction, the controller will increase the reservation budget.
Such command will be reinforced if there is spare bandwidth in the system by the
reclaiming policy. Therefore, reclaiming increases the robustness of the controller,
for example by making the control performance less sensible to prediction errors.
Tasks should be assigned a SHRUB weight that is larger for more sensible tasks.

5.4 Actuation latency

A particular care must be taken in finding a correct timing between the bandwidth
request of the adaptive reservations and the reclaiming mechanism. Indeed, Equa-
tions (16) and (17) assume that the reserved budget is constant over time. Adaptive
reservations, instead, modify the budget according to the control law at the end
of every job of the task. In SHRUB, reservation budgets can be modified in two
cases: when the reservation is inactive, or at its idling time (i.e., when it is about to
become idle). This means that a control action increasing the current budget, that
is performed when the reservation is activeContending or activeNonContending, must
be delayed until one of the two previous conditions is verified. This interval of time
is usually very small, and in the worst-case it is equal to the maximum server-period
among reservations in the system: Pmax , max {Pi} . Note that, in the scheduler
we used, it is possible to limit the maximum value of the reservation period for all
reservations admitted in the system, by means of a system-wide configuration file.
See [Cucinotta 2008] for details.

However, the effect of this delay on control design is merely the need for some
over-provisioning of the required budget, as compared to the figures appearing in
Section 4. In fact, it is not difficult to show that, in case of an increase of the
current budget Qi,j+1 > Qi,j , and in the worst-case of a maximum actuation delay
of Pmax, Equation (4) may be rectified as follows:

ǫi, j+1 ≤ S(ǫi, j) + ki +

⌈

ci, j+1 − kiQi,j

Qi,j+1

⌉

− Ni, (18)

where ki ,

⌈

P max

Pi

⌉

. Such expression has been obtained under the simplifying

assumption that ci, j+1 ≥ kiQi,j . For example, the direct consequence on the control
law in Equation (8) is that it should be modified as:

Q̃(ǫj , Hj+1) =

{

Hj+1−kiQi,j

N−S(ǫj)−ki
if ǫj ≤ M̃j

Q otherwise,
(19)

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 17

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

Arrival time (ms)

Computation times (relative to period)

First task
Second task Fig. 6. Computation times for the

two tasks.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 200 250 300 350 400 450 500 550 600

Time (ms)

Shrub-PDNV
Shrub-only

Fig. 7. Scheduling errors experienced
by the second task. Each scheduling

error value is represented as a hori-
zontal step, starting from the finish-
ing time of the job it relates to, up to
the next job finishing time (horizontal
steps are only drawn for ease of read-
ing).

with M̃j , N −
⌈

Hj+1−kiQi,j

Q

⌉

. Similarly, other presented results may be easily

reformulated accounting for the delay.

6. ADVANTAGES OF COMBINING FEEDBACK AND RECLAIMING

Before providing full experimental evidence of the advantages of our approach, we
discuss here how the feedback scheduling mechanism can improve the action of
resource reclaiming. Clearly, if the system is overloaded, the reclaiming cannot
operate. In this section, we show on a simple example that, if the computation
requirements of the task change and if the periods are different, the reclaiming
mechanism does not offer an acceptable performance even in the case of under-
loaded system. The example has been developed using an open-source adaptive
reservation simulation framework (ARSim) 2, able to simulate the evolution of the
system defined in Equation (4) along with the adaptive reservations and the global
supervisor (as depicted in Figure 3). In particular, we implemented in ARSim the
controller described in Section 4 and the supervisor described in Section 5.

The example is composed of two tasks τ1 and τ2. The periods of the tasks are

quite different from each other, namely T1 = 40ms and T2 = 10ms. The server
periods P1 and P2 were chosen very small so that their impact was not relevant
for the purposes of this simple example. The workload is structured to require,
on the average, a bandwidth of 60% for the first task, and of 40% for the second
one. Therefore, it is quite natural to tune the minimum guaranteed bandwidths for
the two tasks to achieve the same relative ratio. However, there is a time window
(jobs with activation between the 250th and the 620th millisecond, as zoomed in
Figure 6) in which the workload dynamically changes so that the requirements of
the two tasks are basically swapped.

During this time window, the system is still schedulable, but, as shown by the
simulation, the dynamic reclaiming performed by the SHRUB algorithm alone is
not sufficient to compensate for the mismatch between the bandwidth values stat-
ically guaranteed to applications and the actual workload. In fact, the large over-
allocation of bandwidth performed for the first task leads it to finish very early (its
scheduling error is not shown in the pictures), so that until the next activation the
CPU is entirely granted to the second task. Unfortunately, up to this moment, the

2More information is available at: https://gna.org/projects/arsim.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Tommaso Cucinotta et al.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 200 250 300 350 400 450 500 550 600

Time (ms)

Shrub-only

Actual bandwidth
Required bandwidth

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 200 250 300 350 400 450 500 550 600

Time (ms)

Shrub-PDNV

Actual bandwidth
Required bandwidth

Fig. 8. Required and actually granted bandwidth when using SHRUB alone without feedback
(left) and together with the PDNV controller (right).

second task has already completed two periods, with a bandwidth allocation lower
than required, therefore there are deadline violations (highlighted by the positive
scheduling error values of the dashed line in the scheduling error temporal evolution
in Figure 7). On the other hand, the subsequent two jobs of the second task before
the reactivation of the first task are completed with a 100% CPU allocation, so they
complete much earlier (the negative scheduling error values of the same line). The
problem is that for the second task, during this temporary mismatch between the
static allocation and the actual workload, only two periods out of every sequence of
four take actually advantage of the SHRUB dynamic bandwidth reclaiming, while
the other two periods suffer of the same problems that would occur with a statically
fixed bandwidth allocation.

