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MRAC Revisited:
Guaranteed Performance with Reference Model
Modification

Vahram Stepanyan and Kalmanje Krishnakumar

Abstract—This paper presents modification of the conventional
model reference adaptive control (MRAC) architecture in order
to achieve guaranteed transient performance both in the oytut
and input signals of an uncertain system. The proposed modifi
cation is based on the tracking error feedback to the referene
model. It is shown that approach guarantees tracking of a gien
command and the ideal control signal (one that would be desiged
if the system were known) not only asymptotically but also
in transient by a proper selection of the error feedback gain
The method prevents generation of high frequency oscillatins
that are unavoidable in conventional MRAC systems for large
adaptation rates. The provided design guideline makes it @sible
to track a reference command of any magnitude form any
initial position without re-tuning. The benefits of the method
are demonstrated in simulations.

I. INTRODUCTION

The asymptotic behavior of adaptive systems is well r%—
searched during last couple of decades, and it is well known

In [2] the authors proposed a new adaptive control architec-
ture, calledl; adaptive control, that can achieve close tracking
of a given reference command both in transient and steady
state by increasing the adaptation rate. The low pass filter
introduced in the control channel prevents the high frequen
oscillations in the control signal that closely follows tideal
one. However, the approach loses the possibility to havala re
reference model to track, for which the control metrics can b
specified.

An alternative approach is proposed in [11] for a class of
multi-input multi-output uncertain nonlinear systems tack
a given reference model. Along with the tracking error it
uses also its integral to guarantee the transient perfarenah
both input and output signals. The control algorithm indisn
enerates a low pass filter, thus preventing high frequency
scillations for the large adaptation rates.

In this paper we take somewhat different approach and in-

that the asymptotic tracki_ng can be always achieved us.ig%ad of modifying the control architecture or the adagtves
so called Lyapunov redesign method. However, the transigpt modify the reference model by feeding back the tracking

behavior of the input and output signals can be very osociljat
with big excursions [13]. There has been great deal of effort

error signal. Similar approach was used in [7] to improve
robustness of the system with respect to disturbances velnéch

modify the control architecture and the adaptive laws from t bounded by the tracking error. Unfortunately the authots di

perspective of improving the transient behavior of thekirag

not further investigate the properties of the control altpon.

error. The majority of these efforts led to high gain Iinea\r/\/e use the error feedback method from different perspestive

nonadaptive feedback [3], [4], [12], switching control 1§83},

[9] or to a parameter dependent persistent excitation tiondi

Our approach, called modified reference model MRAC or M-
MRAC in short, is motivated by the fact that the initial large

[1]. .error in the control gains generates large transient eianss

In general, increasing the adaptation rate while reducngg)th in system’s control and output signals. Moreover, tiiie 0
the tracking error magnitude (see for example [6]), genssrag

hiah f i d bi hoot in the cd ut excursion in its turn generates oscillations in corgighal.
'gh frequency oscillations and big overshoot in the cdntrg, e idea is to drive the reference model toward the system
signal leading to possible actuator failures or excitatadn

. o ) roportional to the tracking error, thus preventing thetesyss
unmodeled dynamics, which in tum can drive the OVer""i'ttempt to aggressively maneuver toward the reference imode

sys.ter_n to |ns_ta_b|llty. Th|§ shortcoming is common for th‘/i\s the tracking error is vanished the modified reference hode
majority of existing adaptive control methods. Recentlynso retains its original form. Therefore, the system asympéoly

resu_lts appear in the (_:ontrol CO”_‘mU”“Y eXP"Ci“Y a_ddms tracks not only the modified reference model, but also the
the input S|gnal tra_n5|ent behavior, which is Very |m_po‘rta riginal one. Moreover, the error feedback term determines
frlom ;hle point (t)f view of the performance specifications %he dumping in the control signal, increasing of which makes
closed loop systems. it possible to increase the learning rate for better tramsie
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the ideal performance of the known system. A design guidelin On the other hand, it is possible to minimize a com-

is provided for the selection of the feedback gain relative bination of |G|, and ||Gz]||».. that results inw inde-

