1,609 research outputs found

    Wireless Heterogeneous Networks and Next Generation Internet

    Get PDF
    The recent advances in wireless access technologies as well as the increasing number of mobile applications have made Wireless Internet a reality. A wide variety of bandwidth demanding services including high speed data delivery and multimedia communication have been materialized through the convergence of the next generation Internet and heterogeneous wireless networks. However, providing even higher bandwidth and richer applications necessitates a fundamental understanding of wireless Internet architecture and the interactions between heterogeneous users. Consequently, fundamental advances in many concepts of the wireless Internet are required for the ultimate goal of communication anytime anywhere. This special issue of the ACM Mobile Networks and Applications Journal is dedicated to the recent advances in the area of Wireless Internet. We accepted 10 papers out of 59 submissions from all over the world with a 17% acceptance rate. Papers describing management schemes, protocols, models, evaluation methods, and experimental studies of Wireless Internet are included in this special issue to provide a broad view of recent advances in this field

    Handover in Mobile Wireless Communication Network - A Review

    Full text link
    Mobility is the characteristics of mobile communication that makes it irresistible by all and sundry. The whole world is now engaging in wireless communication as it provides users\u27 ability to communicate on-the-go. This is achieved by transferring users from a radio network to another. This process is called handover. Handover occurs either by cell crossing or by deterioration in signal quality of the current channel. The continuation of an active call is a critical characteristic in cellular systems. Brief overview of handover, handover type, commonly used handover parameters, some methods employed in the literature and we present the convergent point for furtherance in the area of mobile wireless communication Handover

    Radio Resource Management in Heterogeneous Cellular Networks

    Get PDF

    Queueing Networks for Vertical Handover

    Get PDF
    PhDIt is widely expected that next-generation wireless communication systems will be heterogeneous, integrating a wide variety of wireless access networks. Of particular interest recently is a mix of cellular networks (GSM/GPRS and WCDMA) and wireless local area networks (WLANs) to provide complementary features in terms of coverage, capacity and mobility support. If cellular/ WLAN interworking is to be the basis for a heterogeneous network then the analysis of complex handover traffic rates in the system (especially vertical handover) is one of the most essential issues to be considered. This thesis describes the application of queueing-network theory to the modelling of this heterogeneous wireless overlay system. A network of queues (or queueing network) is a powerful mathematical tool in the performance evaluation of many large-scale engineering systems. It has been used in the modelling of hierarchically structured cellular wireless networks with much success, including queueing network modelling in the study of cellular/ WLAN interworking systems. In the process of queueing network modelling, obtaining the network topology of a system is usually the first step in the construction of a good model, but this topology analysis has never before been used in the handover traffic study in heterogeneous overlay wireless networks. In this thesis, a new topology scheme to facilitate the analysis of handover traffic is proposed. The structural similarity between hierarchical cellular structure and heterogeneous wireless overlay networks is also compared. By replacing the microcells with WLANs in a hierarchical structure, the interworking system is modelled as an open network of Erlang loss systems and with the new topology, the performance measures of blocking probabilities and dropping probabilities can be determined. Both homogeneous and non-homogeneous traffic have been considered, circuit switched and packet-switched. Example scenarios have been used to validate the models, the numerical results showing clear agreement with the known validation scenarios

    Fuzzy Based Vertical Handoff Decision Controller for Future Networks

    Full text link
    — In Next generation wireless Networks, the received signals (RSS) from different networks do not have a same meaning since each network is composed of its specific characteristics and there is no common pilot signal. Then, RSS comparisons are insufficient for handoff decision and may be inefficient and impractical. A more complex decision criterion that combines a large number of parameters or factors such as monetary cost, bandwidth, and power consumption and user profile is necessary. Though there are a lot works available for vertical handoff decision (VHD) for wireless networks, the selection of best network is still challenging problem. In this paper we propose a Fuzzy based vertical handoff decision controller (FVHDC) Which performs handover decision based on the output of fuzzy based rules
    • …
    corecore