When we use a PDNV controller together with SHRUB, after a few jobs, the
controllers steer the bandwidth requirements of the two tasks to match the actual
workload, as shown in the right side of Figure 8. Here, we show the bandwidth re-
quired by the controller versus the actual granted bandwidths after the compression
performed by the supervisor. Also, compare this temporal behaviour with the case
of SHRUB only, shown on the left side of the figure. This results in a scheduling
error that, after the adaptation of the controller, returns to respect the deadline
for every job (continuous line).

7. EXPERIMENTS

This section validates the techniques shown in Sections 4 and 5, by showing ex-
perimental results gathered by running real applications using an implementation
of the proposed techniques in the Linux OS. More specifically, we used the AQu-
oSA [Cucinotta et al. 2008] (Adaptive Quality of Service Architecture) open-source
real-time scheduler for Linux.

The open-source AQuoSA architecture is composed of:

—a patch to the Linux kernel that exposes scheduling-related events to dynamically
loadable modules;

—a dynamically loadable module implementing an EDF-based real-time scheduler;

—a user-space library that may be used by applications to exploit the real-time
services of the patched real-time kernel;

—a QoS management library that embeds a set of QoS control laws and prediction
algorithms of general use, and allows for the realisation of application-specific
bandwidth allocation policies and/or predictors by applications themselves.

The AQuoSA scheduler has been modified so as to implement the SHRUB soft

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 19

τ1 τ2

Period (Ti) 15ms 60ms

Frequency (1/Ti) 66.6Hz 16.6Hz

Mean of {ci, j} 3ms 27.5ms

Standard deviation of {ci, j} 0.5ms 3.65ms

Minimum of {ci, j} 1.25ms 8.7ms

Maximum of {ci, j} 8.3ms 38.25ms

83.33rd percentile of {ci, j} 3.42ms 30.7ms

Table II. Statistics on the workload of the two MPEG decoding tasks.

reservation scheduler as described in Section 5, and the QoS management library
has been extended to include an implementation of the QoS control technique in-
troduced in Section 4. Further details about the architecture may be found in the
project website3. The experiments that follow have been performed on a Linux
Kernel 2.6.22 series, with support for high-resolution timers.

7.1 Prediction algorithm

The prediction algorithm we used in our experiments is a general purpose one that
estimates the π percentile of Hj+1 assuming it exhibits a distribution similar to the

last observed k computation times Cj, k , (cj , . . . , cj−k+1) . Therefore, defining

h , ⌈k(1 − π)⌉ + 1, the predictor computes the hth maximum of the samples. For
example, with k = 12, the value of Hj+1 corresponding to π = 100% is achieved
by taking of course the first maximum of Cj, k; for π ∈ [91.6, 1[it takes the 2nd

maximum, for π ∈ [83.3, 91.6[the 3rd one, and so on. The rationale behind this
idea is to produce a value Hj that is an upper-bound for cj with a probability
approximately equal to the percentile.

7.2 Synthetic real-time application

First of all, the results obtained through simulations in Section 6 have been con-
firmed by performing some experiments. In other words, the feedback scheduler
implementation presented above has been used to highlight the advantages of com-
bining feedback and reclaiming. To this purpose, we used a synthetic application
adhering to the model of periodic real-time task as defined in Section 2. For each
job Jjj, executes for a time cj read from an input file (the application needs is tuned
in order to build a mapping of expected execution times to number of repetitions
of an internal loop that performs some algebraic operations).

We ran concurrently two instances of the synthetic application, running at activa-
tion rates of 16.66Hz and 66.66Hz, using as trace files the execution times needed
for decoding MPEG videos, as measured during real runs of the FFmpeg4 software.
In all the runs the server period for the tasks has been set to 3ms. The relevant
timing parameters of the two tasks are summarised in Table II.

The experiment has been repeated with three different configurations: first, we
used only the feedback-based QoS control loop to allocate the job-by-job bandwidth
allocation for the two tasks, and the underlying scheduler has been configured so

3More information is available at: http://aquosa.sourceforge.net.
4More information is available at: http://www.ffmpeg.org.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Tommaso Cucinotta et al.

as to provide a hard resource reservation policy (i.e., a policy that gives each task
its allocated bandwidth without any reclaiming). Then, we repeated the experi-
ment without feedback-based QoS control, by using only the SHRUB soft resource
reservation scheduling policy, at varying configurations for the static bandwidth
allocation for the two tasks. Finally, we ran the applications with the both the
PNDV controller and the SHRUB based supervisor enabled.

