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I. Introduction

AUTOMATED negotiation aims to imitate the humans’ negotiation 
process using intelligent agents. It is based on three components 

[1]: (1) the negotiation protocol defining the rules governing the 
interaction between the negotiating agents such as the number of 
agents, their actions, etc. When we deal with two agents, we talk 
about bilateral negotiation. If the negotiation concerns more than two 
partners, negotiation is then multilateral. (2) The negotiation object 
corresponding to the set of issues under negotiation. Issues are the 
characteristics of the negotiation item that are taken into account 
during the evaluation [7]. A negotiation can be either a single-issue or 
a multi-issue. (3) The negotiation strategy determining the agents plan 
for reaching a satisfactory agreement. It includes tactics and decision 
functions adopted by the negotiating agent.

In this work, we focus on bilateral multi-issue negotiation under a 
time constraint. In this context, several challenges can be derived out 
from the fact that negotiators do not reveal their private information 
(e.g., preference, deadline and reserve point) to their opponents for fear 
of being exploited.

Several researchers paid attention to the endowment of learning 
techniques into negotiating agents [1-3]. Most of the proposed learning 
methods require prior knowledge about the opponent. The challenge 
is to propose a learning method that only uses available information 
during the negotiation.

In this paper, we propose a learning agent, so-called Evolutionary 
Learning Agent (ELA), employing the evolutionary learning approach 
Differential Evolution Invasive Weed Optimization (DEIWO) [4] to 
learn its opponent’s deadline and reserve points from only his counter-

offers in a bilateral multi-issue negotiation. The use of DEIWO allows 
ELA enhancing its performance even with an important number of issues.

The remainder of this paper is as follows: Section 2 presents basic 
concepts of bilateral multi-issue negotiation and related work. The new 
learning approach is detailed in Section 3. The empirical evaluation 
and the analysis are presented in Section 4. 

II. Bilateral Multi-issue Negotiation

As stated above, we are interested in a bilateral multi-issue 
negotiation framework as it is widely used in the agent’s field [5]. 
In such environment, agents negotiate by exchanging offers and 
counteroffers, until they either reach a consensus that satisfies each 
party’s private preferences, or withdraw from negotiation without 
any agreement. The communication between agents is made using 
the simple alternative offer protocol [6]. Formally, let I be a pair of 
negotiating agents (generally I = {B,S} where B corresponds to a 
Buyer and S to a Seller). According to the negotiation process, the two 
negotiating agents act in conflictive roles. An agent receiving an offer 
at time t needs to decide whether (1) to accept or (2) to reject it and 
propose a counteroffer at time t + 1. 

Counter-offers can be made until one agent’s deadline (denoted τi for 
agent i) is reached as shown in Fig. 1. Since the negotiating agents have 
time constraint, they use time-dependent tactics (when preparing their 
offers) which model the fact that they concede faster as the deadline 
approaches [6].

Let J = {1,..,n} be the set of issues under negotiation. For each issue 
j ∈ J, any agent i ∈ I has a lower and upper reserve point, denoted 
by 

 
 and 

 
, respectively and corresponding to the minimal and 

maximal utility the agent i is willing to accept during the negotiation.
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Fig. 1. Negotiation process.

A. Basics of Bilateral Multi-issue Negotiation
An agent i starts the negotiation (at t = 0) with its initial price (

 
) 

 and at t = τ i, concedes to its reserve point (
 

). Formally, in each 
round t, agent i assigns to each issue j ∈ J a value ∈   
expressed by:

∗  
 (1)

where   is i’s concession rate that quantifies the amount an 
agent concedes towards its opponent during the negotiation [7]. For 
simplicity reasons, we will use the notation  to denote the concession 
rate for either agent i or its opponent i’. Fig. 2 depicts the behavior of 

 on agent’s offers curve. Clearly, the agent’s tactics are classified into 
three classes [8], depending on the value of  , namely:
• Boulware (αj < 1): where an agent maintains the offered value until 

the time is almost exhausted.
• Conceder (αj > 1): where an agent concedes to its reserve point 

very quickly.
• Linear (αj = 1): where an agent makes a constant rate of concession.

Fig. 2. The concession rate’s impact on agent’s offering curve.

The opponent’s concession rate  can be computed using  and 
two successive offers as follows:

′ ′

′ ′

 (2)

A non-learning agent keeps the value of αj unchanged until 
the negotiation ends while a learning one adjusts αj in order to 
maximize its utility. Each agent employs an evaluation function  

: ,  which assigns a normalized valuation to each 
possible value xj. Formally:

 (3)

Thus, the utility function modelling agent i’s preferences is a linearly 
additive function defined by:

 (4)

where   is the j’s weight of the issue given by agent i. The utility 
function  is set to 1 at the beginning of the negotiation and decreases 
as the deadline approaches.

