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Abstract—This paper presents modification of the conventional
model reference adaptive control (MRAC) architecture in order
to achieve guaranteed transient performance both in the output
and input signals of an uncertain system. The proposed modifi-
cation is based on the tracking error feedback to the reference
model. It is shown that approach guarantees tracking of a given
command and the ideal control signal (one that would be designed
if the system were known) not only asymptotically but also
in transient by a proper selection of the error feedback gain.
The method prevents generation of high frequency oscillations
that are unavoidable in conventional MRAC systems for large
adaptation rates. The provided design guideline makes it possible
to track a reference command of any magnitude form any
initial position without re-tuning. The benefits of the method
are demonstrated in simulations.

I. I NTRODUCTION

The asymptotic behavior of adaptive systems is well re-
searched during last couple of decades, and it is well known
that the asymptotic tracking can be always achieved using
so called Lyapunov redesign method. However, the transient
behavior of the input and output signals can be very oscillatory
with big excursions [13]. There has been great deal of efforts to
modify the control architecture and the adaptive laws from the
perspective of improving the transient behavior of the tracking
error. The majority of these efforts led to high gain linear
nonadaptive feedback [3], [4], [12], switching control law[8],
[9] or to a parameter dependent persistent excitation condition
[1].

In general, increasing the adaptation rate while reducing
the tracking error magnitude (see for example [6]), generates
high frequency oscillations and big overshoot in the control
signal leading to possible actuator failures or excitationof
unmodeled dynamics, which in turn can drive the overall
system to instability. This shortcoming is common for the
majority of existing adaptive control methods. Recently some
results appear in the control community explicitly addressing
the input signal transient behavior, which is very important
from the point of view of the performance specifications of
closed loop systems.
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In [2] the authors proposed a new adaptive control architec-
ture, calledL1 adaptive control, that can achieve close tracking
of a given reference command both in transient and steady
state by increasing the adaptation rate. The low pass filter
introduced in the control channel prevents the high frequency
oscillations in the control signal that closely follows theideal
one. However, the approach loses the possibility to have a real
reference model to track, for which the control metrics can be
specified.

An alternative approach is proposed in [11] for a class of
multi-input multi-output uncertain nonlinear systems to track
a given reference model. Along with the tracking error it
uses also its integral to guarantee the transient performance of
both input and output signals. The control algorithm internally
generates a low pass filter, thus preventing high frequency
oscillations for the large adaptation rates.

In this paper we take somewhat different approach and in-
stead of modifying the control architecture or the adaptivelaws
we modify the reference model by feeding back the tracking
error signal. Similar approach was used in [7] to improve
robustness of the system with respect to disturbances whichare
bounded by the tracking error. Unfortunately the authors did
not further investigate the properties of the control algorithm.
We use the error feedback method from different perspectives.
Our approach, called modified reference model MRAC or M-
MRAC in short, is motivated by the fact that the initial large
error in the control gains generates large transient excursions
both in system’s control and output signals. Moreover, the out-
put excursion in its turn generates oscillations in controlsignal.
So the idea is to drive the reference model toward the system
proportional to the tracking error, thus preventing the system’s
attempt to aggressively maneuver toward the reference model.
As the tracking error is vanished the modified reference model
retains its original form. Therefore, the system asymptotically
tracks not only the modified reference model, but also the
original one. Moreover, the error feedback term determines
the dumping in the control signal, increasing of which makes
it possible to increase the learning rate for better transient
performance without generating oscillations in the system.
Meanwhile, very large error feedback gain may increase the
overshoot with respect to original reference model. Therefore,
both parameters need to be increased simultaneously for better
transient performance, which can be made arbitrary close to
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the ideal performance of the known system. A design guideline
is provided for the selection of the feedback gain relative to
the adaptation rate. The proposed adaptive control method has
uniform performance in the sense that the same tracking is
achieved for different reference commands and from different
initial conditions without re-tuning.

The rest of the paper is organized as follows. Section II
presents results from linear systems theory. Section III present
the control design and defines the error signals. We analyze
the asymptotic properties of the M-MRAC design in Section
IV and the transient properties in Section V, where we also
discuss the design specifics. A simulation example is presented
in Section VI, and some concluding comments are given in
Section VII.