The results of the experiment are shown in the left side of Figure 9. The picture
reports on the horizontal and vertical axes the experimental probabilities of respect-
ing the deadline achieved, respectively, for the periodic task with lower and higher
period. Therefore, each point in the graph represents the experimental probabilities
of achieving a scheduling error less than or equal to the deadline, for the two tasks.
The “ideal” region that result on such a plot is a point on the upper-right region,
close to a value of 1 for the PDNV of both tasks.

When applying the feedback alone (single point tagged with “FB Only”), the
tasks realise PDNV values that are close to the percentiles configured into the QoS
controllers, both set to 83, 33%. Though, the particular overload characteristics of
the task set causes the second task to exhibit a lower PDNV, with a value of 70%.

When using the SHRUB scheduling policy alone without feedback-based schedul-
ing (points on the curve tagged as “SHRUB Only”, obtained at varying values of
the minimum guaranteed bandwidths), we achieved a slightly better PDNV value
for the second task (close to 70%), but a significantly higher PDNV value for the
first task. This is to be expected, because whilst the PDNV controllers are run with
hard resource reservations (therefore the residual bandwidth is not reclaimed if a
job terminates before the foreseen ck has been consumed), the SHRUB scheduling
policy is capable of using the full processing power of the processor, thus it achieves
better average performances. Also, it is shown that, playing with the static allo-
cation for the two tasks, it is possible to increase the PDNV value for one of the
tasks, but at the cost of a very steep decrease in the PDNV value of the other task.

Finally, when using the proposed technique, constituted by the QoS control loop
and the SHRUB soft reservation scheduling policy, the points on the curve tagged
as “FB and SHRUB” are achieved. In this case, the PDNV values achieved are
higher, and they generally outperform the performance achieved by the SHRUB

technique alone, for each configuration of minimum guaranteed bandwidths.

This proves that not only does the combination of the two techniques achieve a
good system performance, independently of the initial configuration of the system in
terms of minimum guaranteed bandwidths (self-tuning), but also that the achievable
performance is significantly higher than the one that is achievable when using either
the feedback alone or the SHRUB scheduling policy alone.

Basically, feedback-based scheduling is capable of adding adaptivity and self-
tuning to SHRUB, and SHRUB is capable of adding robustness with respect to
prediction errors to the QoS controllers used within feedback-based scheduling.

After verifying the advantages offered by the combination of reclaiming and feed-
back scheduling the theory of QoS control loops described in Section 4 has been
verified. To this purpose, we ran an experiment similar to the previous one, where
the two tasks have been run with a hard resource reservation policy and feedback-
based dynamic resource allocation. We used the same QoS controller configuration

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 21

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
e

2
 <

=
 0

Probe1 <= 0

FB Only
SHRUB Only

FB and SHRUB
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-5 -4 -3 -2 -1 0 1 2 3

P
(ε

 =

e
)

e

SHRUB
No SHRUB

Fig. 9. Probability of Deadline Non-Violation for two synthetic real-time tasks (left). Scheduling
error PMF for streamer with and without SHRUB (right).

of the previous subsection, with both percentiles tuned on the 83.33% values. In
this case, we tuned the experiment by performing a prior benchmarking phase in
which the minimum value for the guaranteed budget respecting Equation (12) in
Theorem 4.3 has been computed. Then, we ran the experiment a second time by
using these minimum guaranteed budgets, increased relatively by 1% (the execution
times never repeat exactly equal). The QoS control loops exhibited PDNV values
of 95.97% and 85.59% for the two tasks, and, examining the collected job-by-job
scheduling error evolution, we found that the maximum number of jobs for which
the scheduling error was outside of the target region (E ≤ 0) was 2 for both tasks,
perfectly matching the theoretical condition of Theorem 4.3.

7.3 Experiments on a real application

After performing some experiments with synthetic real-time applications, a real
multimedia application has been used for testing the feedback scheduler implemen-
tation. The selected application is a video encoder/streamer based on FFmpeg.
Such application (referenced to as streamer from now on) grabs frames from a
video4linux2 device, encodes them in MPEG4 [m4v 2004] video (by using the
FFmpeg libavcodec library) and streams the encoded frames to remote clients by
using the RTP protocol [Schulzrinne et al. 2003].

First of all, a single instance of streamer has been used to verify that there is a
match between the guarantee provided by Theorem 4.4 and the experimental evi-
dence. To this end, a trace of the execution times of streamer has been recorded
and used to dimension the feedback parameters according to Theorem 4.4. Ac-
cording to such theorem, a feedback controller with P = T/6, Q/T = 0.78 using a
predictor which discards 2 samples every 12 is guaranteed to respect a task dead-
line (ǫ < 0) with a probability ≥ 0.83. This bound has been verified by scheduling
streamer with a controller characterised by the parameters mentioned above: when
SHRUB reclaiming is not used, the probability P{ǫ ≤ 0} to respect a deadline has
been measured as 0.931, while with SHRUB P{ǫ ≤ 0} = 0.9996. Since both these
values are larger than 0.83, Theorem 4.4 is verified.