Since the negotiation is a sequence of alternative offers finishing 
with an accept or a withdraw. The response to an offer xi’[t] at time 
round t, denoted by Response (t, xi’), is :

 (5)

B. Related Work on Learning Opponent’s Deadline and Reserve 
Point

In recent years, endowing agents with machine learning techniques 
has attracted automated negotiation community. Several researchers 
paid their attention to learn opponent’s deadline and reserve point [1, 2, 
9–12]. In what follows, we briefly review works related to the learning 
of opponent’s deadline and reserve point. In fact, the learning problem 
has been deeply studied for bilateral single-issue negotiation. The first 
investigation was established by Hou [9] to learn the opponent’s deadline 
and reserve point by employing non-linear regression. No mechanism 
has been used for adapting the concession strategy and this represents 
the major weakness of the method. Sim et al. [10] proposed a Bayesian 
Learning (BL) approach called BLGAN that only learns the opponent’s 
reserve point and then employs a genetic algorithm to generate counter-
offers. Sim et al. [11] proposed an improved version of BLGAN in which 
they incorporated a deadline learning method. Compared to BLGAN, 
Gwak et al. [2] exploited a new conditional probability to update the 
belief of the opponent’s reserve point. In this framework, the concession 
rate adjustment mechanism is not efficient when opponent’s deadline 
is greater than the learning agent’s deadline. Yu et al. [12] proposed 
a combination of BL and regression analysis in order to estimate the 
opponent’s deadline and reserve point. They defined a set of hypotheses 
about the values of the opponent’s deadline and reserve point and then 
used the non-linear correlation coefficient to update agent’s beliefs.

The research mentioned above only deals with bilateral single-
issue negotiation. In contrast, only two works handle multi-issue 
negotiation. In fact, Zeng el al. [13] used a BL method called Bazaar 
which is a sequential decision making approach modelling beliefs of 
the opponent’s reserve point. Their learning method does not include 
any mechanism to learn the opponent’s deadline, in addition, it requires 
extra information about the opponent which is not available in most 
cases. Zhang et al. [14] improved the learning approach proposed in 
[12] to deal with multi-issue negotiation. To this end, they use strong 
assumptions about the opponent’s preferences since they only deal 
with conflicting and equally weighted issues. By conflict issues they 
mean that increasing the value of an issue will help agents to raise their 
utilities but to decrease the opponents’ utilities.
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From another side, Coehoorn et al. [15] have used the Kernel 
Density Estimation (KDE), a non-parametric method for learning 
opponent’s preferences where the initial distribution is based solely 
on the training data. However, this method was applied in a context 
of making negotiation trade-offs in bilateral encounters in which an 
agent concedes on one issue and demands more on another, which falls 
outside the scope of this paper.

From this review on bilateral single and multi-issue negotiation, it is 
clear that existing works strongly depend on a set of hypothesis. These 
assumptions must be made about the underlying distribution function. 
In what follows, we propose a novel approach to learn opponent’s 
deadline and reserve point for multi-issue negotiation able to learn 
simultaneously multiple reserve points for multiple issues without any 
extra information. 

III. A Novel Approach for Learning Opponent’s 
Deadline and Reserve Points in Multi-Issue Negotiation

The basic idea of the new negotiation approach is to model the 
learning process as an optimization problem. To this end, the learning 
problem should be expressed in mathematical terms, i.e., reduced to 
a system of non-linear equations, in order to take advantage of recent 
results on optimization. In fact, the Differential Evolution Invasive 
Weed Optimization (DEIWO) [4] algorithm will be used to solve the 
system. Afterwards, our learning agent so called Evolutionary Learning 
Agent (ELA) should be able to adjust its concession strategy according 
to the estimated value of opponent’s deadline and reserve points.

A. Transformation of the Learning Problem
As mentioned in Section 2, deadline and reserve point are inter-

dependent terms, i.e., if the deadline is learned, the reserve point can 
be easily estimated. This is explained by the fact that agents concede 
to their reserve points when the deadline is reached. Based on (1), we 
can easily express the relationship between deadline and reserve point 
as expressed by (6) and (7).