II. PRELIMINARIES FROM L INEAR SYSTEMS THEORY

Consider a linear systemy(s) = G(s)u(s), where G(s)
is a proper stable transfer function. Ifu(t) ∈ L∞ then the
following inequality holds

‖y(t)‖L∞
≤ ‖g(t)‖L1

‖u(t)‖L∞
, (1)

whereg(t) is the impulse response ofG(s) (see for example
[14] (p. 110)). If u(t) ∈ L2 then we have [14] (p. 108)

‖y(t)‖L2
= ‖G(s)‖H∞

‖u(t)‖L2
, (2)

Also, ‖G(s)‖H∞
and ‖g(t)‖L1

satisfy the relationship (see
Theorem 4.5 in [14])

‖G(s)‖H∞
≤ ‖g(t)‖L1

≤ 2‖G(s)‖H∞
. (3)

Next, for eachω, we minimize theH∞ norms of the second
order transfer functions

G1(s) =
1

s2 + 2ζωs + ω2

G2(s) =
s + 2ζω

s2 + 2ζωs + ω2
(4)

with respect toζ. Computation of the‖G1(s)‖H∞
results in

‖G1‖H∞
=







1
ω2 , if ζ > 1√

2
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2ω2ζ
√

1−ζ2
, if ζ ≤ 1√

2

, (5)

minimum of which is reached atζ = 1√
2

and is equal to
‖G1‖H∞

= 1
ω2 . TheH∞ norm G2(s) is computed to be

‖G2‖H∞
=


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
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minimum of which is reached atζ =
√

6
4 and is equal to

‖G2‖H∞
=

√
2

ω
. We notice that the functions‖G1‖H∞

and
‖G2‖H∞

reach the minimum with respect toζ at different
points, that is there is no optimal value ofζ independent ofω
that simultaneously minimizes both‖G1‖H∞

and ‖G2‖H∞
.

Instead, the whole interval
√

6
4 ≤ ζ ≤ 1√

2
represents subopti-

mal values forζ, which results in

1

ω2
≤ ‖G1‖H∞

≤ 1.0328

ω2
,
1.4142

ω
≤ ‖G2‖H∞

≤ 1.4553

ω2
.

On the other hand, it is possible to minimize a com-
bination of ‖G1‖H∞

and ‖G2‖H∞
that results inω inde-

pendent minimizingζ. One such combination ish(ζ, n) =
‖G1‖n

H∞

+‖G2‖2n
H∞

, wheren is a positive integer. Sinceh(ζ)
is homogeneous inω, the minimizing value ofζ is independent
of ω. The minimum problem forn = 1 results in suboptimal
values, which are close to the individual optimal values

ζ0 = 0.634, ‖G1(s)‖H∞
=

c1

ω2
, ‖G2(s)‖H∞

=
c2

ω
. (7)

wherec1 = 1.0198 andc2 = 1.4162.

III. R EFERENCEMODEL MODIFICATION

Consider a first order linear system

ẋ(t) = ax(t) + bu(t), x(0) = x0 , (8)

wherex(t) ∈ R and u(t) ∈ R are the output and input of
the system, anda and b are unknown constant parameters
with known sign ofb. To simplify notations and without loss
of generality we assume thatb > 0. In conventional model
reference adaptive control (MRAC) framework, the objective
is to design a control signalu(t) such that the output of the
system tracks the outputx0(t) of the reference model

ẋ0(t) = −amx0(t) + bmr(t), x0(0) = x0 , (9)

wheream > 0 and bm are chosen to meet the performance
specifications, andr(t) is a smooth and bounded external
command. We notice that this reference model results from
the application of the ideal control signal

u0(t) = k∗
1x0(t) + k∗

2r(t) , (10)

where the ideal control gainsk∗
1 andk∗

2 satisfy the matching
conditions

bk∗
1 = −a − am, bk∗

2 = bm . (11)

The reference model (9) always can be specified from the
performance perspective, but the ideal control signal (10)can
not be implemented since the parametersa andb are unknown.
Therefore, in MRAC framework the adaptive version of the
ideal control signal is implemented, that is

u(t) = k̂1(t)x(t) + k̂2(t)r(t) , (12)

where k̂1(t) and k̂2(t) are the estimates of the ideal control
gainsk∗

1 andk∗
2 , and are generated by the adaptive laws

˙̂
k1(t) = −γx(t)e0(t), k̂1(0) = k10

˙̂
k2(t) = −γr(t)e0(t), k̂2(0) = k20 , (13)

whereγ > 0 is the adaptation rate, ande0(t) = x(t)−x0(t) is
the tracking error. Introducing the estimation errors ask̃1(t) =
k̂1(t) − k∗

