375 research outputs found

    A new class of multiscale lattice cell (MLC) models for spatio-temporal evolutionary image representation

    Get PDF
    Spatio-temporal evolutionary (STE) images are a class of complex dynamical systems that evolve over both space and time. With increased interest in the investigation of nonlinear complex phenomena, especially spatio-temporal behaviour governed by evolutionary laws that are dependent on both spatial and temporal dimensions, there has been an increased need to investigate model identification methods for this class of complex systems. Compared with pure temporal processes, the identification of spatio-temporal models from observed images is much more difficult and quite challenging. Starting with an assumption that there is no apriori information about the true model but only observed data are available, this study introduces a new class of multiscale lattice cell (MLC) models to represent the rules of the associated spatio-temporal evolutionary system. An application to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, is investigated to demonstrate the new modelling framework

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Constructing an overall dynamical model for a system with changing design parameter properties

    No full text
    This study considers the identification problem for a class of non-linear parameter-varying systems associated with the following scenario: the system behaviour depends on some specifically prescribed parameter properties, which are adjustable. To understand the effect of the varying parameters, several different experiments, corresponding to different parameter properties, are carried out and different data sets are collected. The objective is to find, from the available data sets, a common parameter-dependent model structure that best fits the adjustable parameter properties for the underlying system. An efficient Common Model Structure Selection (CMSS) algorithm, called the Extended Forward Orthogonal Regression (EFOR) algorithm, is proposed to select such a common model structure. Two examples are presented to illustrate the application and the effectiveness of the new identification approach

    Soft computing for tool life prediction a manufacturing application of neural - fuzzy systems

    Get PDF
    Tooling technology is recognised as an element of vital importance within the manufacturing industry. Critical tooling decisions related to tool selection, tool life management, optimal determination of cutting conditions and on-line machining process monitoring and control are based on the existence of reliable detailed process models. Among the decisive factors of process planning and control activities, tool wear and tool life considerations hold a dominant role. Yet, both off-line tool life prediction, as well as real tune tool wear identification and prediction are still issues open to research. The main reason lies with the large number of factors, influencing tool wear, some of them being of stochastic nature. The inherent variability of workpiece materials, cutting tools and machine characteristics, further increases the uncertainty about the machining optimisation problem. In machining practice, tool life prediction is based on the availability of data provided from tool manufacturers, machining data handbooks or from the shop floor. This thesis recognises the need for a data-driven, flexible and yet simple approach in predicting tool life. Model building from sample data depends on the availability of a sufficiently rich cutting data set. Flexibility requires a tool-life model with high adaptation capacity. Simplicity calls for a solution with low complexity and easily interpretable by the user. A neural-fuzzy systems approach is adopted, which meets these targets and predicts tool life for a wide range of turning operations. A literature review has been carried out, covering areas such as tool wear and tool life, neural networks, frizzy sets theory and neural-fuzzy systems integration. Various sources of tool life data have been examined. It is concluded that a combined use of simulated data from existing tool life models and real life data is the best policy to follow. The neurofuzzy tool life model developed is constructed by employing neural network-like learning algorithms. The trained model stores the learned knowledge in the form of frizzy IF-THEN rules on its structure, thus featuring desired transparency. Low model complexity is ensured by employing an algorithm which constructs a rule base of reduced size from the available data. In addition, the flexibility of the developed model is demonstrated by the ease, speed and efficiency of its adaptation on the basis of new tool life data. The development of the neurofuzzy tool life model is based on the Fuzzy Logic Toolbox (vl.0) of MATLAB (v4.2cl), a dedicated tool which facilitates design and evaluation of fuzzy logic systems. Extensive results are presented, which demonstrate the neurofuzzy model predictive performance. The model can be directly employed within a process planning system, facilitating the optimisation of turning operations. Recommendations aremade for further enhancements towards this direction

    Study on identification of nonlinear systems using Quasi-ARX models

    Get PDF
    制度:新 ; 報告番号:甲3660号 ; 学位の種類:博士(工学) ; 授与年月日:2012/9/15 ; 早大学位記番号:新6026Waseda Universit

    Activity Report 1996-97

    Get PDF

    Artificial Intelligence Tools to Better Understand Seed Dormancy and Germination

    Get PDF
    Despite a large number of publications available, the control mechanisms of seed dormancy and germination are far to be fully understood. Seed dormancy and germination are very complex biological processes and because they involve multiple factors (physiological, mechanical, and environmental) and their nonlinear interactions. This explains why extremely little variations on some of those factors and in the way they interact caused enormous variation in the obtained results. Multifactorial process like these can be modeled using computer-based tools to predict better results. In this chapter, some basic concepts relative to seed dormancy and germination and the main factors (physiological, involved in seed dormancy, particularly dormancy-inducers and dormancy-breakers, and seed germination) are reviewed. In the next two, we describe the use of artificial intelligence computer-based models to better understand the physiological mechanisms of seed dormancy (how dormancy is controlled and how can be released) and seed germination. Finally, some applications of artificial neural networks, fuzzy logic, and genetic algorithms to elucidate critical factors and predict optimal condition for seed dormancy-breaking and germination are given as examples of the utility of this powerful computer-based tools

    Artificial intelligence tools to better understand seed dormancy and germination

    Get PDF
    Despite a large number of publications available, the control mechanisms of seed dormancy and germination are far to be fully understood. Seed dormancy and germination are very complex biological processes and because they involve multiple factors (physiological, mechanical, and environmental) and their nonlinear interactions. This explains why extremely little variations on some of those factors and in the way they interact caused enormous variation in the obtained results. Multifactorial process like these can be modeled using computer-based tools to predict better results. In this chapter, some basic concepts relative to seed dormancy and germination and the main factors (physiological, involved in seed dormancy, particularly dormancy-inducers and dormancy-breakers, and seed germination) are reviewed. In the next two, we describe the use of artificial intelligence computer-based models to better understand the physiological mechanisms of seed dormancy (how dormancy is controlled and how can be released) and seed germination. Finally, some applications of artificial neural networks, fuzzy logic, and genetic algorithms to elucidate critical factors and predict optimal condition for seed dormancy-breaking and germination are given as examples of the utility of this powerful computer-based tools

    Computational physics of the mind

    Get PDF
    In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures
    corecore