 (6)

 (7) 

The proposed approach aims to learn the opponent’s deadline and 
reserve points by reducing the learning problem to a system of non-linear 
equations problem. To this end, we will use (7) in order to build our 
system. Moreover, the learning agent ELA needs to find the parameters 
that best fit its opponent’s historical offers. Formally, for each issue 
under negotiation, the following error function should be minimized:

 (8) 

where  and  are the learned deadline and j’s reserve point at 
time round t, respectively.

To take advantage of the issues’ multitude and (8), we reduce the 
learning problem to a system of nonlinear equations as follows:

 (9)

The deadline’s search area is restricted as it remains the same 
for all cases. While when we deal with multiple reserve points (i.e., 
one for each issue) we have a good approximation of the opponent’s 
deadline (i.e., close to the exact value) but inaccurate estimations of the 
opponent’s reserve points. To make the results rigorous, the opponent’s 
reserve points should be recomputed using the relation in (6).

Solving a system of non-linear equations corresponds to a multi-
objective optimization problem in which all the functions should be 
minimized. Formally,

 (10)

B. DEIWO Optimization Algorithm
There exists an extensive literature centered on solving optimization 

problems [16, 17]. Within the panoply of existing methods, we focus 
on a recent evolutionary algorithm Differential Evolution Invasive 
Weed Optimization (DEIWO) [4] that proved its efficiency for solving 
systems of non-linear equations. DEIWO has the abilities to overcome 
local optimal solutions and obtain global optimal solutions and is based 
on two popular global optimization algorithms, namely: the Invasive 
Weed Optimization (IWO) and the Differential Evolution (DE).

The first part of DEIWO employs the IWO algorithm which is a 
numerical optimization method inspired from colonizing weeds [18]. In 
IWO, weeds refers to feasible solutions of the given problem. They are 
spread over the search area and are allowed to produce seeds (i.e., new 
solutions) depending on their fitness. After some iterations, the number 
of population reaches its maximum, consequently, a mechanism for 
eliminating plants with poor fitness activates. Compared to the Genetic 
Algorithm (GA) [19], IWO employs a different way to disperse new 
individuals. In fact, the generated seeds are randomly dispersed over the 
search space by normally distributed random numbers with mean equal 
to zero; but varying variance [18]. The second part of DEIWO exploits 
DE which provides means for accelerating the optimization [20]. It 
is based on three operators: mutation, crossover and selection. These 
operators keep population diversity and avoid premature convergence.

To improve the quality of the DEIWO output at time round t, we 
incorporate its output at time round t−1. Thus, if the previous output 
stills optimal, it is not necessary to readjust the opponent’s learned 
parameters. Formally, the improved DEIWO procedure is outlined in 
Algorithm 1.

Algorithm 1 the Differential Evolution Invasive 
Weed Optimization Algorithm
1: input: Solution at t-1 + the opponent’s historical offers + DEIWO 
parameters;
2: output: Best solution at t;
3: Set the generation counter g=0;
4: Initialize the population size;
5: Initialize the population P (g); /*Initialization step*/
6: while g < maximum iteration do /*IWO phase*/
7: Compute the fitness for each weed in P (g);
8: Produce new seeds based on fitness; /*Reproduction step*/
9: Add new seeds to the population P (g); /*Spatial dispersal step*/
10: if population size > maximum population then
11: Eliminate weeds with poor fitness; /*Competitive exclusion step*/
12:  end if   /*DE phase*/
13: Perform mutation on P (g);
14: Perform crossover on P (g);
15: Perform selection on P (g);
16:  Increment g by 1; 
17: end while

18: return best solution;
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In our problem, each weed represents a solution for the system in 
Eq. (9) and is expressed as follows:

 (11)

where  are feasible solutions for (9). Basically, 
weeds with the lowest fitness are closest to the optimal solution. To 
evaluate the quality of a solution, we consider the following fitness 
function:

 (12)

Fig. 3. Two cases of concession strategy: (a)   and (b) .

C. Concession Rate Adjustment
Learning the opponent’s deadline and reserve points is necessary for 

finding ELA’s optimal strategy. In each round, the learning agent uses 
the predicted values of deadline and reserve points in order to adjust its 
bidding strategy. Henceforth, it could improve its outcome and avoid 
disagreements at the end of the negotiation.

Before laying out with the concession rate, let us adapt the offering 
function. ELA generates counter offers using the following equation 
proposed in [11]:

 (13)

Compared to (1), ELA treats its previous offer  as its new 
initial point at time round t.

