516 research outputs found

    Cross-layer Resource Allocation Scheme for Multi-band High Rate UWB Systems

    Get PDF
    In this paper, we investigate the use of a cross-layer allocation mechanism for the high-rate ultra-wideband (UWB) systems. The aim of this paper is twofold. First, through the cross-layer approach that provides a new service differentiation approach to the fully distributed UWB systems, we support traffic with quality of service (QoS) guarantee in a multi-user context. Second, we exploit the effective SINR method that represents the characteristics of multiple sub-carrier SINRs in the multi-band WiMedia solution proposed for UWB systems, in order to provide the channel state information needed for the multi-user sub-band allocation. This new approach improves the system performance and optimizes the spectrum utilization with a low cost data exchange between the different users while guaranteeing the required QoS. In addition, this new approach solves the problem of the cohabitation of more than three users in the same WiMedia channel

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Adaptive multi-carrier spread-spectrum with dynamic time-frequency codes for UWB applications

    Get PDF
    International audienceIn this paper, we propose a spread spectrum multi-carrier multiple-access (SS-MC-MA) waveform for high data rate UWB applications, taking into consideration the European UWB context. This new UWB scheme respects the parameters of the multiband orthogonal frequency division multiplexing (MB-OFDM) technique which is one of the candidates for wireless personal area networks (WPAN) standardization. We optimize the spreading code length and the number of codes in our proposed scheme in order to maximize the system range for a given target throughput. Furthermore, we dynamically distribute the time-frequency codes that provide frequency hopping between users in order to improve our system range. We show that our adaptive system transmits information at much higher attenuation levels and with larger throughput than the ones of the MB-OFDM proposal. Hence, we conclude that our proposed system can be advantageously exploited for UWB applications

    Cross-Layer Resource Allocation for MB-OFDM UWB Systems

    Get PDF
    ISBN 978-953-3076461-0International audienc

    CROSS-LAYER RESOURCE ALLOCATION SCHEME UNDER HETEROGENEOUS CONSTRAINTS FOR NEXT GENERATION HIGH RATE WPAN

    Get PDF
    International audienceIn the next generation wireless networks, the growing demand for new wireless applications is accompanied with high expectations for better quality of service (QoS) fulfillment especially for multimedia applications. Furthermore, the coexistence of future unlicensed users with existing licensed users is becoming a challenging task in next generation communication systems to overcome the underutilization of the spectrum. A QoS and interference aware resource allocation is thus of special interest in order to respond to the heterogeneous constraints of the next generation networks. In this work, we address the issue of resource allocation under heterogeneous constraints for unlicensed multi-band ultra-wideband (UWB) systems in the context of Future Home Networks, i.e. WPAN. The problem is first studied analytically using a heterogeneous constrained optimization problem formulation. After studying the characteristics of the optimal solution, we propose a low-complexity suboptimal algorithm based on a cross-layer approach that combines information provided by the PHY and MAC layers. While the PHY layer is responsible for providing the channel quality of the unlicensed UWB users as well as their interference power that they cause on licensed users, the MAC layer is responsible for classifying the unlicensed users using a two-class based approach that guarantees for multimedia services a high-priority level compared to other services. Combined in an efficient and simple way, the PHY and MAC information present the key elements of the aimed resource allocation. Simulation results demonstrate that the proposed scheme provides a good tradeoff between the QoS satisfaction of the unlicensed applications with hard QoS requirements and the limitation of the interference affecting the licensed users

    Adaptive multi-carrier spread-spectrum with dynamic time-frequency codes for UWB applications

    Get PDF
    International audienceIn this paper, we propose a spread spectrum multi-carrier multiple-access (SS-MC-MA) waveform for high data rate UWB applications, taking into consideration the European UWB context. This new UWB scheme respects the parameters of the multiband orthogonal frequency division multiplexing (MB-OFDM) technique which is one of the candidates for wireless personal area networks (WPAN) standardization. We optimize the spreading code length and the number of codes in our proposed scheme in order to maximize the system range for a given target throughput. Furthermore, we dynamically distribute the time-frequency codes that provide frequency hopping between users in order to improve our system range. We show that our adaptive system transmits information at much higher attenuation levels and with larger throughput than the ones of the MB-OFDM proposal. Hence, we conclude that our proposed system can be advantageously exploited for UWB applications

    Resource allocation for multicarrier CDMA systems in ultra-wideband communications

    No full text
    International audienceUltra-wideband (UWB) is a fast emerging technology that has attracted considerable interest in short range, high data rate wireless personal area networks (WPAN) applications. One of the main candidates for WPAN standardization is the multiband orthogonal frequency division multiplexing (MB-OFDM), supported by the Multiband OFDM Alliance (MBOA). In this paper, we propose a new low-complexity resource allocation algorithm applied to a spread spectrum multicarrier multiple-access (SS-MC-MA) waveform, which is new for high data rate UWB applications. The proposed scheme aims at maximizing the system's throughput while taking into consideration the WPAN environment and respecting the OFDM parameters of the MBOA solution. The adaptive allocation algorithm applied to OFDM and SS-MC-MA leads to roughly double the throughput compared to the MBOA solution at low attenuation levels. Furthermore, at high attenuation levels, SS-MC-MA outperforms the adaptive OFDM. Hence, we conclude that the proposed adaptive SS-MC-MA can especially be advantageously exploited for high attenuation UWB applications
    corecore