1 and k̃2(t) = k̂2(t) − k∗
2 , and taking into account

the matching conditions (11), we obtain the error dynamics as

ė0(t) = −ame0(t) + b[k̃1(t)x(t) + k̃2(t)r(t)] . (14)

It is well known that the this control architecture guarantees
asymptotic trackingx(t) → x0(t) as t → ∞. However, the



transient behavior ofx(t) andu(t) cannot be guaranteed. The
reason is that high frequency oscillations are generated inthe
control signal, when the adaptation rate is increased in order
to obtain better tracking in transient.

Next we present M-MRAC architecture. We modify the
reference model by driving it proportionally to the tracking
error toward the system during the transient phase, when the
adaptive control signalu(t) is far from the ideal one because
of the initial errors in the control gains. Thus, we design the
adaptive control based on the modified reference model

ẋm(t) = −amxm(t) + bmr(t) + λe(t), xm(0) = x0 , (15)

whereλ > 0 is a design parameter ande(t) = x(t) − xm(t).
Thee-dynamics are derived similar to the MRAC architecture
and have the form

ė(t) = −(am + λ)e(t) + b[u(t) − k∗
1x(t) + k∗

2r(t)] . (16)

The control signalu(t) is still given by the equation (12) as
in the MRAC case, but the adaptive laws now are based on
the error signale(t)

˙̂
k1(t) = −γx(t)e(t), k̂1(0) = k10

˙̂
k2(t) = −γr(t)e(t), k̂2(0) = k20 , (17)

Substituting the control signalu(t) into equation (18) we
obtain

ė(t) = −(am + λ)e(t) + b[k̃1(t)x(t) + k̃2(t)r(t)] , (18)

where the parameter estimation errorsk̃1(t) and k̃2(t) are
defined similar to MRAC case.

In the following analysis we will also need the control
error that is defined as̃u(t) = u(t) − u0(t). From the above
constructions it follows that

ũ(t) = k̃1(t)x(t) + k̃2(t)r(t) + k∗
1e0(t) . (19)

Since the ideal control signal is the best achievable signal, we
are interested in minimizing the control errorũ(t), as well as
the tracking errore0(t), both in transient and steady state by
selecting proper values for the parametersγ andλ. This is the
main objective of the analysis in the following sections.

Remark 3.1: Whenλ = 0 the proposed control architecture
is identical with the conventional MRAC design.

IV. A SYMPTOTIC PROPERTIES OFM-MRAC

The following theorem summarizes the asymptotic proper-
ties of the M-MRAC architecture.

Theorem 4.1: Let the system (8) be controlled by the M-
MRAC scheme given by (12), (15) and (17). Then
1) all closed-loop signals are bounded
2) e(t) → 0, e0(t) → 0 and ũ(t) → 0 as t → ∞.

Proof: Consider the following candidate Lyapunov func-
tion

V (t) =
1

2
e2(t) +

b

2γ

[

k̃2
1(t) + k̃2

2(t)
]

. (20)

Computing its derivative along the trajectories of the systems
(18) and (17) we readily obtain

V̇ (t) = −(am + λ)e2(t) , (21)

which implies thate(t), k̃1(t), k̃2(t) ∈ L∞ andV (t) ∈ L∞.
Since the reference model (15) can be viewed as an expo-
nentially stable system with bounded inputsr(t) and e(t),
it follows that xm(t) ∈ L∞ as well. Hencex(t) ∈ L∞.
The boundedness of the tracking errore0(t) follows from
the boundedness ofx(t) and x0(t). Since the inclusions
k̃1(t), k̃2(t) ∈ L∞ imply that k̂1(t), k̂2(t) ∈ L∞, it follows
that u(t) ∈ L∞. Then ũ(t) ∈ L∞, sinceu0(t) ∈ L∞ by the
definition in (10). This completes the first part.

