2,738 research outputs found

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Gain Bounds for Multiple Model Switched Adaptive Control of General MIMO LTI Systems

    No full text
    For the class of MIMO minimal LTI systems controlled by an estimation based multiple model switched adaptive controller (EMMSAC), bounds are obtained for the closed loop lp gain, 1 ? p ? ?, from the input and output disturbances to the internal signals

    Adaptive Observers for MIMO Discrete-Time LTI Systems

    Full text link
    In this paper, an adaptive observer is proposed for multi-input multi-output (MIMO) discrete-time linear time-invariant (LTI) systems. Unlike existing MIMO adaptive observer designs, the proposed approach is applicable to LTI systems in their general form. Further, the proposed method uses recursive least square (RLS) with covariance resetting for adaptation that is shown to guarantee that the estimates are bounded, irrespective of any excitation condition, even in the presence of a vanishing perturbation term in the error used for updation in RLS. Detailed analysis for convergence and boundedness has been provided along with simulation results for illustrating the performance of the developed theory.Comment: 6 pages, 5 figure

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Fault estimation and fault-tolerant control for discrete-time dynamic systems

    Get PDF
    In this paper, a novel discrete-time estimator is proposed, which is employed for simultaneous estimation of system states, and actuator/sensor faults in a discrete-time dynamic system. The existence of the discrete-time simultaneous estimator is proven mathematically. The systematic design procedure for the derivative and proportional observer gains is addressed, enabling the estimation error dynamics to be internally proper and stable, and robust against the effects from the process disturbances, measurement noise, and faults. Based on the estimated fault signals and system states, a discrete-time fault-tolerant design approach is addressed, by which the system may recover the system performance when actuator/sensor faults occur. Finally, the proposed integrated discrete-time fault estimation and fault-tolerant control technique is applied to the vehicle lateral dynamics, which demonstrates the effectiveness of the developed techniques
    corecore