the adaptation rate. The proposed adaptive control metasd pendent minimizing(. One such combination i8(¢,n) =

uniform performance in the sense that the same tracking|i§" |3, +|G2||37_, wheren is a positive integer. Since(¢)

achieved for different reference commands and from differeis homogeneous i@, the minimizing value of is independent

initial conditions without re-tuning. of w. The minimum problem forn = 1 results in suboptimal
The rest of the paper is organized as follows. Section \Vhalues, which are close to the individual optimal values

presents results from linear systems theory. Section ésgnt e o

the control design and defines the error signals. We analyzéO =0.634, [|[G1(8)llne = w2’ 1G2(8) 17 = o (")

the asymptotic p_ropert|es of_the_ M-MRAC design in SeCt'O{R/herecl — 1.0198 and ¢y — 1.4162.

IV and the transient properties in Section V, where we also

discuss the design specifics. A simulation example is pteden I1l. REFERENCEMODEL MODIFICATION

in Sgction VI, and some concluding comments are given in consider a first order linear system

Section VII.

(t) = t bu(t 0) = 8
[I. PRELIMINARIES FROM LINEAR SYSTEMS THEORY #(t) = ax(t) + bult),  (0) = o, ®
Consider a linear system(s) = G(s)u(s), where G(s) Wherez(t) € R andu(t) € R are the output and input of
is a proper stable transfer function. dft) € L., then the the system, and and b are unknown constant parameters

following inequality holds with known sign ofb. To simplify notations and without loss
of generality we assume that> 0. In conventional model
lyOllee < Ng@)lz[lu@®)llz.. (1) reference adaptive control (MRAC) framework, the objestiv
whereg(t) is the impulse response 6#(s) (see for example i to design a control signal(¢) such that the output of the
[14] (p. 110)). Ifu(t) € £, then we have [14] (p. 108) system tracks the outpuf (¢) of the reference model
1y, = 1G () llu®)l s ) %(t) = —ama’(t) + bmr(t), 2°(0) =0, 9)
Also, ||G(s)||n.. and |lg(t)||c, satisfy the relationship (seewherea,, > 0 andb,, are chosen to meet the performance
Theorem 4.5 in [14]) specifications, and-(t) is a smooth and bounded external
command. We notice that this reference model results from
GO ee < 9Bl < 2GS ©) the application of the ideal control signal
Next, for eachw, we minimize the ., norms of the second 0 . 0 .
order transfer functions u(t) = ke (t) + kar(t), (10)
Gi(s) = 1 where the ideal control gainsf andk; satisfy the matching
! $2 4+ 2¢ws + w? conditions
s+ 2¢w . .
Ga(s) = 4) bki = —a —am, bki =bp,. (11)

$2 4+ 2¢ws + w?

with respect ta;. Computation of the|G; (s)||»_ results in The reference model (9) always can be specified from the
performance perspective, but the ideal control signal ¢HED)

ﬁa it ¢> \/% not be implemented since the parameteandb are unknown.
GillHe =4~ 1 it oc< L () Therefore, in MRAC framework the adaptive version of the

2w2¢A/1— 2 - \/5 . . .. .

Wi ¢ ideal control signal is implemented, that is

minimum of which is reached af = % and is equal to

t) = k1(H)z(t) + ko (H)r (1), 12
[G1ll#.. = 2. The'Ho nOrm Gs(s) is computed to be ult) = ka(0)2(t) + k2 (Or() 12)

where k() and k,(t) are the estimates of the ideal control

1Gall i—c, ¢> —“;rﬁ gainsk; andk;, and are generated by the adaptive laws
Golln., = ! Vievs o (6 ; A
Ve ey (ST fat) = —12(e(B), k(0) =k

ka(t) = —yr(t)e’(t),  ka(0) = kao, (13)
4
|Galls.. = ¥2. We notice that the function$G ||, and wherey > 0 is the adaptation rate, arél(t) = =(t)—2°(t) is

