50,423 research outputs found

    Applying digital content management to support localisation

    Get PDF
    The retrieval and presentation of digital content such as that on the World Wide Web (WWW) is a substantial area of research. While recent years have seen huge expansion in the size of web-based archives that can be searched efficiently by commercial search engines, the presentation of potentially relevant content is still limited to ranked document lists represented by simple text snippets or image keyframe surrogates. There is expanding interest in techniques to personalise the presentation of content to improve the richness and effectiveness of the user experience. One of the most significant challenges to achieving this is the increasingly multilingual nature of this data, and the need to provide suitably localised responses to users based on this content. The Digital Content Management (DCM) track of the Centre for Next Generation Localisation (CNGL) is seeking to develop technologies to support advanced personalised access and presentation of information by combining elements from the existing research areas of Adaptive Hypermedia and Information Retrieval. The combination of these technologies is intended to produce significant improvements in the way users access information. We review key features of these technologies and introduce early ideas for how these technologies can support localisation and localised content before concluding with some impressions of future directions in DCM

    Ontology mapping by concept similarity

    Get PDF
    This paper presents an approach to the problem of mapping ontologies. The motivation for the research stems from the Diogene Project which is developing a web training environment for ICT professionals. The system includes high quality training material from registered content providers, and free web material will also be made available through the project's "Web Discovery" component. This involves using web search engines to locate relevant material, and mapping the ontology at the core of the Diogene system to other ontologies that exist on the Semantic Web. The project's approach to ontology mapping is presented, and an evaluation of this method is described

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    The contribution of data mining to information science

    Get PDF
    The information explosion is a serious challenge for current information institutions. On the other hand, data mining, which is the search for valuable information in large volumes of data, is one of the solutions to face this challenge. In the past several years, data mining has made a significant contribution to the field of information science. This paper examines the impact of data mining by reviewing existing applications, including personalized environments, electronic commerce, and search engines. For these three types of application, how data mining can enhance their functions is discussed. The reader of this paper is expected to get an overview of the state of the art research associated with these applications. Furthermore, we identify the limitations of current work and raise several directions for future research

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Distributed Information Retrieval using Keyword Auctions

    Get PDF
    This report motivates the need for large-scale distributed approaches to information retrieval, and proposes solutions based on keyword auctions

    User centred evaluation of a recommendation based image browsing system

    Get PDF
    In this paper, we introduce a novel approach to recommend images by mining user interactions based on implicit feedback of user browsing. The underlying hypothesis is that the interaction implicitly indicates the interests of the users for meeting practical image retrieval tasks. The algorithm mines interaction data and also low-level content of the clicked images to choose diverse images by clustering heterogeneous features. A user-centred, task-oriented, comparative evaluation was undertaken to verify the validity of our approach where two versions of systems { one set up to enable diverse image recommendation { the other allowing browsing only { were compared. Use was made of the two systems by users in simulated work task situations and quantitative and qualitative data collected as indicators of recommendation results and the levels of user's satisfaction. The responses from the users indicate that they nd the more diverse recommendation highly useful

    Report on the Information Retrieval Festival (IRFest2017)

    Get PDF
    The Information Retrieval Festival took place in April 2017 in Glasgow. The focus of the workshop was to bring together IR researchers from the various Scottish universities and beyond in order to facilitate more awareness, increased interaction and reflection on the status of the field and its future. The program included an industry session, research talks, demos and posters as well as two keynotes. The first keynote was delivered by Prof. Jaana Kekalenien, who provided a historical, critical reflection of realism in Interactive Information Retrieval Experimentation, while the second keynote was delivered by Prof. Maarten de Rijke, who argued for more Artificial Intelligence usage in IR solutions and deployments. The workshop was followed by a "Tour de Scotland" where delegates were taken from Glasgow to Aberdeen for the European Conference in Information Retrieval (ECIR 2017
    corecore