The Probability Mass Function (PMF) of the measured scheduling error is dis-
played in the right side of Figure 9, which also shows the advantages provided
by SHRUB reclaiming. Such advantages are more visible in a second experiment,
where two instances of streamer have been run simultaneously (encoding smaller
frames, so the requested budgets are smaller), grabbing videos from two webcams
at 10fps and 30fps. Therefore, the system is composed by 2 tasks τ1 and τ2 with
periods T1 = 100ms and T2 = 33.3ms; the server periods are P1 = T1/6 and

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Tommaso Cucinotta et al.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

-5 -4 -3 -2 -1 0 1 2 3

P
(ε

 =

e
)

e

Feedback + Reclaiming
Feedback Only

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-5 -4 -3 -2 -1 0 1 2 3

P
(ε

 =

e
)

e

Feedback + Reclaiming
Feedback Only

Fig. 10. PMF of the scheduling errors for the first streamer instance (task τ1, on the left) and
the second one (τ2, on the right), when using feedback with and without reclaiming.

P2 = T2/6.
The experiment has been repeated by first using the feedback mechanism alone,

and then by using feedback + reclaiming. Figure 10 compares the PMF of the
scheduling error for the two tasks when the feedback mechanism is used without
any form of reclaiming, and when reclaiming is used together with the feedback.
By looking at the two figures it is possible to notice that the reclaiming mechanism
allows to reduce the scheduling error experienced by the two tasks. However, it
is difficult to quantify the improvements introduced by reclaiming. To compare
the results through a more objective and quantitative metrics, the experimental
probabilities P{ǫi ≤ 0} to respect the deadline have been measured.

When using feedback-based scheduling only (without reclaiming), such proba-
bilities have been experimentally measured as P{ǫ1 ≤ 0} = 0.867798 and P{ǫ2 ≤
0} = 0.684411. On the other hand, when also the SHRUB reclaiming was activated
together with the feedback, the measured experimental probabilities increased to
P{ǫ1 ≤ 0} = 0.998301 and P{ǫ2 ≤ 0} = 0.993669.

By looking at these numbers it is possible to understand that the predictor is
probably underestimating the execution times for task τ2; as a result, when using
the feedback alone, τ2 probability to respect the deadline is low. On the other hand,
the reclaiming mechanism is able to correct the under-estimation by increasing the
probability to 0.99. Hence reclaiming makes the feedback mechanism more robust.

Therefore, the addition of dynamic reclaiming to our feedback-based scheduling
algorithm allows for an enhancement of its performance, as expected. In fact, our
QoS control metrics is compatible with a soft reservation resource allocation, being
based on requiring a minimum value for the probability of deadline non-violation.
From a dual perspective, we can also conclude that the addition of a feedback-based
control loop to a real-time system using dynamic reclaiming allows for a self-tuning
of the scheduling parameters of the various tasks that also accounts for the dynamic
variability of the workload at run-time.

In the next experiment, we will show also that the combination of feedback
scheduling and reclaiming is capable of outperforming any possible static allocation
of bandwidth for a task set with well-known workload type.

8. RELATED WORK

One of the basic motivations for this work is the high variability exhibited by the
computation time of multimedia applications. This problem has been deeply doc-
umented [Hughes et al. 2001; Isović et al. 2005]. Many authors propose adaptivity
as a means to increase the system robustness to workload fluctuations.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 23

Most of these proposal advocate an application level adaptation. The idea is that
in response to time-varying application requirements and availability of shared re-
sources, the behaviour of the applications is changed at run-time to make their
requirements fit in the instantaneous resource availability. A first line of research
has proposed application level adaptation for general real-time applications. An
incomplete list of papers of this kind includes [Tokuda and Kitayama 1993; Naka-
jima 1998; Brandt and Nutt 2002]. Other authors have specialised this approach
looking at multimedia applications. For instance in [Isovic and Fohler 2004], the
authors propose an optimal strategy that skips frames maintaining high levels of
quality and respecting the timing constraints. In [Wüst and Verhaegh 2004; Wüst
et al. 2005] the authors take a different approach: frames are not skipped but the
quality of level of the stream can be changed on a frame by frame basis operating
on such parameters as the resolution or the number of layers. A similar idea is
presented in [Hentschel et al. 2001], where the authors propose scalable quality
video as a means to achieve adaptive behaviours. In [Combaz and Strus 2008]
the authors synthesise a QoS manager that takes as input the degree of criticality
of the different deadlines of the tasks and adapts their quality level based on the
distribution functions of the computation times that are collected on-line. In [Lan
et al. 2001] the authors use a predictor that allows them to foresee the workload
peaks and reduce them operating on the quality level of the stream. Although a
very effective technique, application level adaptation relies on a particular struc-
ture for the applications (e.g., the presence of discrete quality options that can be
switched on-line). In this paper we adopt a complementary strategy that performs
the adaptation operating on the scheduling parameters, and ultimately on the re-
source allocation. The co-existence of two levels of adaptation (at the scheduling
level and at the application level) has been studied in [Abeni and Buttazzo 2001].

