655,060 research outputs found

    Robust Estimation of Optical Phase Varying as a Continuous Resonant Process

    Full text link
    It is well-known that adaptive homodyne estimation of continuously varying optical phase provides superior accuracy in the phase estimate as compared to adaptive or non-adaptive static estimation. However, most phase estimation schemes rely on precise knowledge of the underlying parameters of the system under measurement, and performance deteriorates significantly with changes in these parameters; hence it is desired to develop robust estimation techniques immune to such uncertainties. In related works, we have already shown how adaptive homodyne estimation can be made robust to uncertainty in an underlying parameter of the phase varying as a simplistic Ornstein-Uhlenbeck stochastic noise process. Here, we demonstrate robust phase estimation for a more complicated resonant noise process using a guaranteed cost robust filter.Comment: 5 pages, 10 figures, Proceedings of the 2013 Multi-Conference on Systems and Contro

    Differential Evolution for Many-Particle Adaptive Quantum Metrology

    Get PDF
    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods based on particle-swarm optimization. We apply our method to the binary-decision-tree model for quantum-enhanced phase estimation as well as to a new problem: a decision tree for adaptive estimation of the unknown bias of a quantum coin in a quantum walk and show how this latter case can be realized experimentally.Comment: Fig. 2(a) is the cover of Physical Review Letters Vol. 110 Issue 2

    Adaptive statistical pattern classifiers for remotely sensed data

    Get PDF
    A technique for the adaptive estimation of nonstationary statistics necessary for Bayesian classification is developed. The basic approach to the adaptive estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest and (2) a projection of the parameters in time or position. A divergence criterion is developed to monitor algorithm performance. Comparative results of adaptive and nonadaptive classifier tests are presented for simulated four dimensional spectral scan data
    corecore