Integrating the equation (21) we obtain

(am + λ)

∫ t

0

e2(τ)dτ = V (0) − V (t) . (22)

SinceV (t) ∈ L∞, it follows that e(t) ∈ L2. Also, from the
error dynamics (18) it follows thaṫe(t) ∈ L∞, thereforee(t)
is uniformly continuous. Application of Barbalat’s lemma (
[10], p.19) results ine(t) → 0 as t → ∞. Subtracting the
equation (14) from the equation (18) we can write

d

dt
[e(t) − e0(t)] = −am[e(t) − e0(t)] − λe(t) , (23)

Since e(t) → 0, it follows from the equation (23) that
[e(t) − e0(t)] → 0, and hencee0(t) → 0 as t → ∞. Further,
from the dynamic equation (8) it follows thaṫx(t) ∈ L∞,
sincex(t) ∈ L∞ andu(t) ∈ L∞. Therefore,x(t) is uniformly
continuous. By assumptionr(t) has a bounded derivative,
hence is uniformly continuous. From the adaptive laws (17)
it follows that ˙̃k1(t),

˙̃k2(t) ∈ L∞, thereforek̃1(t), k̃2(t)
are uniformly continuous as well. Then the right hand side
of the error dynamics (18) is uniformly continuous, therefore
ė(t) is uniformly continuous. Sincee(t) has a finite limit, it
follows from Barabalat’s lemma [5] thaṫe(t) → 0 as t → ∞.
Therefore the relationship

lim
t→∞

[k̃1(t)x(t) + k̃2(t)r(t)] = 0 , (24)

holds. Then it follows from the equation (19) thatũ(t) → 0
as t → ∞. The proof is complete.

Theorem 4.1 shows that M-MRAC architecture guarantees
not only asymptotic tracking of the modified reference model
(15), but also the original reference model of the conventional
MRAC. That is the asymptotic performances of both conven-
tional MRAC and proposed M-MRAC designs are equivalent.
However, as it is shown in the next section the transient
performances are quite different.

V. TRANSIENT PROPERTIES OFM-MRAC

In this section we show that the proper selection of the de-
sign parametersγ andλ results in controllable and quantifiable
transient performance for both output and input signals of the
M-MRAC architecture.



To this end, we recall that Theorem 4.1 assures that the
Lyapunov functionV (t) is non-increasing. Therefore the fol-
lowing chain of relationships holds

e2(t) ≤ 2V (t) ≤ 2V (0) =
b

γ

[

k̃2
1(0) + k̃2

2(0)
]

, (25)

which implies that

|e(t)| ≤ σ√
γ

, (26)

where the constantσ is defined asσ =

√

b
[

k̃2
1(0) + k̃2

2(0)
]

.

Since (26) holds uniformly int we conclude that

‖e(t)‖L∞
≤ σ√

γ
. (27)

Similarly, from the equation (22) the following is obtained

‖e(t)‖L2
≤ σ

√

(am + λ)γ
(28)

To obtain the bounds on the tracking errore0(t) we write
the equation (23) in the following operator form

e0(s) = e(s) +
λ

s + am

e(s) . (29)

The impulse response of the transfer functionG(s) = λ
s+am

has anL1 norm of λ
am

. Therefore, it follows from (27) and
(1) that

‖e0(t)‖L∞
≤ ‖e(t)‖L∞

+
λ

am

‖e(t)‖L∞
≤ (am + λ)σ

am
√

γ
. (30)

On the other hand, sincee(t) ∈ L2, it follows from the
equation (23) thate(t)− e0(t) ∈ L2, hencee0(t) ∈ L2. Then,
applying (2) and (28) we obtain

‖e0(t)‖L2
≤ σ

√
am + λ

am
√

γ
. (31)

From the derived norm bounds in (27), (28), (30) and
(31) it follows that the error signalse(t) and e0(t) can
be arbitrarily decreased by increasing the adaptation rateγ.
However, increasingλ while improves theL2 performance
and leaves intact theL∞ performance of the error signale(t),
also increases the norm bounds on the error signale0(t). That
is λ cannot be selected arbitrarily and should be related to
γ in such a way that (30) and (31) are not increased when
increasingλ. This can be achieved by setting

am + λ = c
√

γ , (32)

wherec > 0 is to be selected form the control error perspec-
tives. In this case, we have the following norm bounds

‖e0(t)‖L∞
≤ cσ

am

, ‖e0(t)‖L2
≤ cσ

am

√
am + λ

, (33)

which imply that the oscillations in the errore0(t) are reduced
by increasingλ and γ simultaneously according to equation
(32), whereas the overshoot is specified by the choice ofc.

