8,124 research outputs found

    Sketching for Large-Scale Learning of Mixture Models

    Get PDF
    Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a "compressive learning" framework where we estimate model parameters from a sketch of the training data. This sketch is a collection of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set, and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical Expectation-Maximization (EM) technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over 10 8 training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive information preservation guarantees, in the spirit of infinite-dimensional compressive sensing

    Adaptive Resonance Theory

    Full text link
    SyNAPSE program of the Defense Advanced Projects Research Agency (Hewlett-Packard Company, subcontract under DARPA prime contract HR0011-09-3-0001, and HRL Laboratories LLC, subcontract #801881-BS under DARPA prime contract HR0011-09-C-0001); CELEST, an NSF Science of Learning Center (SBE-0354378

    A Multiple Hypothesis Testing Approach to Low-Complexity Subspace Unmixing

    Full text link
    Subspace-based signal processing traditionally focuses on problems involving a few subspaces. Recently, a number of problems in different application areas have emerged that involve a significantly larger number of subspaces relative to the ambient dimension. It becomes imperative in such settings to first identify a smaller set of active subspaces that contribute to the observation before further processing can be carried out. This problem of identification of a small set of active subspaces among a huge collection of subspaces from a single (noisy) observation in the ambient space is termed subspace unmixing. This paper formally poses the subspace unmixing problem under the parsimonious subspace-sum (PS3) model, discusses connections of the PS3 model to problems in wireless communications, hyperspectral imaging, high-dimensional statistics and compressed sensing, and proposes a low-complexity algorithm, termed marginal subspace detection (MSD), for subspace unmixing. The MSD algorithm turns the subspace unmixing problem for the PS3 model into a multiple hypothesis testing (MHT) problem and its analysis in the paper helps control the family-wise error rate of this MHT problem at any level α∈[0,1]\alpha \in [0,1] under two random signal generation models. Some other highlights of the analysis of the MSD algorithm include: (i) it is applicable to an arbitrary collection of subspaces on the Grassmann manifold; (ii) it relies on properties of the collection of subspaces that are computable in polynomial time; and (iiiiii) it allows for linear scaling of the number of active subspaces as a function of the ambient dimension. Finally, numerical results are presented in the paper to better understand the performance of the MSD algorithm.Comment: Submitted for journal publication; 33 pages, 14 figure

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201
    • 

    corecore