483 research outputs found

    Stimulus Pulse-Based Distributed Control for the Locomotion of a UBot Modular Robot

    Get PDF
    A distributed control algorithm based on a stimulus pulse signal is proposed in this paper for the locomotion of a Modular Self-reconfigurable Robot (MSRR). This approach can adapt effectively to the dynamic changes in the MSRR's topological configuration: the functional role of the configuration can be recognized through local topology detection, dynamic ID address allocation and local topology matching, such that the features of the entire configuration can be identified and thereby the corresponding stimulus signals can be chosen to control the whole system for coordinated locomotion. This approach has advantages over centralized control in terms of flexibility and robustness, and communication efficiency is not limited by the module number, which can realize coordinated locomotion control conveniently (especially for configurations made up of massive modules and characterized by a chain style or a quadruped style)

    Development of a quadruped mobile robot and its movement system using geometric-based inverse kinematics

    Get PDF
    As the main testbed platform of Artificial Intelligence, the robot plays an essential role in creating an environment for industrial revolution 4.0. According to their bases, the robot can be categorized into a fixed based robot and a mobile robot. Current robotics research direction is interesting since people strive to create a mobile robot able to move in the land, water, and air. This paper presents development of a quadruped mobile robot and its movement system using geometric-based inverse kinematics. The study is related to the movement of a four-legged (quadruped) mobile robot with three Degrees of Freedom (3 DOF) for each leg. Because it has four legs, the movement of the robot can only be done through coordinating the movements of each leg. In this study, the trot gait pattern method is proposed to coordinate the movement of the robot's legs. The end-effector position of each leg is generated by a simple trajectory generator with half rectified sine wave pattern. Furthermore, to move each robot's leg, it is proposed to use geometric-based inverse kinematic. The experimental results showed that the proposed method succeeded in moving the mobile robot with precision. Movement errors in the translation direction are 1.83% with the average pose error of 1.33 degrees, means the mobile robot has good walking stability

    Development and Field Testing of the FootFall Planning System for the ATHLETE Robots

    Get PDF
    The FootFall Planning System is a ground-based planning and decision support system designed to facilitate the control of walking activities for the ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) family of robots. ATHLETE was developed at NASA's Jet Propulsion Laboratory (JPL) and is a large six-legged robot designed to serve multiple roles during manned and unmanned missions to the Moon; its roles include transportation, construction and exploration. Over the four years from 2006 through 2010 the FootFall Planning System was developed and adapted to two generations of the ATHLETE robots and tested at two analog field sites (the Human Robotic Systems Project's Integrated Field Test at Moses Lake, Washington, June 2008, and the Desert Research and Technology Studies (D-RATS), held at Black Point Lava Flow in Arizona, September 2010). Having 42 degrees of kinematic freedom, standing to a maximum height of just over 4 meters, and having a payload capacity of 450 kg in Earth gravity, the current version of the ATHLETE robot is a uniquely complex system. A central challenge to this work was the compliance of the high-DOF (Degree Of Freedom) robot, especially the compliance of the wheels, which affected many aspects of statically-stable walking. This paper will review the history of the development of the FootFall system, sharing design decisions, field test experiences, and the lessons learned concerning compliance and self-awareness

    ON TRAVERSABILITY COST EVALUATION FROM PROPRIOCEPTIVE SENSING FOR A CRAWLING ROBOT

    Get PDF
    Traversability characteristics of the robot working environment are crucial in planning an efficient path for a robot operating in rough unstructured areas. In the literature, approaches to wheeled or tracked robots can be found, but a relatively little attention is given to walking multi-legged robots. Moreover, the existing approaches for terrain traversability assessment seem to be focused on gathering key features from a terrain model acquired from range data or camera image and only occasionally supplemented with proprioceptive sensing that expresses the interaction of the robot with the terrain. This paper addresses the problem of traversability cost evaluation based on proprioceptive sensing for a hexapod walking robot while optimizing different criteria. We present several methods of evaluating the robot-terrain interaction that can be used as a cost function for an assessment of the robot motion that can be utilized in high-level path-planning algorithms

