1,598 research outputs found

    H∞ control for networked systems with random communication delays

    Get PDF
    Copyright [2006] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This note is concerned with a new controller design problem for networked systems with random communication delays. Two kinds of random delays are simultaneously considered: i) from the controller to the plant, and ii) from the sensor to the controller, via a limited bandwidth communication channel. The random delays are modeled as a linear function of the stochastic variable satisfying Bernoulli random binary distribution. The observer-based controller is designed to exponentially stabilize the networked system in the sense of mean square, and also achieve the prescribed H∞ disturbance attenuation level. The addressed controller design problem is transformed to an auxiliary convex optimization problem, which can be solved by a linear matrix inequality (LMI) approach. An illustrative example is provided to show the applicability of the proposed method

    Adaptive neural control of nonlinear systems with hysteresis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Adaptive control of uncertain nonlinear systems with quantized input signal

    Get PDF
    acceptedVersionNivå

    Fuzzy sliding mode control design for a class of disturbed systems

    Get PDF
    This paper discusses the problem of the fuzzy sliding mode control for a class of disturbed systems. First, a fuzzy auxiliary controller is constructed based on a feedback signal not only to estimate the unknown control term, but also participates in the sliding mode control due to the fuzzy rule employed. Then, we extend our theory into the cases, where some kind of system information can not be obtained, for better use of our theoretical results in real engineering. Finally, some typical numerical examples are included to demonstrate the effectiveness and advantage of the designed sliding mode controller. © 2013 The Franklin Institute.Bo Wang, Peng Shi, Hamid Reza Karim

    Robust Adaptive Dynamic Surface Control for a Class of Nonlinear Dynamical Systems with Unknown Hysteresis

    Get PDF
    The output tracking problem for a class of uncertain strict-feedback nonlinear systems with unknown Duhem hysteresis input is investigated. In order to handle the undesirable effects caused by unknown hysteresis, the properties in respect to Duhem model are used to decompose it as a nonlinear smooth term and a nonlinear bounded “disturbance-like” term, which makes it possible to deal with the unknown hysteresis without constructing inverse in the controller design. By combining robust control and dynamic surface control technique, an adaptive controller is proposed in this paper to avoid “the explosion complexity” in the standard backstepping design procedure. The negative effects caused by the unknown hysteresis can be mitigated effectively, and the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is obtained. The effectiveness of the proposed scheme is validated through a simulation example
    corecore