G2l reach the minimum with respect t at different the tracking error. Introducing the estimation error&ag) =
points, that is there is no optimal value @independent ofs k1 (t) — kf and k2 (t) = ka(t) — k3, and taking into account
that simultaneously minimizes bofh || and|Gz|».. . the matching conditions (11), we obtain the error dynamscs a
Instead, the whole interval® < ¢ < L represents subopti- .0 0 = =
, T =05 t) = —ame’ (t) + blk1(t)x(t) + ka(t)r(2)] . 14
mal values for¢, which results in ) ame (1) + blkr (B)a(t) + k2 (t)r ()] (14)
1 1.0328 1.4142 1.4553 It is well known that the this control architecture guaraste

= SGilne = —5— ——— < |lIG2llne. < =5~ asymptotic tracking:(t) — «°(t) ast — oo. However, the

minimum of which is reached af = V6 and is equal to




transient behavior af:(¢) andu(t) cannot be guaranteed. TheComputing its derivative along the trajectories of the eyt
reason is that high frequency oscillations are generatelden (18) and (17) we readily obtain

control signal, when the adaptation rate is increased ierord . )

to obtain better tracking in transient. V(t) = —(am + Ne (1), (21)

Next we present M-MRAC architecture. We modify the, . implies thate(t), (1), ka(t) € Lo andV(t) € Loc.
reference model by driving it proportionally to the tradkin ince the reference model (15) can be viewed as an expo-

e;rortyoward tthel s_ystaedmt d_urlfng ]Ehe tr;ns!znt :O hasek; when tially stable system with bounded inputg) and e(t),
adaptive control signal(t) is far from the ideal one €CaUSE follows that Zm(t) € Lo as well. Hencex(t) € L.

of the initial errors in the control gains. Thus, we desiga thThe boundedness of the tracking erft) follows from
adaptive control based on the modified reference model the boundedness af(t) and °(t). Since the inclusions

Fm(t) = —amTm(t) + bt () + Ae(t),  @m(0) =z0, (15) K1(t), k2(t) € Loo imply thatky(2), ka(t) € Loo, it follows
that u(t) € L. Theni(t) € Lo, sinceu’(t) € L by the

where\ > 0 is a design parameter ardt) = 2(t) — 2,,(t). definition in (10). This completes the first part.

The e-dynamics are derived similar to the MRAC architecture |ntegrating the equation (21) we obtain

and have the form

é(t) = —(am + Ne(t) + blu(t) — kiz(t) + k3r(t)].  (16) (@m +A) /O e*(r)dr =V (0) = V(t). (22)

The control signak:(t) is still given by the equation (12) asSinceV (t) € L., it follows thate(t) € £,. Also, from the
in the MRAC case, but the adaptive laws now are based error dynamics (18) it follows that(t) € £, thereforee(t)

the error signak(t) is uniformly continuous. Application of Barbalat's lemma (
i . [10], p.19) results ine(t) — 0 ast — oo. Subtracting the
%1(0 = —yz(t)e(t), ki(0) = ko equation (14) from the equation (18) we can write
ka(t) = —yr(t)e(t), ko(0) = ks, a7)
1 (et R0 o Lle(t) ~ (0] = ~amlelt) — (W] - elt),  (23)

Substituting the control signak(¢) into equation (18) we dt
obtain Since e(t) — 0, it follows from the equation (23) that

' - - [e(t) — €°(t)] — 0, and hence’(t) — 0 ast — oc. Further,
é(t) = —(am + A)e(t) + blk1(t)a(t) + k2()r(t)] . (18)  from the dynamic equation (8) it follows that(t) € L.,

where the parameter estimation errdrs(t) and k»(t) are SINCez(t) € Lo andu(t) € Loo. Therefore(?) is uniformly
defined similar to MRAC case. continuous. By assumption(t) has a bounded derivative,

In the following analysis we will also need the contro['€NCc€ is uniformly continuous. From the adaptive laws (17)
error that is defined a&(t) = u(t) — u°(¢). From the above it follows that k:(¢), ka(t) € Lo, thereforeki(t), ka(t)

constructions it follows that are uniformly continuous as well. Then the right hand side
_ _ of the error dynamics (18) is uniformly continuous, therefo
a(t) = ki (t)z(t) + ko (t)r(t) + kie (1) . (19) ¢(t) is uniformly continuous. Since(t) has a finite limit, it

follows from Barabalat's lemma [5] that(t) — 0 ast — oc.

