18 research outputs found

    Learning Autonomous Flight Controllers with Spiking Neural Networks

    Full text link
    The ability of a robot to adapt in-mission to achieve an assigned goal is highly desirable. This thesis project places an emphasis on employing learning-based intelligent control methodologies to the development and implementation of an autonomous unmanned aerial vehicle (UAV). Flight control is carried out by evolving spiking neural networks (SNNs) with Hebbian plasticity. The proposed implementation is capable of learning and self-adaptation to model variations and uncertainties when the controller learned in simulation is deployed on a physical platform. Controller development for small multicopters often relies on simulations as an intermediate step, providing cheap, parallelisable, observable and reproducible optimisation with no risk of damage to hardware. Although model-based approaches have been widely utilised in the process of development, loss of performance can be observed on the target platform due to simplification of system dynamics in simulation (e.g., aerodynamics, servo dynamics, sensor uncertainties). Ignorance of these effects in simulation can significantly deteriorate performance when the controller is deployed. Previous approaches often require mathematical or simulation models with a high level of accuracy which can be difficult to obtain. This thesis, on the other hand, attempts to cross the reality gap between a low-fidelity simulation and the real platform. This is done using synaptic plasticity to adapt the SNN controller evolved in simulation to the actual UAV dynamics. The primary contribution of this work is the implementation of a procedural methodology for SNN control that integrates bioinspired learning mechanisms with artificial evolution, with an SNN library package (i.e. eSpinn) developed by the author. Distinct from existing SNN simulators that mainly focus on large-scale neuron interactions and learning mechanisms from a neuroscience perspective, the eSpinn library draws particular attention to embedded implementations on hardware that is applicable for problems in the robotic domain. This C++ software package is not only able to support simulations in the MATLAB and Python environment, allowing rapid prototyping and validation in simulation; but also capable of seamless transition between simulation and deployment on the embedded platforms. This work implements a modified version of the NEAT neuroevolution algorithm and leverages the power of evolutionary computation to discover functional controller compositions and optimise plasticity mechanisms for online adaptation. With the eSpinn software package the development of spiking neurocontrollers for all degrees of freedom of the UAV is demonstrated in simulation. Plastic height control is carried out on a physical hexacopter platform. Through a set of experiments it is shown that the evolved plastic controller can maintain its functionality by self-adapting to model changes and uncertainties that take place after evolutionary training, and consequently exhibit better performance than its non-plastic counterpart

    Kaotik sistemlerin klasik ve zeki yaklaşımlar ile kontrolü

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Elektronik devreler için kaos istenmeyen bir davranıştır. Bu tezde, kaotik sistemlerin kontrolü için iyi bilinen bazı kaos kontrol yöntemleri ile yapay zekâ tekniklerinin birlikte kullanımı önerilmiştir. Chua devresinin kontrolü kayma kipli kontrol yöntemi, yapay sinir ağları ve ikisinin bir arada kullanımı ile, Bonhoeffer–van der Pol devresinin kontrolü pasif kontrol yöntemi, bulanık mantık ve ikisinin bir arada kullanımı ile, Colpitts devresinin kontrolü ise geri-beslemeli kontrol yöntemi, sinirsel-bulanık ağlar ve ikisinin bir arada kullanımı ile gerçekleştirilmiştir. Sonuçlar karşılaştırmalı grafikler ile sunulmuştur. Sonuçlar, önerilen yaklaşımın kaotik sistemlerin denge noktasına kontrolünü daha hızlı sağladığını göstermiştir.Chaos is an undesired behaviour for electronic circuits. In this thesis, usage of some well-known chaos control methods with artificial intelligence techniques is proposed for the control of chaotic systems. Sliding mode control method, artificial neural networks and using both of them are applied for the control of Chua's circuit, the passive control method, fuzzy logic and using both of them are applied for the control of Bonhoeffer–van der Pol circuit, and the feedback control method, adaptive neuro-fuzzy inference system and using both of them are applied for the control of Colpitts circuit. The results are presented by comparative figures. They show that the proposed approach provides the control of chaotic systems to their equilibrium points more effectively

