3,350 research outputs found

    Mesh-based video coding for low bit-rate communications

    Get PDF
    In this paper, a new method for low bit-rate content-adaptive mesh-based video coding is proposed. Intra-frame coding of this method employs feature map extraction for node distribution at specific threshold levels to achieve higher density placement of initial nodes for regions that contain high frequency features and conversely sparse placement of initial nodes for smooth regions. Insignificant nodes are largely removed using a subsequent node elimination scheme. The Hilbert scan is then applied before quantization and entropy coding to reduce amount of transmitted information. For moving images, both node position and color parameters of only a subset of nodes may change from frame to frame. It is sufficient to transmit only these changed parameters. The proposed method is well-suited for video coding at very low bit rates, as processing results demonstrate that it provides good subjective and objective image quality at a lower number of required bits

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Perceptually-Driven Video Coding with the Daala Video Codec

    Full text link
    The Daala project is a royalty-free video codec that attempts to compete with the best patent-encumbered codecs. Part of our strategy is to replace core tools of traditional video codecs with alternative approaches, many of them designed to take perceptual aspects into account, rather than optimizing for simple metrics like PSNR. This paper documents some of our experiences with these tools, which ones worked and which did not. We evaluate which tools are easy to integrate into a more traditional codec design, and show results in the context of the codec being developed by the Alliance for Open Media.Comment: 19 pages, Proceedings of SPIE Workshop on Applications of Digital Image Processing (ADIP), 201

    A two-stage video coding framework with both self-adaptive redundant dictionary and adaptively orthonormalized DCT basis

    Full text link
    In this work, we propose a two-stage video coding framework, as an extension of our previous one-stage framework in [1]. The two-stage frameworks consists two different dictionaries. Specifically, the first stage directly finds the sparse representation of a block with a self-adaptive dictionary consisting of all possible inter-prediction candidates by solving an L0-norm minimization problem using an improved orthogonal matching pursuit with embedded orthonormalization (eOMP) algorithm, and the second stage codes the residual using DCT dictionary adaptively orthonormalized to the subspace spanned by the first stage atoms. The transition of the first stage and the second stage is determined based on both stages' quantization stepsizes and a threshold. We further propose a complete context adaptive entropy coder to efficiently code the locations and the coefficients of chosen first stage atoms. Simulation results show that the proposed coder significantly improves the RD performance over our previous one-stage coder. More importantly, the two-stage coder, using a fixed block size and inter-prediction only, outperforms the H.264 coder (x264) and is competitive with the HEVC reference coder (HM) over a large rate range

    An efficient rate control algorithm for a wavelet video codec

    Get PDF
    Rate control plays an essential role in video coding and transmission to provide the best video quality at the receiver's end given the constraint of certain network conditions. In this paper, a rate control algorithm using the Quality Factor (QF) optimization method is proposed for the wavelet-based video codec and implemented on an open source Dirac video encoder. A mathematical model which we call Rate-QF (R - QF) model is derived to generate the optimum QF for the current coding frame according to the target bitrate. The proposed algorithm is a complete one pass process and does not require complex mathematical calculation. The process of calculating the QF is quite simple and further calculation is not required for each coded frame. The experimental results show that the proposed algorithm can control the bitrate precisely (within 1% of target bitrate in average). Moreover, the variation of bitrate over each Group of Pictures (GOPs) is lower than that of H.264. This is an advantage in preventing the buffer overflow and underflow for real-time multimedia data streaming
    corecore