6,999 research outputs found

    A Convolutional Neural Network Approach for Half-Pel Interpolation in Video Coding

    Full text link
    Motion compensation is a fundamental technology in video coding to remove the temporal redundancy between video frames. To further improve the coding efficiency, sub-pel motion compensation has been utilized, which requires interpolation of fractional samples. The video coding standards usually adopt fixed interpolation filters that are derived from the signal processing theory. However, as video signal is not stationary, the fixed interpolation filters may turn out less efficient. Inspired by the great success of convolutional neural network (CNN) in computer vision, we propose to design a CNN-based interpolation filter (CNNIF) for video coding. Different from previous studies, one difficulty for training CNNIF is the lack of ground-truth since the fractional samples are actually not available. Our solution for this problem is to derive the "ground-truth" of fractional samples by smoothing high-resolution images, which is verified to be effective by the conducted experiments. Compared to the fixed half-pel interpolation filter for luma in High Efficiency Video Coding (HEVC), our proposed CNNIF achieves up to 3.2% and on average 0.9% BD-rate reduction under low-delay P configuration.Comment: International Symposium on Circuits and Systems (ISCAS) 201

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Multi-view image coding with wavelet lifting and in-band disparity compensation

    Get PDF

    Spatiotemporal super-resolution for low bitrate H.264 video

    Get PDF

    Video Coding With Low-Complexity Directional Adaptive Interpolation Filters

    Full text link
    • …
    corecore