1,891 research outputs found

    A Selective Review of Group Selection in High-Dimensional Models

    Full text link
    Grouping structures arise naturally in many statistical modeling problems. Several methods have been proposed for variable selection that respect grouping structure in variables. Examples include the group LASSO and several concave group selection methods. In this article, we give a selective review of group selection concerning methodological developments, theoretical properties and computational algorithms. We pay particular attention to group selection methods involving concave penalties. We address both group selection and bi-level selection methods. We describe several applications of these methods in nonparametric additive models, semiparametric regression, seemingly unrelated regressions, genomic data analysis and genome wide association studies. We also highlight some issues that require further study.Comment: Published in at http://dx.doi.org/10.1214/12-STS392 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Smoothing 1\ell_1-penalized estimators for high-dimensional time-course data

    Full text link
    When a series of (related) linear models has to be estimated it is often appropriate to combine the different data-sets to construct more efficient estimators. We use 1\ell_1-penalized estimators like the Lasso or the Adaptive Lasso which can simultaneously do parameter estimation and model selection. We show that for a time-course of high-dimensional linear models the convergence rates of the Lasso and of the Adaptive Lasso can be improved by combining the different time-points in a suitable way. Moreover, the Adaptive Lasso still enjoys oracle properties and consistent variable selection. The finite sample properties of the proposed methods are illustrated on simulated data and on a real problem of motif finding in DNA sequences.Comment: Published in at http://dx.doi.org/10.1214/07-EJS103 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal Inference in Crowdsourced Classification via Belief Propagation

    Full text link
    Crowdsourcing systems are popular for solving large-scale labelling tasks with low-paid workers. We study the problem of recovering the true labels from the possibly erroneous crowdsourced labels under the popular Dawid-Skene model. To address this inference problem, several algorithms have recently been proposed, but the best known guarantee is still significantly larger than the fundamental limit. We close this gap by introducing a tighter lower bound on the fundamental limit and proving that Belief Propagation (BP) exactly matches this lower bound. The guaranteed optimality of BP is the strongest in the sense that it is information-theoretically impossible for any other algorithm to correctly label a larger fraction of the tasks. Experimental results suggest that BP is close to optimal for all regimes considered and improves upon competing state-of-the-art algorithms.Comment: This article is partially based on preliminary results published in the proceeding of the 33rd International Conference on Machine Learning (ICML 2016

    Pac-bayesian bounds for sparse regression estimation with exponential weights

    Get PDF
    We consider the sparse regression model where the number of parameters pp is larger than the sample size nn. The difficulty when considering high-dimensional problems is to propose estimators achieving a good compromise between statistical and computational performances. The BIC estimator for instance performs well from the statistical point of view \cite{BTW07} but can only be computed for values of pp of at most a few tens. The Lasso estimator is solution of a convex minimization problem, hence computable for large value of pp. However stringent conditions on the design are required to establish fast rates of convergence for this estimator. Dalalyan and Tsybakov \cite{arnak} propose a method achieving a good compromise between the statistical and computational aspects of the problem. Their estimator can be computed for reasonably large pp and satisfies nice statistical properties under weak assumptions on the design. However, \cite{arnak} proposes sparsity oracle inequalities in expectation for the empirical excess risk only. In this paper, we propose an aggregation procedure similar to that of \cite{arnak} but with improved statistical performances. Our main theoretical result is a sparsity oracle inequality in probability for the true excess risk for a version of exponential weight estimator. We also propose a MCMC method to compute our estimator for reasonably large values of pp.Comment: 19 page

    A simple forward selection procedure based on false discovery rate control

    Full text link
    We propose the use of a new false discovery rate (FDR) controlling procedure as a model selection penalized method, and compare its performance to that of other penalized methods over a wide range of realistic settings: nonorthogonal design matrices, moderate and large pool of explanatory variables, and both sparse and nonsparse models, in the sense that they may include a small and large fraction of the potential variables (and even all). The comparison is done by a comprehensive simulation study, using a quantitative framework for performance comparisons in the form of empirical minimaxity relative to a "random oracle": the oracle model selection performance on data dependent forward selected family of potential models. We show that FDR based procedures have good performance, and in particular the newly proposed method, emerges as having empirical minimax performance. Interestingly, using FDR level of 0.05 is a global best.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS194 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Banking the unbanked: the Mzansi intervention in South Africa:

    Get PDF
    Purpose This paper aims to understand household’s latent behaviour decision making in accessing financial services. In this analysis we look at the determinants of the choice of the pre-entry Mzansi account by consumers in South Africa. Design/methodology/approach We use 102 variables, grouped in the following categories: basic literacy, understanding financial terms, targets for financial advice, desired financial education and financial perception. Employing a computationally efficient variable selection algorithm we study which variables can satisfactorily explain the choice of a Mzansi account. Findings The Mzansi intervention is appealing to individuals with basic but insufficient financial education. Aspirations seem to be very influential in revealing the choice of financial services and to this end Mzansi is perceived as a pre-entry account not meeting the aspirations of individuals aiming to climb up the financial services ladder. We find that Mzansi holders view the account mainly as a vehicle for receiving payments, but on the other hand are debt-averse and inclined to save. Hence although there is at present no concrete evidence that the Mzansi intervention increases access to finance via diversification (i.e. by recruiting customers into higher level accounts and services) our analysis shows that this is very likely to be the case. Originality/value The issue of demand side constraints on access to finance have been largely ignored in the theoretical and empirical literature. This paper undertakes some preliminary steps in addressing this gap
    corecore