Since the ideal control signal is the best achievable sjgmal Therefore the relationship

are interested in minimizing the control erroft), as well as

the tracking erroe’(t), both in transient and steady state by lim [;}1 (t)x(t) + ;;Q(t)r(t)] =0, (24)

selecting proper values for the parametermnd A. This is the t=o0

main objective of the analysis in the following sections.  holds. Then it follows from the equation (19) thatt) — 0
Remark 3.1: When\ = 0 the proposed control architectureast — oo. The proof is complete. [ ]

is identical with the conventional MRAC design. Theorem 4.1 shows that M-MRAC architecture guarantees

not only asymptotic tracking of the modified reference model

(15), but also the original reference model of the converatio

The following theorem summarizes the asymptotic propeRAC. That is the asymptotic performances of both conven-

IV. ASYMPTOTIC PROPERTIES OFM-MRAC

ties of the M-MRAC architecture. tional MRAC and proposed M-MRAC designs are equivalent.
Theorem 4.1: Let the system (8) be controlled by the M-However, as it is shown in the next section the transient

MRAC scheme given by (12), (15) and (17). Then performances are quite different.

1) all closed-loop signals are bounded

2) e(t) — 0, °(t) — 0 anda(t) — 0 ast — oc. V. TRANSIENT PROPERTIES OFM-MRAC

~ Proof: Consider the following candidate Lyapunov func- |n this section we show that the proper selection of the de-

tion sign parameters and\ results in controllable and quantifiable

1, b [+ =5 transient performance for both output and input signaldef t
V()= 2¢ (t) + ﬂ [kl (t) +k3(1)] - (20) M-MRAC architecture.



To this end, we recall that Theorem 4.1 assures that the s ‘ Output racking
Lyapunov functionV (¢) is non-increasing. Therefore the fol-

lowing chain of relationships holds 1t
b r~ ~ Reference model
() < 2V (1) < 2V(0) = - [k%(O) n kg(O)] . (25) s sk
Y
which implies that % 2 2 6 s 10
o Control signal
|€(t)| S — (26) 2 ‘ ‘ eal control
ﬁ fda:)tive Ico:mol |

where the constant is defined asr = \/b [/%f(o) + k2(0)].
Since (26) holds uniformly it we conclude that

o 0 2 n 6 8 10
e(t)|lce, < —. (27) sec
le()ll Ve 1
Similarly, from the equation (22) the following is obtained Fig. 1. Response of MRAC to step input with= 60.
g
e(t < — 28
H ( )”ﬁz - (am + )\)’y ( ) 1 Output tracking
To obtain the bounds on the tracking eredrt) we write 08l ,
the equation (23) in the following operator form 0.6 , ]
0.4+ 4
e(s) = e(s) + s +)\ame(s) . (29) 02} ]
. . A 00 2 4 6 8 10
The impulse response of the transfer functi@ts) = ;35— contol s
has ant; norm of A-. Therefore, it follows from (27) and 1 : e
m Ideal control
(1) that 0 Adaptive control |
A (am + Ao
0 m
le"(O)llce < lle(®)llza + a”‘f(f)ﬂﬁx < W. (30) b
On the other hand, since(t) € Lo, it follows from the -2 . ” . . -
equation (23) that(t) — e"(t) € L2, hencee®(t) € L5. Then, t sec
applying (2) and (28) we obtain
. Um Fig. 2. Response of M-MRAC to step input with= 60.
"), € ————=— (31)
al

