7 research outputs found

    Adaptive Control with Reference Model Modification

    Get PDF
    This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation exampl

    M-MRAC for Nonlinear Systems with Bounded Disturbances

    Get PDF
    This paper presents design and performance analysis of a modified reference model MRAC (M-MRAC) architecture for a class of multi-input multi-output uncertain nonlinear systems in the presence of bounded disturbances. M-MRAC incorporates an error feedback in the reference model definition, which allows for fast adaptation without generating high frequency oscillations in the control signal, which closely follows the certainty equivalent control signal. The benefits of the method are demonstrated via a simulation example of an aircraft's wing rock motion

    MRAC Revisited: Guaranteed Performance with Reference Model Modification

    Get PDF
    This paper presents modification of the conventional model reference adaptive control (MRAC) architecture in order to achieve guaranteed transient performance both in the output and input signals of an uncertain system. The proposed modification is based on the tracking error feedback to the reference model. It is shown that approach guarantees tracking of a given command and the ideal control signal (one that would be designed if the system were known) not only asymptotically but also in transient by a proper selection of the error feedback gain. The method prevents generation of high frequency oscillations that are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference command of any magnitude form any initial position without re-tuning. The benefits of the method are demonstrated in simulations

    Input and Output Performance of M-MRAC in the Presence of Bounded Disturbances

    Get PDF
    This paper presents performance analysis of novel modified model reference adaptive control (M-MRAC) architecture in conjunction with different robust adaptive laws for the uncertain linear systems subject to unknown but bounded disturbances. It is shown that for any robust adaptive law the tracking error of the M-MRAC system can be arbitrarily decreased in transient and in the steady-state by increasing the adaptation rate, without generating high frequency oscillations in the control signal, which are unavoidable in conventional MRAC systems for large adaptation rates. Moreover, the generated adaptive control signal arbitrary closely tracks the ideal control signal when the error feedback gain is simultaneously increased with the adaptation rate, according to derived rule. The results are demonstrated via simulations
    corecore