Next we analyze the transient performance of the control
error signal ũ(t) defined by the equation (19). We notice
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Fig. 1. Response of MRAC to step input withγ = 60.
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Fig. 2. Response of M-MRAC to step input withγ = 60.

that ũ(t) does not explicitly depend on design parametersλ
and γ. Instead, ˙̃u(t) depend onγ through the adaptive laws,
and ¨̃u(t) depend onλ through the tracking error dynamics.
Differentiating ũ(t) twice we obtain the following second
order differential equation

¨̃u(t) + (am+)λ ˙̃u(t) + ω2(t)ũ(t) = (34)

γbk∗
1ρ(t)e0(t) − γρ̇(t)e(t) + ṙ1(t) + λr1(t) ,

where we denoteρ(t) = x2(t) + r2(t), ω(t) =
√

γbρ(t) and
r1(t) = k̃1(t)ẋ(t) + k̃2(t)ṙ(t) + k∗

1 ė0(t). From the results
of the previous section it follows that all functions involved
in the equation (34) are bounded. In particular, there exist
positive constantsα1, α2, α3 such that‖ρ(t)‖L∞

≤ α1,
‖ρ̇(t)‖L∞

≤ α2 and ‖r1(t)‖L∞
≤ α3. Since the terms in

equation (34) are also continuous functions in time, it can be
considered as a linear equation with time varying coefficients.
Although the equation (34) is non-autonomous, it can be still
inferred that the adaptation rateγ determines the frequency
of ũ(t) and hence the frequency of the control signalu(t),
since the ideal controlu0(t) is in the low frequency range.



Therefore, increasingγ increases the oscillations inu(t) as
it is the case for the conventional MRAC design. On the
other handam + λ determines the damping ratio. Therefore
increasingλ suppresses the oscillations iñu(t) and hence in
the control signalu(t). That is, by selecting a proper value for
λ the desired performance can be achieved. This is the main
difference from the MRAC design, which results whenλ = 0,
sinceam is fixed from the performance perspectives.
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Fig. 3. Response of MRAC to step input withγ = 600.
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Fig. 4. Response of M-MRAC to step input withγ = 600.

To derive the norm bound for̃u(t) one needs to compute
the state transition matrix of the non-autonomous system (34).
However, the analytic computation, even if possible, requires
the knowledge of entire functionω(t). Since our goal is to
derive a relationship betweenλ andγ, that guarantees a sub-
optimal design, we compute an approximate bound replacing
the functionω(t) with a constantω0. This is motivated by
the fact that the transient behavior ofũ(t) mainly depends on
the initial conditions, and by our interest in the dependence of
the bound of̃u(t) on large values of the parametersλ andγ.
That is, when the influence of the parametersλ andγ is much
greater than the influence of other factors. Hence the constant

b can be also ignored. Therefore, we setω0 =
√

γρ0, where

ρ0 =

{

‖x0‖2 + ‖r(0)‖2, if r(0) 6= 0

‖x0‖2 + ‖r(t)‖2
L∞

, if r(0) = 0, r(t) 6= 0

With constantω0 the equation (34) can be written in the
following operator form

ũ(s) = G1(s)[γamρ(t)e(s) + γk∗
1ρ(t)e0(t) − γρ̇(t)e(t)

+ ˙̃u(0) − r1(0)] + G2(s)[r1(t) + ũ(0)] , (35)

where the transfer functionsG1(s) andG2(s) are defined in
(4) with ω = ω0 andζ = am+λ

2ω0
. Applying the inequality (1)

to each term on the right hand side of the equation (35) we
have

‖ũ(t)‖L∞
≤ ‖g1(t)‖L1

[γα1|k∗
1 |‖e0(t)‖L∞

+ | ˙̃u(0)|
+ γα2‖e(t)‖L∞

+ |r1(0)|]
+ ‖g2(t)‖L1

[α3 + |ũ(0)|] . (36)