The opponent’s concession rate  can be computed using   and 
two successive offers as follows:

 (14)

A non-learning agent keeps the value of αj unchanged until the 
negotiation ends while a learning one adjusts αj in order to maximize 
its utility.

Finding the optimal strategy for the learning agent can be analyzed 
by considering two cases:
• Case 1 ( ): In this case, the opponent’s deadline is smaller 

than agent i’s deadline. Fig.3 (a) depicts the behavior of the 
learning agent in this case. When the two curves intersect, the 
negotiating agents reach an agreement. That is why, ELA needs to 
negotiate with its opponent’s as long as possible in order to catch 
the opponent’s best offers. Therefore, the optimal strategy for agent 
i is to make its offers curve cross the opponent’s offer curve at t=  
(point X). Hence, the optimal strategy can be computed as follows 
[11]:

 (15)

where  and  are, respectively, the learned opponent’s 
deadline and issue j’s reserve point.

• Case 2 ( ): In this case, the opponent’s deadline is greater 
than agent i’s deadline. Fig. 3(b) depicts the behavior of the 
learning agent in this case.

Proposition 1 let X be the optimal point that maximizes the learning 
agent’s utility. The optimal strategy for agent i in this case is to make 
its offers curve cross the opponent’s offer curve at t = τi − 1 since at  
t = τi, agent i concedes to its reserve point which is the worst case. The 
proposed adjusting formula is as follows:

 (16)

Proof For each issue under negotiation, crossing the opponent’s 
offers curve at t = τi − 1 is expressed as follows:

Note that when the opponent’s deadline is greater than agent i’s 
deadline (case 2), there is one special case that have to be considered. 

If the estimated   for agent i (B or S) at time round τi −1 is lower 
(respectively greater) than , the learning agent does not adjust its 
concession strategy because it is still possible that the learned reserve 
point may change in later time rounds. 

By considering (15) and (16) as the offering tactic, the adjusting 
formula becomes as follows: 

 (17)

Equality: when the deadline of the opponent is equal to the agent 
deadline we will use case 2 because if the agent reaches the deadline he 
will give his reservation value so we need to get a deal before deadline 
is met at round (deadline - 1).

D. Illustrative Example
In this section, we give an illustrative example of the proposed 

negotiation model. Let us consider two agents, one buyer (B) and one 
seller (ELA), negotiating over a service provided by ELA. The issues 
under negotiation are the service’s price and duration. It is obvious that 
B (respectively, ELA) wants to reduce its costs as much as possible. 
Hence, B wants to quickly execute the task with the lower price. On 
the other hand, ELA does not want to waste its computational resources 
but at the same time wants to maximize the selling price. Table I 
summarizes agents’ parameters for the two issues.
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TABLE I. Agent’s Parameters for the Illustrative Example

Price (DT) Duration (sec) Deadline

IP RP α IP RP α τ

Seller (ELA) 100 55 1 30 10 1 5

Buyer 40 70 1 5 20 1 7

Each agent starts the negotiation with its initial price. 
Using Eq. (13), ELA’s offer at t = 1 is computed as follows: 

. With the same equation, 
ELA computes its offer for the second issue. After two rounds, ELA 
will be able to compute B’s concession rate. The sequence of counter 
offers for both agents is shown in Table II.

Table II. Agent’s Offering for the Illustrative Example: Elements in 
the Offer Vector Refer to the Price and Duration, Respectively

Round 0 1 2

ELA [100, 30] [91, 26] [82, 26.22]

Buyer [40, 5] [44.29, 7.14] [48.57, 9.28]

Using (14), ELA computes B’s concession rate as follows: 
. 

After that, ELA employs the proposed DEIWO based Learning 
method to predict B’s deadline and reserve points. In this illustrative 
example, we do not aim to explain how the weeds are generated. 
However, we clarify how the best solution is selected from a population 
of weeds.

Let us consider a population containing three weeds, w1, w2 and w3 
shown in Table III. To determine w1’s fitness, we need first to compute 
fprice(w1) and fduration(w1) using Eq. (8) and then perform their sum. 

Table III. A Population Containing Three Weeds 

Fitness
w1 6 66 17 0.1587
w2 7 70 20 0.0002
w3 8 74 22 0.0161

For example,

. 

and fduration(w1) = 0.1547. Now, (12) is used to compute w1’s fitness as 
follows: f (w1) = 0.0046 + 0.1541 = 0.1587. The same calculations are 
made for the other weeds.