From the derived norm bounds in (27), (28) (30) anthat@(t) does not explicitly depend on design parameters
(31) it follows that the error signalg(t) and ¢°(¢) can and. Instead,i(t) depend ony through the adaptive laws,
be arbitrarily decreased by increasing the adaptation yateand i(t) depend on\ through the tracking error dynamics.
However, increasing\ while improves thel, performance Differentiating % (¢) twice we obtain the following second
and leaves intact thé,, performance of the error signeft), —order differential equation
also increases the norm bounds on the error sigh@). That

is A cannot be selected arbitrarily and should be related to u(t) + (am+)Nu(t) + w3(t )ﬂ(t) (34)
~ in such a way that (30) and (31) are not increased when YOS p(t)e® (t) — vp(t)e(t) + r1(t) + Ari(t)
increasing\. This can be achieved by settin

o y g where we denotg(t) = 22(t) + r?(t ) w(t) = \/~bp(t) and

am + A= c/7, (32) ri(t) = k1(t)i(t) + kalt)r(t) + k1€(t). From the results
wheree > 0 is to be selected form the control error perspec(,)f the previous section it follows that all functions invety
tives. In this case, we have the following norm bounds in the equation (34) are bounded. In particular, there exist
positive constantsy;, «s, as such that|p(t)]z.. < ai,
1€ ee < 20 (1€9() ||z, < . (33) IpW)lce. < a2 and ||Ir1(t)]|z.. < as. Since the terms in
m Am /@ + A equation (34) are also continuous functions in time, it can b
which imply that the oscillations in the erref(¢) are reduced considered as a linear equation with time varying coeffisien
by increasing\ and~ simultaneously according to equatiomAlthough the equation (34) is non-autonomous, it can bé stil
(32), whereas the overshoot is specified by the choice of inferred that the adaptation rate determines the frequency
Next we analyze the transient performance of the controf 4(¢) and hence the frequency of the control signét),
error signala(t) defined by the equation (19). We noticesince the ideal controk’(¢) is in the low frequency range.

co



Therefore, increasing increases the oscillations in(t) as b can be also ignored. Therefore, we sgt= /ypo, where

it is the case for the conventional MRAC design. On the

other handa,, + A determines the damping ratio. Therefore | [lzol|>+||7(0)||?,  if r(0)#0

increasing) suppresses the oscillations dft) and hence in 7 ~ lzol® + [lr(Z., if 7(0) =0, r(t) #0

the control signal:(¢). That is, by selecting a proper value for =

)\ the desired performance can be achieved. This is the mélifith constantw, the equation (34) can be written in the
difference from the MRAC design, which results wher= 0, following operator form

sincea,, is fixed from the performance perspectives. _ . 0 ]
u(s) = Gils)lvamp(t)e(s) +vkip(t)e (t) — vp(t)e(t)

9utputtrackin9 ‘ + ﬂ(O) — T (O)] + GQ (S)[Tl (t) + ﬂ(O)] ) (35)

15

where the transfer functionS,(s) and Gz(s) are defined in

(4) with w = wy and{ = % Applying the inequality (1)

to each term on the right hand side of the equation (35) we
have

Reference model
System

0.5

; ; ; : : 0 )
Control signal Hu(t) ||Loo

T T
Ideal control
Adaptive control

< llgr@®lle, raalki 1€ @) e + [a(0)]
+ vazlle®)lz.. + r1(0)]]
+ llg2(@)lles s +[a(0)]].- (36)

-2r Next we select

o 2 p 5 s 10 A = 2Co/7p0 — am (37)
t, sec
where(y is given in (7), and evaluate the right hand side of
Fig. 3. Response of MRAC to step input with= 600. (37) term by term. Using (27), (33), (3) and (7) we obtain

g1 (®)ll.c, [[a(0)] + [r1(0)]] < 2ex[[a(0)] + |71 (0)]]

