2 research outputs found

    Designing an Interval Type-2 Fuzzy Logic System for Handling Uncertainty Effects in Brain–Computer Interface Classification of Motor Imagery Induced EEG Patterns

    Get PDF
    One of the urgent challenges in the automated analysis and interpretation of electrical brain activity is the effective handling of uncertainties associated with the complexity and variability of brain dynamics, reflected in the nonstationary nature of brain signals such as electroencephalogram (EEG). This poses a severe problem for existing approaches to the classification task within brain–computer interface (BCI) systems. Recently emerged type-2 fuzzy logic (T2FL) methodology has shown a remarkable potential in dealing with uncertain information given limited insight into the nature of the data generating mechanism. The objective of this work is thus to examine the applicability of T2FL approach to the problem of EEG pattern recognition. In particular, the focus is two-fold: i) the design methodology for the interval T2FL system (IT2FLS) that can robustly deal with inter-session as well as within-session manifestations of nonstationary spectral EEG correlates of motor imagery (MI), and ii) the comprehensive examination of the proposed fuzzy classifier in both off-line and on-line EEG classification case studies. The on-line evaluation of the IT2FLS-controlled real-time neurofeedback over multiple recording sessions holds special importance for EEG-based BCI technology. In addition, a retrospective comparative analysis accounting for other popular BCI classifiers such as linear discriminant analysis (LDA), kernel Fisher discriminant (KFD) and support vector machines (SVMs) as well as a conventional type-1 FLS (T1FLS), simulated off-line on the recorded EEGs, has demonstrated the enhanced potential of the proposed IT2FLS approach to robustly handle uncertainty effects in BCI classification

    Adaptive classification for Brain Computer Interface systems using Sequential Monte Carlo sampling

    No full text
    Adaptive classification is a key function of Brain Computer Interfacing (BCI) systems. This paper proposes robust mathematical frameworks and their implementation for the on-line sequential classification of EEG signals in BCI systems. The proposed algorithms are extensions to the basic method of Andrieu et al. [Andrieu, C., de Freitas, N., and Doucet, A. (2001). Sequential bayesian semi-parametric binary classification. In Proc. NIPS], modified to be suitable for BCI use. We focus on the inference and prediction of target labels under a non-linear and non-Gaussian model. In this paper we introduce two new algorithms to handle missing or erroneous labeling in BCI data. One algorithm introduces auxiliary labels to process the uncertainty of the labels and the other modifies the optimal proposal functions to allow for uncertain labels. Although we focus on BCI problems in this paper, the algorithms can be generalized and applied to other application domains in which sequential missing labels are to be imputed under the presence of uncertainty. © 2009 Elsevier Ltd
    corecore