The weed w2 = (7, 70, 20) is selected as the best solution because it 
has the lowest fitness of the population. Therefore, B’s deadline (equal 
to 7 from w2) is greater than ELA’s deadline (equal to 5). Hence, using 
(17), ELA adjusts its concession rate for the issue price as follows:

With the same manipulation, S adjusts its concession strategy for 
the second issue.

In the next rounds, ELA repeats the same procedure. Since ELA’s 
deadline is less than B’s deadline, the agreement much be reached 
at t = (τELA − 1). In a such situation, ELA’s offer at t = (τELA −1) is  
XELA[4] = [57.143,13.57] and B’s offer is XB[4] = [57.143,13.57]. Thus, 

an agreement is reached with U(XELA) = 0.1131 instead of U(XELA) = 0.

IV. Experimental Study 

 To evaluate a heuristic-based negotiation model, simulations need 
to be performed. In this section, we evaluate our new learning agent 
ELA through multiple simulations and scenarios.

Experiments were implemented in Java 7 language, compiled using 
the Eclipse Java Mars environment and ran on windows 10-64 bits 
equipped with an Intel Core i7-4750QM (3 GHz) and 16 GB of RAM. 
We start with describing the experimental protocol then we compare 
agents.

A.  Experimental Protocol 
We will evaluate our negotiation model by comparing ELA to the 

following agents:
1. An agent with complete information which adapts its concession 

strategy based on available information. 
2. A no learning agent that does not learn its opponent’s parameters 

and its concession strategy remains fixed during the negotiation.
3. The Bayesian Learning Agent (BLA) based agent [14] that learns 

its opponent’s reserve utility and deadline in order to adjust its 
concession strategy.

We propose to study four scenarios (Incomplete, Complete, ELA, 
BLA) as detailed in Table IV. For each of scenario, 1000 random 
runs were carried out to show the generality and the robustness of our 
negotiation model. In each run, S and B were programmed using the 
same parameters. Table V defines the negotiation settings. Since BLA 
and ELA employ different learning techniques, they have additional 
parameters shown in Table VI.

TABLE IV. Four Negotiation Scenarios

Scenario Seller Buyer

Incomplete  Incomplete information Incomplete information

Complete Complete information Incomplete information

ELA S learns the opponent’s 
deadline and RPs using ELA Incomplete information

BLA S learns the opponent’s 
deadline and RU using BLA Incomplete Information 

TABLE V. The Negotiation Parameters

Issues’ parameters

minj 1

maxj 100

Number of issues  4

Preferences 0.25

Agents’ parameters

Parameter Buyer / Seller 

IPj [ ,maxj]/ [minj, ]

RPj [minj + 5,minj + (maxj − minj)/2]/ [  + 10,maxj − 5]

αj [0.1,5]

τ [10,100]
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In order to evaluate our negotiation model, we will use four common 
performance measures [1]:
• The Average Utility (AU) considered as the most popular   

performance measure to gain the utility of outcomes.

 (18)
where Nsuccess is the number of deals.

• The Success Rate (SR) represents the ability of the negotiation 
model to reach an agreement.

 (19)
where N is the number of negotiation.

• The Average Negotiation Speed (ANS) measuring the average 
duration of negotiation. A small ANS reduces costs but also affects 
the quality of the outcome of an agent.

 (20)
where ti  is the time round of the agreement if an agreement is 
reached.

• The Joint Utility (JU) measuring the fairness of the outcome. In a 
competitive environment, JU is better when it is minimal.

 (21)

The testbed consists of two negotiation agents with conflicting 
interests (i.e., one buyer and one seller). Each agent is an instance 
from a super class Agent. Besides their private information (RP and 
deadline), the agents incubate three main procedures:
• A procedure for recording the opponent’s historical offers.
• A procedure for learning the opponent’s parameters.
• A procedure for generating offers based on the learning results.

Fig. 4 depicts a simple negotiation simulation using the Eclipse 
environment. It illustrates a negotiation between one buyer and one 
seller under the incomplete information scenario and a deadline range 
of [9-10]. The negotiation ends by B accepting S’s offer. The iteration 
number corresponds to the number of runs.

B. Results and Analysis
The goal of the proposed negotiation model is to achieve results 

close to the best scenario which is the complete information scenario. 
Empirical results were recorded from S’s perspective and are shown in 
Fig. 5 and Fig. 6. Stacked lines are used to represent results, the x-axis 
indicates deadline ranges and y-axis corresponds to performance 
measures.

Fig. 4. Eclipse Toolbox.  