The idea of dynamically adapting scheduling parameters based on some observed
value (also known as feedback scheduling) has been investigated in the past [Corbato
et al. 1962]. A recent innovation has been to establish a link between the adaptation
of the scheduling parameters and the real-time performance of the application.
In [C. Lu and Son 2002] the authors propose to adjust the deadlines in a Earliest
Deadline First scheduler based on the frequency of occurrence of deadline misses.
We believe that controlling the frequency of deadline misses (or more precisely the
probability of a deadline miss) is indeed a worthy goal. However, the technique that
we propose lies in a different track: the adaptive reservation approaches. A basic
ingredient of this class of algorithms is a resource reservation scheduler. Resource
reservations have been introduced in [Mercer et al. 1993; Rajkumar et al. 1998] and
they arguably offer a better support to multimedia applications than standard real-
time scheduler. Indeed, they enable one to control the fraction of CPU (bandwidth)
devoted to each application regardless of the workload generated by the other ones.
The idea of the adaptive reservations is to use the bandwidth as an actuator to
control the evolution of the tasks and has been first proposed in [Abeni and Buttazzo
1999]. As discussed in [Abeni et al. 2004], using the resource reservations algorithm
allows us to model the evolution of the scheduling error of a single task by a discrete-
time model and, hence, provide stability guarantees on the closed-loop system. In
this paper, we take a step further in this direction, showing an adaptive reservation

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Tommaso Cucinotta et al.

algorithm and an analysis that allows us to make provisions on the probability of
respecting the deadlines. Such guarantees are not given on one task in isolation,
but the possible interaction with other tasks is explicitly considered.

The idea of adaptive reservation bears some evident resemblance with the notion
of real-rate scheduling, proposed in [Steere et al. 1999; Goel et al. 2004], where a
controller is used to regulate the progress rate of each task. The progress rate is
defined as the difference between a time-stamp associated with a computation and
the actual time this computation is performed. The main difference with adaptive
reservations (and consequently with our approach) is that the latter adheres to
the classical real-time tasking model, whereby an application is structured as a
sequence of jobs and the control goals are referred to the deadlines of the jobs.

Another important research line tightly related to the approach presented in this
paper is that of real-time algorithms that reclaim unused bandwidth [Lipari and
Baruah 2000; Caccamo et al. 2005; Lin and Brandt 2005]. The general idea is that
a task can use, for some job, less than its assigned budget. In such a case the
spare budget can be reassigned to other active tasks. The differences between these
algorithms lie in the rules for deciding when the unused budget can be reclaimed and
which task takes benefit from the additional availability of budget. To this regard,
Algorithms BASH [Caccamo et al. 2005] and BACKSLASH [Lin and Brandt 2005]
reclaim all the remaining budget at the end of the task job and transfer it to the
next task in the EDF queue. Therefore, such algorithms work well only with a
strictly periodic task model. Algorithm GRUB [Lipari and Baruah 2000] does not
make any assumption on the underlying task model: it instantaneously reclaims all
extra bandwidth in the system and distributes it to the executing task. All these
algorithms greedily give preference to the task with the earliest deadline, and it
is not possible to favour one specific task over another. Using a technique similar
to GRUB, in this paper we propose SHRUB, which has been designed to fairly
distribute the spare bandwidth to active tasks according to user-defined weights.

More importantly, in this paper, we make the point that adaptive reservations
and reclaiming algorithms are complementary techniques. Indeed, the former can be
used in all conditions (including temporary overload), whereas the latter can only
operate when the system is not saturated. Moreover, as discussed in the paper,
the identification of correct bandwidth made by adaptive reservations improves the
effectiveness of reclaiming even in nominal conditions. Finally, reclaiming unused
bandwidth enhances the robustness of the feedback in achieving its goals.

9. CONCLUSIONS

In this paper, we propose a feedback scheduling algorithm, belonging to the fam-
ily of adaptive reservations, which identifies and tracks the CPU requirements of
multimedia tasks. The algorithm is combined with a global supervisor, which man-
ages overload conditions and reclaims unused bandwidth using a fair algorithm
called SHRUB. The combination of the two techniques is proved beneficial, since
resource reclaiming increases the robustness of the feedback controller, while the
feedback enables the CPU reclaiming algorithm to work properly. In order for the
two mechanisms to co-exist nicely a “contract” has to be respected between the two
components on the minimum bandwidth that the supervisor has to guarantee to

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · 25

the task whenever the feedback controller requires it. We offer a theoretical analysis
of the property than can be guaranteed whenever this contract is respected.

The whole mechanism has been implemented in the AQuoSA architecture and
extensive experimental results have been collected both on real applications and on
synthetic tasks that validate our approach.

REFERENCES

2004. ISO/IEC 14496-2:2004 - information technology – coding of audio-visual objects – part 2:
Visual.

Abeni, L. and Buttazzo, G. 1998. Integrating multimedia applications in hard real-time systems.
In Proc. of the 19th IEEE Real-Time Systems Symposium (RTSS 1998). IEEE, Madrid, Spain.