Next we select

λ = 2ζ0
√

γρ0 − am , (37)

whereζ0 is given in (7), and evaluate the right hand side of
(37) term by term. Using (27), (33), (3) and (7) we obtain

‖g1(t)‖L1
[| ˙̃u(0)| + |r1(0)|] ≤ 2c1

γρ0

[| ˙̃u(0)| + |r1(0)|]
γα1|k∗

1 |‖g1(t)‖L1
‖e0(t)‖L∞

≤ 4c1α1|k∗

1
|ζ0σ

am

√
ρ0

γα2‖g1(t)‖L1
‖e(t)‖L∞

≤ 2c1α2

ρ0

σ√
γ

‖g2(t)‖L1
[α3 + |ũ(0)|] ≤ 2c2√

ρ0γ
[α3 + |ũ(0)|] . (38)

Combining the terms we end up with the following approxi-
mate bound for thẽu(t)

‖ũ(t)‖L∞
≤ 4c1α1|k∗

1 |ζ0

am
√

ρ0
σ +

2c1α2σ

ρ0
√

γ
(39)

+
2c2(α3 + |ũ(0)|)√

ρ0γ
+

2c1[| ˙̃u(0)| + |r1(0)|]
ρ0γ

.

We notice that all the terms on the right hand side of (39)
can be arbitrarily decreased by increasing the parametersγ
except for the first term, which is independent ofγ and is
determined by the initial estimation errors expressed byσ.

The results can be finalized in the form of the following
theorem.

Theorem 5.1: Let the system (8) be controlled by the M-
MRAC scheme given by (12), (15) and (17). Then for large
γ andλ satisfying the equation (37) the following asymptotic
bounds hold

‖e(t)‖L∞
≤ o

(

γ− 1

2

)

, ‖e(t)‖L2
≤ o

(

γ− 3

4

)

‖e0(t)‖L∞
≤ o (σ) , ‖e0(t)‖L2

≤ o
(

γ− 1

4

)

‖ũ(t)‖L∞
≤ o (σ) + o

(

γ− 1

2

)

. (40)



VI. SIMULATION RESULTS

For the simulation we consider the system (8) witha = 3
and b = 2. The parameters of the reference model are set
am = 2 and bm = 2. The external command is chosen to be
1) a step function at timet = 3sec with the magnituder0,
2) a sinusoid of frequency2rad/sec and of amplituder0. λ
is set to2ζ0

√

γ(x2
0 + r2

0) − am according to equations (35)
and (37). The response to the step command of MRAC and
M-MRAC with γ = 60, r0 = 1 andx0 = 0 are displayed in
Figures 1 and 2 respectively. The improvement is obvious even
with a small adaptation rate. No oscillations are observed in
the M-MRAC response contrary to the conventional MRAC
response. Next we increase the adaptation rate toγ = 600.
The corresponding performances of MRAC and M-MRAC
are presented in Figures 3 and 4 respectively. It can be seen
that the output tracking performance of MRAC gets better
in the expense of high frequency control signal, while the
output and input tracking performances of M-MRAC are both
perfect. Further increase ofγ for the M-MRAC design results
in the performance indistinguishable from that of the reference
model both for input and output signals.
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Fig. 5. Response of M-MRAC to step input withγ = 6000, r = 10 and
x0 = 4.

To show the uniform performance of the M-MRAC design
we run simulations withr0 = 10 and x0 = 4, the result of
which is displayed on Figure 5. Obviously the quality of the
output and input tracking did not change.

The final simulation was performed with the sinusoidal in-
put with γ = 6000, r0 = 1 andx0 = 0. The systems response
along with the M-MRAC control signal is displayed on Figure
5. Ones again perfect tracking is archived in both input and
output signals. The noticeable discrepancies disappear with the
increase ofγ.

VII. C ONCLUSIONS

We have presented the transient and asymptotic performance
analysis of modified reference model MRAC (M-MRAC)
design. We showed that the desired level of tracking in
both systems input and output signals can be achieved with

fast adaptation provided that the design parameters are set
according to the derived guideline. Although presented forthe
conventional MRAC design, the proposed method is suitable
for any adaptive design technique since we are only changing
the reference model, keeping the controller structure and the
adaptive laws intact.
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Fig. 6. Response of M-MRAC to sinusoidal input withγ = 6000.
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