- 7Po

Output tracking " 0 deran Ik* \COU
SO ] yon [k 191 (0) 12, 20 .. < 2erealbilco
ool , S s—] voollgr (e, e e < 2022
04 1 lg2(t)lle. [ + a(0)]] < Fe=[as +[a(0)].  (38)
0.2
0 : ] ] i Combining the terms we end up with the following approxi-
0 2 4 6 8 10 ~
mate bound for thei(t)
Control signal
1 T T T T
4 kI 2
lale. < ocalhilo, | 2aawo (39)
0 ] am\/% pOﬂ
ol ] 2¢o(ag +[a(0)]) | 2¢1[|u(0)] + |ri(0)]]
+ + .
VPO poY
i ‘ ‘ i ‘
’ ? * s ? " We notice that all the terms on the right hand side of (39)
can be arbitrarily decreased by increasing the parameters
Fig. 4. Response of M-MRAC to step input with= 600. except for the first term, which is independentpfand is

determined by the initial estimation errors expressedrby
To derive the norm bound fofi(t) one needs to compute The results can be finalized in the form of the following
the state transition matrix of the non-autonomous systeth (3theorem.
However, the analytic computation, even if possible, re#ii  Theorem 5.1 Let the system (8) be controlled by the M-
the knowledge of entire functiow(t). Since our goal is to MRAC scheme given by (12), (15) and (17). Then for large

derive a relationship betweenand, that guarantees a sub-~ and \ satisfying the equation (37) the following asymptotic
optimal design, we compute an approximate bound replaciggunds hold

the functionw(¢) with a constantu,. This is motivated by

the fact that the transient behavior @ft) mainly depends on lle(t)||z.. <o (f%) , o le@)]le, <o (y*%)
the initial conditions, and by our interest in the depenaeoic 0 0 .
the bound ofa(t) on large values of the parametersand . " @llee <0(0), e (B, <o (7 4)

That is, when the influence of the parametem@nd~ is much

1
i i < 7.
greater than the influence of other factors. Hence the consta li®)lco < 0f0) +o0 (7 2) (40)



VI. SIMULATION RESULTS fast adaptation provided that the design parameters are set

For the simulation we consider the system (8) with- 3 according to the derived guideline. Although presentedHer
and b = 2. The parameters of the reference model are Lqnventional MRAC design, the proposed method is suitable

a,, = 2 andb,, = 2. The external command is chosen to pfor any adaptive design technique since we are only changing
1) a step function at time = 3sec with the magnituder, the reference model, keeping the controller structure aed t

2) a sinusoid of frequenc®rad/sec and of amplitudery. A

is set t02¢y\/v(z3 + r3) — a., according to equations (35)
and (37). The response to the step command of MRAC and
M-MRAC with v = 60, 7o = 1 andxg = 0 are displayed in
Figures 1 and 2 respectively. The improvement is obvious eve
with a small adaptation rate. No oscillations are observed i
the M-MRAC response contrary to the conventional MRAC
response. Next we increase the adaptation rate te 600.

The corresponding performances of MRAC and M-MRAC
are presented in Figures 3 and 4 respectively. It can be see
that the output tracking performance of MRAC gets better
in the expense of high frequency control signal, while the
output and input tracking performances of M-MRAC are both
perfect. Further increase offor the M-MRAC design results

in the performance indistinguishable from that of the refee
model both for input and output signals.

Output tracking

Reference model
System i

A O
—

(1]

N

=]

(2]

Control signal
T

T T
Ideal control
Adaptive control

(3]

[4

fla.aer

(5]
(6]

Fig. 5. 7]

xg = 4.

Response of M-MRAC to step input with= 6000, r = 10 and

To show the uniform performance of the M-MRAC designisg]
we run simulations withrg = 10 and zg = 4, the result of
which is displayed on Figure 5. Obviously the quality of the[9]
output and input tracking did not change.

The final simulation was performed with the sinusoidal in-
put with v = 6000, ro = 1 andzy = 0. The systems respons
along with the M-MRAC control signal is displayed on Figure11]
5. Ones again perfect tracking is archived in both input and
output signals. The noticeable discrepancies disappé¢arting [12]
increase ofy.

VII. CONCLUSIONS [13]

We have presented the transient and asymptotic performance

analysis of modified reference model MRAC (M-MRAC)[14]
design. We showed that the desired level of tracking in
both systems input and output signals can be achieved with

adaptive laws intact.

Output tracking
1 T

Reference model

! System

Ideal control

Control signal
T

Adaptive control

10

Fig. 6. Response of M-MRAC to sinusoidal input with= 6000.
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