Abeni, L. and Buttazzo, G. 1999. Adaptive bandwidth reservation for multimedia computing.
In Proc. of the 6th IEEE Real Time Computing Systems and Applications (RTCSA 1999).
IEEE, Hong Kong.

Abeni, L. and Buttazzo, G. 2001. Hierarchical QoS management for time sensitive applications.
In Proc. of the 7th IEEE Real-Time Technology and Applications Symposium (RTAS 2001).
IEEE, Taipei, Taiwan.

Abeni, L., Cucinotta, T., Lipari, G., Marzario, L., and Palopoli, L. 2004. Adaptive reser-
vations in a Linux based environment. In Proc. of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2004). IEEE, IEEE, Toronto (Canada).

Abeni, L., Palopoli, L., Lipari, G., and Walpole, J. 2002. Analysis of a reservation-based
feedback scheduler. In Proc. of the 23th IEEE Real-Time Systems Symposium (RTSS 2002).
IEEE, Austin, Texas.

Baruah, S., Lipari, G., and Abeni, L. 2008. SHRUB: Shared reclama-
tion of unused bandwidth. Tech. rep., Scuola Superiore Sant’Anna. July.
http://retis.sssup.it/˜lipari/papers/shrub tech report jul 08.pdf.

Brandt, S. and Nutt, G. 2002. Flexible soft real-time processing in middleware. Real-time
systems journal, Special issue on Flexible scheduling in real-time systems 22, 1-2 (January-
March), 77–118.

C. Lu, J. Stankovic, G. T. and Son, S. 2002. Feedback control real-time scheduling: Framework,
modeling and algorithms. Real-Time Systems Journal, Special Issue on Control-Theoretic
Approaches to Real-Time Computing 23, 1/2 (September), 85–126.

Caccamo, M., Buttazzo, G. C., and Thomas, D. C. 2005. Efficient reclaiming in reservation-
based real-time systems with variable execution times. IEEE Transactions on Computers 54, 2
(Feb.), 198–213.

Combaz, J. and Strus, L. 2008. A stochastic approach for fine grain QoS control. In Proc.
of the 2008 IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia
(ESTImedia 2008). IEEE, Atlanta, GA, 115–120.

Corbato, F. J., Merwin-Dagget, M., and Daley, R. C. 1962. An experimental time-sharing
system. In Proc. of the AFIPS Joint Computer Conference. ACM, Palo Alto, CA.

Cucinotta, T. 2008. Access control for adaptive reservations on multi-user systems. In Proc.
of the 14th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS
2008). IEEE, IEEE, St. Louis, MO, United States.

Cucinotta, T., Palopoli, L., Marzario, L., and Lipari, G. 2008. AQuoSA – Adaptive Quality
of Service Architecture. Software – Practice and Experience 39, 1, 1–31.

Faggioli, D., Checconi, F., Trimarchi, M., and Scordino, C. 2009. An EDF scheduling class
for the Linux kernel. In Proc. of the 11th Real-Time Linux Workshop (RTLW 2009). OSADL,

Dresden, Germany.

Falk, M. et al. 2006. A first course on time series analysis. http://statistik.mathematik.uni-
wuerzburg.de/timeseries/.

Goel, A., Walpole, J., and Shor, M. 2004. Real-rate scheduling. In Proc. of the 10th IEEE Real-
time and Embedded Technology and Applications Symposium (RTAS 2004). IEEE, Toronto
(Canada), 434.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Tommaso Cucinotta et al.

Hentschel, C., Bril, R., Gabrani, M., Steffens, L., van Zon, K., and van Loo, S. 2001.
Scalable video algorithms and dynamic resource management for consumer terminals. In Proc.
of the International Conference on Media Futures (ICMF). AEI, Florence, Italy.

Hughes, C. J., Kaul, P., Adve, S. V., Jain, R., Park, C., and Srinivasan, J. 2001. Variability in
the execution of multimedia applications and implications for architecture. SIGARCH Comput.
Archit. News 29, 2, 254–265.

Isovic, D. and Fohler, G. 2004. Quality aware mpeg-2 stream adaptation in resource constrained
systems. In Proc. of the 16th IEEE Euromicro Conference on Real-Time Systems. IEEE,

Catania, Italy.

Isović, D., Fohler, G., and Steffens, L. 2005. Real-time issues of mpeg-2 playout in resource
constrained systems. J. Embedded Comput. 1, 2, 239–256.

Kleinrock, L. and Gail, R. 1976. Queueing systems. Wiley Interscience, New York.

Lan, T., Chen, Y., and Zhong, Z. 2001. Mpeg2 decoding complexity regulation for a media
processor. In Fourth IEEE Workshop on Multimedia Signal Processing. IEEE, Cannes, France.

Lin, C. and Brandt, S. A. 2005. Improving soft real-time performance through better slack
reclaiming. In Proc. of the 26th IEEE International Real-Time Systems Symposium (RTSS
2005). IEEE Computer Society, Washington, DC, USA, 410–421.

