36,922 research outputs found

    Adaptive Modelling and Planning for Learning Intelligent Behaviour

    Get PDF
    Institute of Perception, Action and BehaviourAn intelligent agent must be capable of using its past experience to develop an understanding of how its actions affect the world in which it is situated. Given some objective, the agent must be able to effectively use its understanding of the world to produce a plan that is robust to the uncertainty present in the world. This thesis presents a novel computational framework called the Adaptive Modelling and Planning System (AMPS) that aims to meet these requirements for intelligence. The challenge of the agent is to use its experience in the world to generate a model. In problems with large state and action spaces, the agent can generalise from limited experience by grouping together similar states and actions, effectively partitioning the state and action spaces into finite sets of regions. This process is called abstraction. Several different abstraction approaches have been proposed in the literature, but the existing algorithms have many limitations. They generally only increase resolution, require a large amount of data before changing the abstraction, do not generalise over actions, and are computationally expensive. AMPS aims to solve these problems using a new kind of approach. AMPS splits and merges existing regions in its abstraction according to a set of heuristics. The system introduces splits using a mechanism related to supervised learning and is defined in a general way, allowing AMPS to leverage a wide variety of representations. The system merges existing regions when an analysis of the current plan indicates that doing so could be useful. Because several different regions may require revision at any given time, AMPS prioritises revision to best utilise whatever computational resources are available. Changes in the abstraction lead to changes in the model, requiring changes to the plan. AMPS prioritises the planning process, and when the agent has time, it replans in high-priority regions. This thesis demonstrates the flexibility and strength of this approach in learning intelligent behaviour from limited experience

    Learning and adaptation in physical agents

    No full text
    Learning and adaptation is fundamental for autonomous agents that operate in a physical world and not a computer network. The paper is providing a general framework of skills learning within behaviour logic framework of agents that communicate, sense and act in the physical world. It is advocated that playfulness can be important in learning and to improving skills of agents

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Soft behaviour modelling of user communities

    Get PDF
    A soft modelling approach for describing behaviour in on-line user communities is introduced in this work. Behaviour models of individual users in dynamic virtual environments have been described in the literature in terms of timed transition automata; they have various drawbacks. Soft multi/agent behaviour automata are defined and proposed to describe multiple user behaviours and to recognise larger classes of user group histories, such as group histories which contain unexpected behaviours. The notion of deviation from the user community model allows defining a soft parsing process which assesses and evaluates the dynamic behaviour of a group of users interacting in virtual environments, such as e-learning and e-business platforms. The soft automaton model can describe virtually infinite sequences of actions due to multiple users and subject to temporal constraints. Soft measures assess a form of distance of observed behaviours by evaluating the amount of temporal deviation, additional or omitted actions contained in an observed history as well as actions performed by unexpected users. The proposed model allows the soft recognition of user group histories also when the observed actions only partially meet the given behaviour model constraints. This approach is more realistic for real-time user community support systems, concerning standard boolean model recognition, when more than one user model is potentially available, and the extent of deviation from community behaviour models can be used as a guide to generate the system support by anticipation, projection and other known techniques. Experiments based on logs from an e-learning platform and plan compilation of the soft multi-agent behaviour automaton show the expressiveness of the proposed model

    Layered evaluation of interactive adaptive systems : framework and formative methods

    Get PDF
    Peer reviewedPostprin

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    Template-driven teacher modelling approach : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Information Science at Massey University, Palmerston North

    Get PDF
    This thesis describes the Template-driven Teacher Modeling Approach, the initial implementation of the template server and the formative evaluation on the prototype. The initiative of Template-driven teacher modeling is to integrate the template server and intelligent teacher models in Web-based education systems for course authoring. There are a number of key components in the proposed system: user interface, template server and content repository. The Template-Driven Teacher Modeling (TDTM) architecture supports the course authoring by providing higher degree of control over the generation of presentation. The collection of accumulated templates in the template repository for a teacher or a group of teachers are selected as the inputs for the inference mechanism in teacher's model to calculate the best representation of the teaching strategy, and then predict teacher intention when he or she interacts with the system. Moreover, the presentation templates are kept to support the re-use of the on-line content at the level of individual screens with the help of Template Server

    A Multi-disciplinary Approach to the Investigation of Aspects of Serial Order in Cognition

    Get PDF
    Serial order processing or Sequence processing underlies many human activities such as speech, language, skill learning, planning, problem solving, etc. Investigating the\ud neural bases of sequence processing enables us to understand serial order in cognition and helps us building intelligent devices. In the current paper, various\ud cognitive issues related to sequence processing will be discussed with examples. Some of the issues are: distributed versus local representation, pre-wired versus\ud adaptive origins of representation, implicit versus explicit learning, fixed/flat versus hierarchical organization, timing aspects, order information embedded in sequences, primacy versus recency in list learning and aspects of sequence perception such as recognition, recall and generation. Experimental results that give evidence for the involvement of various brain areas will be described. Finally, theoretical frameworks based on Markov models and Reinforcement Learning paradigm will be presented. These theoretical ideas are useful for studying sequential phenomena in a principled way
    corecore