6 research outputs found

    Adaptive Nonparametric Regression on Spin Fiber Bundles

    Full text link
    The construction of adaptive nonparametric procedures by means of wavelet thresholding techniques is now a classical topic in modern mathematical statistics. In this paper, we extend this framework to the analysis of nonparametric regression on sections of spin fiber bundles defined on the sphere. This can be viewed as a regression problem where the function to be estimated takes as its values algebraic curves (for instance, ellipses) rather than scalars, as usual. The problem is motivated by many important astrophysical applications, concerning for instance the analysis of the weak gravitational lensing effect, i.e. the distortion effect of gravity on the images of distant galaxies. We propose a thresholding procedure based upon the (mixed) spin needlets construction recently advocated by Geller and Marinucci (2008,2010) and Geller et al. (2008,2009), and we investigate their rates of convergence and their adaptive properties over spin Besov balls.Comment: 40 page

    Adaptive Density Estimation on the Circle by Nearly-Tight Frames

    Full text link
    This work is concerned with the study of asymptotic properties of nonparametric density estimates in the framework of circular data. The estimation procedure here applied is based on wavelet thresholding methods: the wavelets used are the so-called Mexican needlets, which describe a nearly-tight frame on the circle. We study the asymptotic behaviour of the L2L^{2}-risk function for these estimates, in particular its adaptivity, proving that its rate of convergence is nearly optimal.Comment: 30 pages, 3 figure

    Adaptive estimation in the nonparametric random coefficients binary choice model by needlet thresholding

    Get PDF
    In the random coefficients binary choice model, a binary variable equals 1 iff an index X⊤βX^\top\beta is positive.The vectors XX and β\beta are independent and belong to the sphere Sd−1\mathbb{S}^{d-1} in Rd\mathbb{R}^{d}.We prove lower bounds on the minimax risk for estimation of the density f_βf\_{\beta} over Besov bodies where the loss is a power of the Lp(Sd−1)L^p(\mathbb{S}^{d-1}) norm for 1≤p≤∞1\le p\le \infty. We show that a hard thresholding estimator based on a needlet expansion with data-driven thresholds achieves these lower bounds up to logarithmic factors

    Adaptive nonparametric regression on spin fiber bundles

    Get PDF
    AbstractThe construction of adaptive nonparametric procedures by means of wavelet thresholding techniques is now a classical topic in modern mathematical statistics. In this paper, we extend this framework to the analysis of nonparametric regression on sections of spin fiber bundles defined on the sphere. This can be viewed as a regression problem where the function to be estimated takes as its values algebraic curves (for instance, ellipses) rather than scalars, as usual. The problem is motivated by many important astrophysical applications, concerning, for instance, the analysis of the weak gravitational lensing effect, i.e. the distortion effect of gravity on the images of distant galaxies. We propose a thresholding procedure based upon the (mixed) spin needlets construction recently advocated by Geller and Marinucci (2008, 2010) and Geller et al. (2008, 2009), and we investigate their rates of convergence and their adaptive properties over spin Besov balls

    Adaptive nonparametric regression on spin fiber bundles

    No full text
    The construction of adaptive nonparametric procedures by means of wavelet thresholding techniques is now a classical topic in modern mathematical statistics. In this paper, we extend this framework to the analysis of nonparametric regression on sections of spin fiber bundles defined on the sphere. This can be viewed as a regression problem where the function to be estimated takes as its values algebraic curves (for instance, ellipses) rather than scalars, as usual. The problem is motivated by many important astrophysical applications, concerning, for instance, the analysis of the weak gravitational lensing effect, i.e. the distortion effect of gravity on the images of distant galaxies. We propose a thresholding procedure based upon the (mixed) spin needlets construction recently advocated by Geller and Marinucci (2008, 2010) and Geller et al. (2008, 2009), and we investigate their rates of convergence and their adaptive properties over spin Besov balls.Spin fiber bundles Mixed spin needlets Adaptive nonparametric regression Thresholding Spin Besov spaces
    corecore