Lipari, G. and Baruah, S. K. 2000. Greedy reclaimation of unused bandwidth in constant
bandwidth servers. In Proc. of the 12th IEEE Euromicro Conference on Real-Time Systems.
IEEE, Stokholm, Sweden.

Liu, C. L. and Layland, J. 1973. Scheduling alghorithms for multiprogramming in a hard
real-time environment. Journal of the ACM 20, 1, 46–61.

Mercer, C. W., Savage, S., and Tokuda, H. 1993. Processor capacity reserves for multimedia
operating systems. Tech. Rep. CMU-CS-93-157, Carnegie Mellon University, Pittsburg. May.

Nakajima, T. 1998. Resource reservation for adaptive QoS mapping in real-time mach. In Proc. of
the Sixth International Workshop on Parallel and Distributed Real-Time Systems (WPDRTS).
Springer Berlin / Heidelberg, Orlando, FL.

Rajkumar, R., Juvva, K., Molano, A., and Oikawa, S. 1998. Resource kernels: A resource-
centric approach to real-time and multimedia systems. In Proc. of the SPIE/ACM Conference
on Multimedia Computing and Networking. SPIE, San Jose, California.

Roitzsch, M. and Pohlack, M. 2006. Principles for the prediction of video decoding times
applied to mpeg-1/2 and mpeg-4 part 2 video. In Proc. of the 27th IEEE Real-Time Systems
Symposium (RTSS 2006). IEEE, Rio de Janeiro, Brazil, 271–280.

Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. 2003. Request for comments:
3550 – RTP: A transport protocol for real-time applications. http://tools.ietf.org/html/

rfc3550.

Steere, D., Goel, A., Gruenberg, J., McNamee, D., Pu, C., and Walpole, J. 1999. A
feedback-driven proportion allocator for real-rate scheduling. In Proc. of the Third USENIX
Symposium on Operating Systems Design and Implementation. USENIX, New Orleans, LA.

Tokuda, H. and Kitayama, T. 1993. Dynamic QoS control based on real-time threads. In Proc.
of the 4th International Workshop on Network and Operating System Support for Digital Audio
and Video (NOSSDAV 1993). Springer-Verlag, London, UK, 114–123.

Wüst, C. C., Steffens, L., Verhaegh, W. F. J., Bril, R. J., and Hentschel, C. 2005. QoS

control strategies for high-quality video processing. Real-Time Systems 30, 1-2, 7–29.

Wüst, C. C. and Verhaegh, W. F. J. 2004. Quality control for scalable media processing
applications. J. Scheduling 7, 2, 105–117.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · App–1

This document is the online-only appendix to:

A robust mechanism for adaptive scheduling of multimedia

applications

TOMMASO CUCINOTTA∗, LUCA ABENI†, LUIGI PALOPOLI†, GIUSEPPE LIPARI∗

∗Scuola Superiore Sant’Anna, †University of Trento

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

In this appendix, we report the proofs of the theorems introduced in the paper.

Proof of Theorem 4.1. Given the evolution of the system in Equation (4),

the event H = {Ej+1 ≤ 0} can be expressed as H =
{⌈

Cj+1

Qj+1

⌉

≤ N − S(Ej)
}

.

Observing that, for any integer n and for any real number x, we have ⌈x⌉ ≤ n if

and only if x ≤ n, the event H can be re-written as H =
{

Cj+1

Qj+1
≤ N − S(Ej)

}

.

Thereby, for any ǫj ≤ R :

Pr {H | Ej = ǫj} = Pr

{

Cj+1

Qj+1
≤ N − S(ǫj)

}

Assuming that R ≤ Ej (second theorem assumption), then the budget request
given by Equation (8) Qj+1 = Hj+1/(N − S(ǫj)) respects Qj+1 ≤ PUmax, and it
is granted by the supervisor due to the third theorem assumption. Hence,

Pr {H | Ej = ǫj} = Pr {Cj+1 ≤ Hj+1} .

The proof follows from the first theorem assumption in Equation (9).

Proof of Theorem 4.2. The proof is a direct consequence of the fact that, for
any ǫj ≤ R, under the second theorem assumption, the control law in Equation (8),
after the supervisor mediation, can not reach Q (see the saturation point Mj and

the continuous line of Figure 4): Qj+1 =
Hj+1

N−S(ǫj) ≤
supj Hj

N−R
≤ Q. Therefore, the

requested budget Qj+1 is always granted, and the same reasoning of Theorem 4.1
may be applied, with Q in place of PUmax.

Proof of Theorem 4.3. We start by proving the L bound. Assume that
ǫj0−1 ≤ Mj0−1, then applying Equation (4) with Qj0 given by Equation (8), and
exploiting ⌈x⌉ ≤ x + 1, it is easy to get: ǫj0 ≤ (ρ − 1)(N − S(ǫj0−1)) + 1 ≤ ǫ,

where ǫ , (ρ − 1)N + 1. If ǫj0 ≤ Mj0 , then we are already in a condition in which
Pr {ǫj0+1 ≤ 0} ≥ π, so let us assume that ǫj0 > Mj0 .

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–2 · Tommaso Cucinotta et al.

