1,658 research outputs found

    Why agents for automated negotiations should be adaptive

    Get PDF
    We show that adaptive agents on the Internet can learn to exploit bidding agents who use a (limited) number of fixed strategies. These learning agents can be generated by adapting a special kind of finite automata with evolutionary algorithms (EAs). Our approach is especially powerful if the adaptive agent participates in frequently occurring micro-transactions, where there is sufficient opportunity for the agent to learn online from past negotiations. More in general, results presented in this paper provide a solid basis for the further development of adaptive agents for Internet applications

    Why agents for automated negotiations should be adaptive

    Get PDF
    We show that adaptive agents on the Internet can learn to exploit bidding agents who use a (limited) number of fixed strategies. These learning agents can be generated by adapting a special kind of finite automata with evolutionary algorithms (EAs). Our approach is especially powerful if the adaptive agent participates in frequently occurring micro-transactions, where there is sufficient opportunity for the agent to learn online from past negotiations. More in general, results presented in this paper provide a solid basis for the further development of adaptive agents for Internet applications

    An Evolutionary Approach for Learning Opponent's Deadline and Reserve Points in Multi-Issue Negotiation

    Get PDF
    The efficiency of automated multi-issue negotiation depends on the available information about the opponent. In a competitive negotiation environment, agents do not reveal their parameters to their opponents in order to avoid exploitation. Several researchers have argued that an agent's optimal strategy can be determined using the opponent's deadline and reserve points. In this paper, we propose a new learning agent, so-called Evolutionary Learning Agent (ELA), able to estimate its opponent's deadline and reserve points in bilateral multi-issue negotiation based on opponent's counter-offers (without any additional extra information). ELA reduces the learning problem to a system of non-linear equations and uses an evolutionary algorithm based on the elitism aspect to solve it. Experimental study shows that our learning agent outperforms others agents by improving its outcome in term of average and joint utility

    MAKE-OR-BUY THEORIES: WHERE DO WE STAND?

    Get PDF
    The aim of this paper is to discuss the state-of-the art and the directions for research on the make-orbuy problem. After thirty years of research efforts, we now have numerous contributions explaining different aspects of the nature and existence of the firm. The search for a unified theory, however, still remains, at a theoretical level, a challenge. The task is not easy, perhaps because the theory of the firm develops along two different strands, one analyzing the factors influencing the boundaries, and the other one relating to the internal structure; or because, even inside the same research strand, it is not really easy to grasp the similarities and differences between contributions that have followed one another in rapid succession over the last few years. This paper examines the theories concerning the make-or-buy problem, focusing on recent contributions that have tried to develop a unified framework and emphasizes the role of incomplete contracts as a common and significant trait of the theories discussed

    Analysis of simulation environment

    Get PDF
    In this paper the requirements for an ALN simulation environment are analysed, as needed in the CATNETS Project. A number of grid and general purpose simulators are evaluated regarding the identified requirements for simulating economical resource allocation mechanisms in ALNs. Subsequently a suitable simulator is chosen for usage in the CATNETS project. --CATNETS simulator,requirements analysis,simulator selection