    Genetically evolved dynamic control for quadruped walking

    Get PDF
    The aim of this dissertation is to show that dynamic control of quadruped locomotion is achievable through the use of genetically evolved central pattern generators. This strategy is tested both in simulation and on a walking robot. The design of the walker has been chosen to be statically unstable, so that during motion less than three supporting feet may be in contact with the ground. The control strategy adopted is capable of propelling the artificial walker at a forward locomotion speed of ~1.5 Km/h on rugged terrain and provides for stability of motion. The learning of walking, based on simulated genetic evolution, is carried out in simulation to speed up the process and reduce the amount of damage to the hardware of the walking robot. For this reason a general-purpose fast dynamic simulator has been developed, able to efficiently compute the forward dynamics of tree-like robotic mechanisms. An optimization process to select stable walking patterns is implemented through a purposely designed genetic algorithm, which implements stochastic mutation and cross-over operators. The algorithm has been tailored to address the high cost of evaluation of the optimization function, as well as the characteristics of the parameter space chosen to represent controllers. Experiments carried out on different conditions give clear indications on the potential of the approach adopted. A proof of concept is achieved, that stable dynamic walking can be obtained through a search process which identifies attractors in the dynamics of the motor-control system of an artificial walker

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    Intelligent approaches in locomotion - a review

    Get PDF

    Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion

    Get PDF
    Quadruped robots demonstrated extensive capabilities of traversing complex and unstructured environments. Optimization-based techniques gave a relevant impulse to the research on legged locomotion. Indeed, by designing the cost function and the constraints, we can guarantee the feasibility of a motion and impose high-level locomotion tasks, e.g., tracking of a reference velocity. This allows one to have a generic planning approach without the need to tailor a specific motion for each terrain, as in the heuristic case. In this context, Model Predictive Control (MPC) can compensate for model inaccuracies and external disturbances, thanks to the high-frequency replanning. The main objective of this dissertation is to develop a Nonlinear MPC (NMPC)-based locomotion framework for quadruped robots. The aim is to obtain an algorithm which can be extended to different robots and gaits; in addition, I sought to remove some assumptions generally done in the literature, e.g., heuristic reference generator and user-defined gait sequence. The starting point of my work is the definition of the Optimal Control Problem to generate feasible trajectories for the Center of Mass. It is descriptive enough to capture the linear and angular dynamics of the robot as a whole. A simplified model (Single Rigid Body Dynamics model) is used for the system dynamics, while a novel cost term maximizes leg mobility to improve robustness in the presence of nonflat terrain. In addition, to test the approach on the real robot, I dedicated particular effort to implementing both a heuristic reference generator and an interface for the controller, and integrating them into the controller framework developed previously by other team members. As a second contribution of my work, I extended the locomotion framework to deal with a trot gait. In particular, I generalized the reference generator to be based on optimization. Exploiting the Linear Inverted Pendulum model, this new module can deal with the underactuation of the trot when only two legs are in contact with the ground, endowing the NMPC with physically informed reference trajectories to be tracked. In addition, the reference velocities are used to correct the heuristic footholds, obtaining contact locations coherent with the motion of the base, even though they are not directly optimized. The model used by the NMPC receives as input the gait sequence, thus with the last part of my work I developed an online multi-contact planner and integrated it into the MPC framework. Using a machine learning approach, the planner computes the best feasible option, even in complex environments, in a few milliseconds, by ranking online a set of discrete options for footholds, i.e., which leg to move and where to step. To train the network, I designed a novel function, evaluated offline, which considers the value of the cost of the NMPC and robustness/stability metrics for each option. These methods have been validated with simulations and experiments over the three years. I tested the NMPC on the Hydraulically actuated Quadruped robot (HyQ) of the IIT’s Dynamic Legged Systems lab, performing omni-directional motions on flat terrain and stepping on a pallet (both static and relocated during the motion) with a crawl gait. The trajectory replanning is performed at high-frequency, and visual information of the terrain is included to traverse uneven terrain. A Unitree Aliengo quadruped robot is used to execute experiments with the trot gait. The optimization-based reference generator allows the robot to reach a fixed goal and recover from external pushes without modifying the structure of the NMPC. Finally, simulations with the Solo robot are performed to validate the neural network-based contact planning. The robot successfully traverses complex scenarios, e.g., stepping stones, with both walk and trot gaits, choosing the footholds online. The achieved results improved the robustness and the performance of the quadruped locomotion. High-frequency replanning, dealing with a fixed goal, recovering after a push, and the automatic selection of footholds could help the robots to accomplish important tasks for the humans, for example, providing support in a disaster response scenario or inspecting an unknown environment. In the future, the contact planning will be transferred to the real hardware. Possible developments foresee the optimization of the gait timings, i.e., stance and swing duration, and a framework which allows the automatic transition between gaits
    • 

    corecore