Now, we want to prove that, in a step j̃ ∈ {j0 + 1, . . . , j0 + L}, it happens
that ǫj̃ ≤ Mj̃ . To this purpose, focus on the path followed by the system in the
subsequent V steps. If, for some i ∈ {1, . . . , V }, we have that ǫj0+i ≤ Mj0+i, then
we found j̃. In the opposite case, the budget required by the control law is always
greater than Q, and equal to Q in the worst-case. Furthermore, ∀i ∈ {1, . . . , V },
S(ǫj0+i) = ǫj0+i. Therefore:

ǫj0+V = ǫj0 +
∑V

i=1

⌈

cj0+i

Qj0+i

⌉

− V N ≤ ǫj0 +
∑V

i=1

cj0+i

Q
− V (N − 1) ≤

≤ ǫj0 +
suph

∑V
i=1 ch+i

Q
− V (N − 1) = ǫj0 +

V φV

Q
− V (N − 1) =

= ǫj0 − θ

where θ , V

(

N − 1 −
φV

Q

)

is a strictly positive quantity due to the assumption

in Equation (12). In other words, in a horizon of V steps, the scheduling error is
reduced by at least θ > 0. We can iterate the same reasoning until the condition
ǫj0+j̃ ≤ Mj0+j̃ is fulfilled, and the required number of V -steps iterations is bounded
by the number of times θ needs to cover the distance between ǫ and R (due to the
theorem assumption about R). Therefore, we will reduce the scheduling error to

below R, in at most V
ǫ − R

θ
steps, which corresponds to the expression for L in

the theorem statement.
Now focus on the upper bound of the scheduling error evolution. Looking at the

upper bound for ǫj0+V above, as resulting in the second row, it is clear that the
maximum of ǫj0+h for h ∈ {1, . . . , V } may be expressed as follows:

ǫj0 + max
h∈1,...V

{

h
∑

i=1

cj0+i

Q
− h(N − 1)

}

.

An upper bound to this value can be found considering the computation times
as free decision variables of an optimisation problem constrained by

∑V
i=1 cj0+i ≤

V φV . It can be easily seen that this maximum is attained for cj0+1 = V φV , and
cj0+i = 0 for i ∈ {2, . . . , V }, which causes the bound ǫMAX contained in the
theorem statement to be attained for ǫj0+1. The proof is obtained observing that,
from ǫj0+V on, the scheduling error can only be lower than such bound, due to the
reduction of at least θ described above.

Proof of Theorem 4.4. Assume that the conditions of Theorems 4.2 and 4.3
are met. We know that, if at job j0 we have ǫj0 ≤ Mj0 , then: 1) ǫj0+1 ≤ 0 with
probability π, 2) ǫh ≤ Mh for some h ∈ [j0+1, j0+L]. Therefore, we can construct a
Markov Chain (MC) like shown in Figure 11, with a state for each possible number
of consequent states with ǫj > Mj . Formally, the state S0 represents the event
ǫj0+1 ≤ Mj0+1, state Si represents the event that ǫj > Mj for i steps: (ǫj0+1 >
Mj0+1) ∧ . . . ∧ (ǫj0+i > Mj0+i) ∧ (ǫj0+i+1 ≤ Mj0+i+1). Due to the Theorem 4.3,
we know such a MC has at most L + 1 states. The transition probabilities pi

for this MC could be theoretically computed starting from the distributions of
Cj0+1, . . . , Cj0+L and of Ej0 (note that one could numerically compute the latter
distribution by exploiting a full MC with a state for each individual ǫj value – this

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Robust Mechanism For Adaptive Scheduling of Multimedia Applications · App–3

Fig. 11. Simplified Markov Chain

reasoning is only needed to show that the approach based on the MC in the figure is
well-founded). However, we seek for closed-form bounds for Pr {ǫj ≤ Mj} , what is
achieved by considering upper and lower bounds for the MC transition probabilities
pi. In view of Theorem 4.2, we have π ≤ p0 ≤ 1. Although the probabilities pi are
generally time varying, an upper bound for the probability of the state S0 can be
found p0 = 1 and pi = 0 for i = 1, . . . , L, i.e., one never exits S0. Likewise, a lower
bound can be found setting p0 = π, p1 = p2 = . . . = pL−1 = 0 and pL = 1 − π. In
the latter case it is easy to find:

Pr {S0} = Pr {ǫj0 ≤ Mj0} ≥
1

1 + L(1 − π)
.

The proof is completed observing that the state S0 may actually be split into two
substates, S00, in which ǫj0 ≤ 0, and S01, in which 0 < ǫj0 ≤ Mj0 . In the search
for the lower bound of Pr {ǫj ≤ 0} , the arch from S1 ends into S01, the transition
from S01 to S00 occurs with a probability of π, due to Theorem 4.2, S00 has an arch
to itself with probability π, and transitions from both substates to SL occur with a
probability of 1− π. It is easy to verify that: Pr {ǫj ≤ 0} = Pr {S00} = πPr {S0} ,
corresponding to the expression in the theorem statement.

ACM Journal Name, Vol. V, No. N, Month 20YY.