    What to bid and when to stop

    No full text
    Negotiation is an important activity in human society, and is studied by various disciplines, ranging from economics and game theory, to electronic commerce, social psychology, and artificial intelligence. Traditionally, negotiation is a necessary, but also time-consuming and expensive activity. Therefore, in the last decades there has been a large interest in the automation of negotiation, for example in the setting of e-commerce. This interest is fueled by the promise of automated agents eventually being able to negotiate on behalf of human negotiators.Every year, automated negotiation agents are improving in various ways, and there is now a large body of negotiation strategies available, all with their unique strengths and weaknesses. For example, some agents are able to predict the opponent's preferences very well, while others focus more on having a sophisticated bidding strategy. The problem however, is that there is little incremental improvement in agent design, as the agents are tested in varying negotiation settings, using a diverse set of performance measures. This makes it very difficult to meaningfully compare the agents, let alone their underlying techniques. As a result, we lack a reliable way to pinpoint the most effective components in a negotiating agent.There are two major advantages of distinguishing between the different components of a negotiating agent's strategy: first, it allows the study of the behavior and performance of the components in isolation. For example, it becomes possible to compare the preference learning component of all agents, and to identify the best among them. Second, we can proceed to mix and match different components to create new negotiation strategies., e.g.: replacing the preference learning technique of an agent and then examining whether this makes a difference. Such a procedure enables us to combine the individual components to systematically explore the space of possible negotiation strategies.To develop a compositional approach to evaluate and combine the components, we identify structure in most agent designs by introducing the BOA architecture, in which we can develop and integrate the different components of a negotiating agent. We identify three main components of a general negotiation strategy; namely a bidding strategy (B), possibly an opponent model (O), and an acceptance strategy (A). The bidding strategy considers what concessions it deems appropriate given its own preferences, and takes the opponent into account by using an opponent model. The acceptance strategy decides whether offers proposed by the opponent should be accepted.The BOA architecture is integrated into a generic negotiation environment called Genius, which is a software environment for designing and evaluating negotiation strategies. To explore the negotiation strategy space of the negotiation research community, we amend the Genius repository with various existing agents and scenarios from literature. Additionally, we organize a yearly international negotiation competition (ANAC) to harvest even more strategies and scenarios. ANAC also acts as an evaluation tool for negotiation strategies, and encourages the design of negotiation strategies and scenarios.We re-implement agents from literature and ANAC and decouple them to fit into the BOA architecture without introducing any changes in their behavior. For each of the three components, we manage to find and analyze the best ones for specific cases, as described below. We show that the BOA framework leads to significant improvements in agent design by wining ANAC 2013, which had 19 participating teams from 8 international institutions, with an agent that is designed using the BOA framework and is informed by a preliminary analysis of the different components.In every negotiation, one of the negotiating parties must accept an offer to reach an agreement. Therefore, it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. When contemplating whether to accept an offer, the agent is faced with the acceptance dilemma: accepting the offer may be suboptimal, as better offers may still be presented before time runs out. On the other hand, accepting too late may prevent an agreement from being reached, resulting in a break off with no gain for either party. We classify and compare state-of-the-art generic acceptance conditions. We propose new acceptance strategies and we demonstrate that they outperform the other conditions. We also provide insight into why some conditions work better than others and investigate correlations between the properties of the negotiation scenario and the efficacy of acceptance conditions.Later, we adopt a more principled approach by applying optimal stopping theory to calculate the optimal decision on the acceptance of an offer. We approach the decision of whether to accept as a sequential decision problem, by modeling the bids received as a stochastic process. We determine the optimal acceptance policies for particular opponent classes and we present an approach to estimate the expected range of offers when the type of opponent is unknown. We show that the proposed approach is able to find the optimal time to accept, and improves upon all existing acceptance strategies.Another principal component of a negotiating agent's strategy is its ability to take the opponent's preferences into account. The quality of an opponent model can be measured in two different ways. One is to use the agent's performance as a benchmark for the model's quality. We evaluate and compare the performance of a selection of state-of-the-art opponent modeling techniques in negotiation. We provide an overview of the factors influencing the quality of a model and we analyze how the performance of opponent models depends on the negotiation setting. We identify a class of simple and surprisingly effective opponent modeling techniques that did not receive much previous attention in literature.The other way to measure the quality of an opponent model is to directly evaluate its accuracy by using similarity measures. We review all methods to measure the accuracy of an opponent model and we then analyze how changes in accuracy translate into performance differences. Moreover, we pinpoint the best predictors for good performance. This leads to new insights concerning how to construct an opponent model, and what we need to measure when optimizing performance.Finally, we take two different approaches to gain more insight into effective bidding strategies. We present a new classification method for negotiation strategies, based on their pattern of concession making against different kinds of opponents. We apply this technique to classify some well-known negotiating strategies, and we formulate guidelines on how agents should bid in order to be successful, which gives insight into the bidding strategy space of negotiating agents. Furthermore, we apply optimal stopping theory again, this time to find the concessions that maximize utility for the bidder against particular opponents. We show there is an interesting connection between optimal bidding and optimal acceptance strategies, in the sense that they are mirrored versions of each other.Lastly, after analyzing all components separately, we put the pieces back together again. We take all BOA components accumulated so far, including the best ones, and combine them all together to explore the space of negotiation strategies.We compute the contribution of each component to the overall negotiation result, and we study the interaction between components. We find that combining the best agent components indeed makes the strongest agents. This shows that the component-based view of the BOA architecture not only provides a useful basis for developing negotiating agents but also provides a useful analytical tool. By varying the BOA components we are able to demonstrate the contribution of each component to the negotiation result, and thus analyze the significance of each. The bidding strategy is by far the most important to consider, followed by the acceptance conditions and finally followed by the opponent model.Our results validate the analytical approach of the BOA framework to first optimize the individual components, and then to recombine them into a negotiating agent
    corecore