17,511 research outputs found

    Optimal packetisation of MPEG-4 using RTP over mobile networks

    Get PDF
    The introduction of third-generation wireless networks should result in real-time mobile video communications becoming a reality. Delivery of such video is likely to be facilitated by the realtime transport protocol (RTP). Careful packetisation of the video data is necessary to ensure the optimal trade-off between channel utilisation and error robustness. Theoretical analyses for two basic schemes of MPEG-4 data encapsulation within RTP packets are presented. Simulations over a GPRS (general packet radio service) network are used to validate the analysis of the most efficient scheme. Finally, a motion adaptive system for deriving MPEG-4 video packet sizes is presented. Further simulations demonstrate the benefits of the adaptive system

    The QUIC Fix for Optimal Video Streaming

    Get PDF
    Within a few years of its introduction, QUIC has gained traction: a significant chunk of traffic is now delivered over QUIC. The networking community is actively engaged in debating the fairness, performance, and applicability of QUIC for various use cases, but these debates are centered around a narrow, common theme: how does the new reliable transport built on top of UDP fare in different scenarios? Support for unreliable delivery in QUIC remains largely unexplored. The option for delivering content unreliably, as in a best-effort model, deserves the QUIC designers' and community's attention. We propose extending QUIC to support unreliable streams and present a simple approach for implementation. We discuss a simple use case of video streaming---an application that dominates the overall Internet traffic---that can leverage the unreliable streams and potentially bring immense benefits to network operators and content providers. To this end, we present a prototype implementation that, by using both the reliable and unreliable streams in QUIC, outperforms both TCP and QUIC in our evaluations.Comment: Published to ACM CoNEXT Workshop on the Evolution, Performance, and Interoperability of QUIC (EPIQ

    Performance evaluation of MPEG-4 video streaming over UMTS networks using an integrated tool environment

    Get PDF
    Universal Mobile Telecommunications System (UMTS) is a third-generation mobile communications system that supports wireless wideband multimedia applications. This paper investigates the video quality attained in streaming MPEG-4 video over UMTS networks using an integrated tool environment, which comprises an MPEG-4 encoder/decoder, a network simulator and video quality evaluation tools. The benefit of such an integrated tool environment is that it allows the evaluation of real video sources compressed using an MPEG-4 encoder. Simulation results show that UMTS Radio Link Control (RLC) outperforms the unacknowledged mode. The latter mode provides timely delivery but no error recovery. The acknowledged mode can deliver excellent perceived video quality for RLC block error rates up to 30% utilizing a playback buffer at the streaming client. Based on the analysis of the performance results, a self-adaptive RLC acknowledged mode protocol is proposed

    Congestion Control using FEC for Conversational Multimedia Communication

    Full text link
    In this paper, we propose a new rate control algorithm for conversational multimedia flows. In our approach, along with Real-time Transport Protocol (RTP) media packets, we propose sending redundant packets to probe for available bandwidth. These redundant packets are Forward Error Correction (FEC) encoded RTP packets. A straightforward interpretation is that if no losses occur, the sender can increase the sending rate to include the FEC bit rate, and in the case of losses due to congestion the redundant packets help in recovering the lost packets. We also show that by varying the FEC bit rate, the sender is able to conservatively or aggressively probe for available bandwidth. We evaluate our FEC-based Rate Adaptation (FBRA) algorithm in a network simulator and in the real-world and compare it to other congestion control algorithms

    Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link

    Get PDF
    Bluetooth's default automatic repeat request (ARQ) scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly) B-slices by inspection of packet headers without the need for encoder intervention.</jats:p
    • ā€¦
    corecore