research

Pac-bayesian bounds for sparse regression estimation with exponential weights

Abstract

We consider the sparse regression model where the number of parameters pp is larger than the sample size nn. The difficulty when considering high-dimensional problems is to propose estimators achieving a good compromise between statistical and computational performances. The BIC estimator for instance performs well from the statistical point of view \cite{BTW07} but can only be computed for values of pp of at most a few tens. The Lasso estimator is solution of a convex minimization problem, hence computable for large value of pp. However stringent conditions on the design are required to establish fast rates of convergence for this estimator. Dalalyan and Tsybakov \cite{arnak} propose a method achieving a good compromise between the statistical and computational aspects of the problem. Their estimator can be computed for reasonably large pp and satisfies nice statistical properties under weak assumptions on the design. However, \cite{arnak} proposes sparsity oracle inequalities in expectation for the empirical excess risk only. In this paper, we propose an aggregation procedure similar to that of \cite{arnak} but with improved statistical performances. Our main theoretical result is a sparsity oracle inequality in probability for the true excess risk for a version of exponential weight estimator. We also propose a MCMC method to compute our estimator for reasonably large values of pp.Comment: 19 page

    Similar works