Fig. 5 depicts results of the comparison between ELA and the 
complete and incomplete scenarios. Obviously, ELA achieves very 
close results to the optimal scenario. For example, we pinpoint that 
ELA’s average utility is equal to 0.618 for the deadline range [30 − 40], 
which is very close to the best scenario (equal to 0.625). ELA also 
achieves little faster ANS than the complete information agent (Fig. 
5(c)). This is due to the approximation value of opponent’s deadline 
and reserve points. Compared to the incomplete scenario, ELA always 
achieves much better AU and JU (Fig. 5(a) and Fig. 5(d)). We can also 
observe that our learning agent always reaches an agreement (SR = 1) 
(Fig. 5(b)). In contrast, in the incomplete scenario, S does not always 
reach agreements, especially for short deadlines (i.e., 10 to 40 rounds).

Fig. 6 presents different results relative to the comparison between 
ELA and BLA agents. Clearly, ELA outperforms BLA. In fact, ELA 
achieves much better AU and JU (Fig. 6(a) and Fig. 6(c)) since BLA 
achieves faster ANS (Fig. 6(b)) affecting the quality of its outcome. For 
example, ELA attains 58.938 of ANS (deadline range [60 − 70]), which 
is higher than the one of BLA (equal to 49.788). In term of SR, the two 
agents always reach agreements.

To test the cut-off points of ELA, we proposed to increase the 
number of issues from 4 to 5, then boosted it to 10 and 20. The results 
of this experiment are shown in Fig. 7 and Fig. 8.

Fig. 7 represents the success rate of ELA, BLA, complete and 
incomplete scenarios. It is clear that ELA’s success rate follows the 
same behavior as the number of issues increases. Indeed, ELA achieved 
0.984 successful negotiations for 5 issues, then it reached the value of 
0.995, which is very close to the complete scenario, when we upgraded 
the number of issues to 20. While BLA failed from 10 issues since the 
computational complexity raises by boosting the number of prediction 
cells used by the Bayesian learning.

   The average utility of the four negotiation strategies is depicted 
by Fig.8. Clearly, ELA provides better average utility than BLA since 
the first one adjusts the concession strategy of each issue based on the 
learned reserve point by DEIWO. Unlike to BLA that uses a single 
concession rate to adjust the concession strategy for all issues based on 
the learned reservation utility. 

TABLE VI. BLA & ELA Parameters

BLA parameters

Parameter Vmax Vmin Number of cells

Value 1 0.2 100

ELA parameters

Parameter Pinit Pmax σinit σfinal smin smax n F CR MaxIt

Value 20 30 5 1 5 15 3 1 0.5 30



- 137 -

Regular Issue

Fig. 5. ELA vs complete and incomplete information agents.
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(b) 

(c) 

(a) 

Bayesian Learning Agent (BLA) Evolu�onary Learning Agent (ELA)

Bayesian Learning Agent (BLA) Evolu�onary Learning Agent (ELA)

Bayesian Learning Agent (BLA) Evolu�onary Learning Agent (ELA)

JU

Fig. 6. ELA vs BLA. 
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We have also compared the execution time of BLA and ELA as 
shown in Table VII. In fact, the execution time of BLA is equal to 3000 
seconds for the case of 7 issues, while with ELA, the execution time 
is only equal to 3 seconds. This confirms that DEIWO used by ELA 
explores the outcome space faster than the combination of regression 
analysis and Bayesian learning used by BLA.

Table VII. Execution Time of ELA and BLA

Number of issues BLA ELA

1 0.093 ms 0.141 ms

2 0.150 ms 0.125 ms

3 0.39 ms 0.903 ms

4 0.851 ms 1 s : 32 ms

5 0.469 ms 0.185 ms

6 145 s 2442 ms

7 3000 s 3 s

V. Conclusion and Future Work

In this paper, we introduced the ELA agent which learns its opponent’s 
deadline and reserve points in a bilateral multi-issue negotiation. ELA 
employs an evolutionary optimization algorithm in order to learn 
its opponent’s parameters. A new concession strategy adjustment is 
performed to improve an agent’s outcome. Empirical results showed 
that ELA gets very close outcomes to the best scenario. Also, we test 
the limit of our model in order to find out how much it can handle in 
term of number of issues. Our future work consists in studying in depth 
multi-issue negotiation and proposing a new negotiation model based 
on multi-criteria methods such as ANP [21] for inter-dependent issues 
and extend our negotiation model to multilateral negotiation. Another 
perspective is to extend our approach to the case of concurrent one side 
multilateral negotiation in which an agent may engage simultaneously 
many agents in multiple bilateral negotiation.
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