3,521 research outputs found

    Developing rehabilitation robots for the brain injured

    Get PDF

    Designing rehabilitation robots for the brain injured

    Get PDF

    Design, control and evaluation of a low-cost active orthosis for the gait of spinal cord injured subjects

    Get PDF
    Robotic gait training after spinal cord injury is of high priority to maximize independence and improve the living conditions of the patients. Current rehabilitation robots are expensive and heavy, and are generally found only in the clinical environment. To overcome these issues, we present the design of a low-cost, low-weight and personalized robotic orthosis for incomplete spinal cord injured subjects. The paper also presents a preliminary experimental evaluation of the assistive device on one subject with spinal cord injury that can control hip flexion to a certain extent, but lacks control of knee and ankle muscles. Results show that gait velocity, stride length and cadence of walking increased (24,11%, 7,41% and 15,56%, respectively) when wearing active orthoses compared to the case when the subject used the usual passive orthoses.Postprint (published version

    Robot Assisted Shoulder Rehabilitation: Biomechanical Modelling, Design and Performance Evaluation

    Get PDF
    The upper limb rehabilitation robots have made it possible to improve the motor recovery in stroke survivors while reducing the burden on physical therapists. Compared to manual arm training, robot-supported training can be more intensive, of longer duration, repetitive and task-oriented. To be aligned with the most biomechanically complex joint of human body, the shoulder, specific considerations have to be made in the design of robotic shoulder exoskeletons. It is important to assist all shoulder degrees-of-freedom (DOFs) when implementing robotic exoskeletons for rehabilitation purposes to increase the range of motion (ROM) and avoid any joint axes misalignments between the robot and human’s shoulder that cause undesirable interaction forces and discomfort to the user. The main objective of this work is to design a safe and a robotic exoskeleton for shoulder rehabilitation with physiologically correct movements, lightweight modules, self-alignment characteristics and large workspace. To achieve this goal a comprehensive review of the existing shoulder rehabilitation exoskeletons is conducted first to outline their main advantages and disadvantages, drawbacks and limitations. The research has then focused on biomechanics of the human shoulder which is studied in detail using robotic analysis techniques, i.e. the human shoulder is modelled as a mechanism. The coupled constrained structure of the robotic exoskeleton connected to a human shoulder is considered as a hybrid human-robot mechanism to solve the problem of joint axes misalignments. Finally, a real-scale prototype of the robotic shoulder rehabilitation exoskeleton was built to test its operation and its ability for shoulder rehabilitation

    Design and Control of Robotic Systems for Lower Limb Stroke Rehabilitation

    Get PDF
    Lower extremity stroke rehabilitation exhausts considerable health care resources, is labor intensive, and provides mostly qualitative metrics of patient recovery. To overcome these issues, robots can assist patients in physically manipulating their affected limb and measure the output motion. The robots that have been currently designed, however, provide assistance over a limited set of training motions, are not portable for in-home and in-clinic use, have high cost and may not provide sufficient safety or performance. This thesis proposes the idea of incorporating a mobile drive base into lower extremity rehabilitation robots to create a portable, inherently safe system that provides assistance over a wide range of training motions. A set of rehabilitative motion tasks were established and a six-degree-of-freedom (DOF) motion and force-sensing system was designed to meet high-power, large workspace, and affordability requirements. An admittance controller was implemented, and the feasibility of using this portable, low-cost system for movement assistance was shown through tests on a healthy individual. An improved version of the robot was then developed that added torque sensing and known joint elasticity for use in future clinical testing with a flexible-joint impedance controller

    SPRK: A Low-Cost Stewart Platform For Motion Study In Surgical Robotics

    Full text link
    To simulate body organ motion due to breathing, heart beats, or peristaltic movements, we designed a low-cost, miniaturized SPRK (Stewart Platform Research Kit) to translate and rotate phantom tissue. This platform is 20cm x 20cm x 10cm to fit in the workspace of a da Vinci Research Kit (DVRK) surgical robot and costs $250, two orders of magnitude less than a commercial Stewart platform. The platform has a range of motion of +/- 1.27 cm in translation along x, y, and z directions and has motion modes for sinusoidal motion and breathing-inspired motion. Modular platform mounts were also designed for pattern cutting and debridement experiments. The platform's positional controller has a time-constant of 0.2 seconds and the root-mean-square error is 1.22 mm, 1.07 mm, and 0.20 mm in x, y, and z directions respectively. All the details, CAD models, and control software for the platform is available at github.com/BerkeleyAutomation/sprk

    Modelling and control of mechatronic and robotic systems

    Get PDF
    3noopenopenGasparetto A.; Seriani S.; Scalera L.Gasparetto, A.; Seriani, S.; Scalera, L

    An Affordable Upper-Limb Exoskeleton Concept for Rehabilitation Applications

    Get PDF
    In recent decades, many researchers have focused on the design and development of exoskeletons. Several strategies have been proposed to develop increasingly more efficient and biomimetic mechanisms. However, existing exoskeletons tend to be expensive and only available for a few people. This paper introduces a new gravity-balanced upper-limb exoskeleton suited for rehabilitation applications and designed with the main objective of reducing the cost of the components and materials. Regarding mechanics, the proposed design significantly reduces the motor torque requirements, because a high cost is usually associated with high-torque actuation. Regarding the electronics, we aim to exploit the microprocessor peripherals to obtain parallel and real-time execution of communication and control tasks without relying on expensive RTOSs. Regarding sensing, we avoid the use of expensive force sensors. Advanced control and rehabilitation features are implemented, and an intuitive user interface is developed. To experimentally validate the functionality of the proposed exoskeleton, a rehabilitation exercise in the form of a pick-and-place task is considered. Experimentally, peak torques are reduced by 89% for the shoulder and by 84% for the elbow
    • …
    corecore