    Flight controller synthesis via deep reinforcement learning

    Get PDF
    Traditional control methods are inadequate in many deployment settings involving autonomous control of Cyber-Physical Systems (CPS). In such settings, CPS controllers must operate and respond to unpredictable interactions, conditions, or failure modes. Dealing with such unpredictability requires the use of executive and cognitive control functions that allow for planning and reasoning. Motivated by the sport of drone racing, this dissertation addresses these concerns for state-of-the-art flight control by investigating the use of deep artificial neural networks to bring essential elements of higher-level cognition to bear on the design, implementation, deployment, and evaluation of low level (attitude) flight controllers. First, this thesis presents a feasibility analyses and results which confirm that neural networks, trained via reinforcement learning, are more accurate than traditional control methods used by commercial uncrewed aerial vehicles (UAVs) for attitude control. Second, armed with these results, this thesis reports on the development and release of an open source, full solution stack for building neuro-flight controllers. This stack consists of a tuning framework for implementing training environments (GymFC) and firmware for the world’s first neural network supported flight controller (Neuroflight). GymFC’s novel approach fuses together the digital twinning paradigm with flight control training to provide seamless transfer to hardware. Third, to transfer models synthesized by GymFC to hardware, this thesis reports on the toolchain that has been released for compiling neural networks into Neuroflight, which can be flashed to off-the-shelf microcontrollers. This toolchain includes detailed procedures for constructing a multicopter digital twin to allow the research and development community to synthesize flight controllers unique to their own aircraft. Finally, this thesis examines alternative reward system functions as well as changes to the software environment to bridge the gap between simulation and real world deployment environments. The design, evaluation, and experimental work summarized in this thesis demonstrates that deep reinforcement learning is able to be leveraged for the design and implementation of neural network controllers capable not only of maintaining stable flight, but also precision aerobatic maneuvers in real world settings. As such, this work provides a foundation for developing the next generation of flight control systems

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Distributed Control for Collective Behaviour in Micro-unmanned Aerial Vehicles

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.The work presented herein focuses on the design of distributed autonomous controllers for collective behaviour of Micro-unmanned Aerial Vehicles (MAVs). Two alternative approaches to this topic are introduced: one based upon the Evolutionary Robotics (ER) paradigm, the other one upon flocking principles. Three computer simulators have been developed in order to carry out the required experiments, all of them having their focus on the modelling of fixed-wing aircraft flight dynamics. The employment of fixed-wing aircraft rather than the omni-directional robots typically employed in collective robotics significantly increases the complexity of the challenges that an autonomous controller has to face. This is mostly due to the strict motion constraints associated with fixed-wing platforms, that require a high degree of accuracy by the controller. Concerning the ER approach, the experimental setups elaborated have resulted in controllers that have been evolved in simulation with the following capabilities: (1) navigation across unknown environments, (2) obstacle avoidance, (3) tracking of a moving target, and (4) execution of cooperative and coordinated behaviours based on implicit communication strategies. The design methodology based upon flocking principles has involved tests on computer simulations and subsequent experimentation on real-world robotic platforms. A customised implementation of Reynolds’ flocking algorithm has been developed and successfully validated through flight tests performed with the swinglet MAV. It has been notably demonstrated how the Evolutionary Robotics approach could be successfully extended to the domain of fixed-wing aerial robotics, which has never received a great deal of attention in the past. The investigations performed have also shown that complex and real physics-based computer simulators are not a compulsory requirement when approaching the domain of aerial robotics, as long as proper autopilot systems (taking care of the ”reality gap” issue) are used on the real robots.EOARD (European Office of Aerospace Research & Development), euCognitio

    First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    Get PDF
    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore