3,670 research outputs found

    Knowledge-Aided STAP Using Low Rank and Geometry Properties

    Full text link
    This paper presents knowledge-aided space-time adaptive processing (KA-STAP) algorithms that exploit the low-rank dominant clutter and the array geometry properties (LRGP) for airborne radar applications. The core idea is to exploit the fact that the clutter subspace is only determined by the space-time steering vectors, {red}{where the Gram-Schmidt orthogonalization approach is employed to compute the clutter subspace. Specifically, for a side-looking uniformly spaced linear array, the} algorithm firstly selects a group of linearly independent space-time steering vectors using LRGP that can represent the clutter subspace. By performing the Gram-Schmidt orthogonalization procedure, the orthogonal bases of the clutter subspace are obtained, followed by two approaches to compute the STAP filter weights. To overcome the performance degradation caused by the non-ideal effects, a KA-STAP algorithm that combines the covariance matrix taper (CMT) is proposed. For practical applications, a reduced-dimension version of the proposed KA-STAP algorithm is also developed. The simulation results illustrate the effectiveness of our proposed algorithms, and show that the proposed algorithms converge rapidly and provide a SINR improvement over existing methods when using a very small number of snapshots.Comment: 16 figures, 12 pages. IEEE Transactions on Aerospace and Electronic Systems, 201

    Adaptive detection of a signal known only to lie on a line in a known subspace, when primary and secondary data are partially homogeneous

    Get PDF
    This paper deals with the problem of detecting a signal, known only to lie on a line in a subspace, in the presence of unknown noise, using multiple snapshots in the primary data. To account for uncertainties about a signal's signature, we assume that the steering vector belongs to a known linear subspace. Furthermore, we consider the partially homogeneous case, for which the covariance matrix of the primary and the secondary data have the same structure but possibly different levels. This provides an extension to the framework considered by Bose and Steinhardt. The natural invariances of the detection problem are studied, which leads to the derivation of the maximal invariant. Then, a detector is proposed that proceeds in two steps. First, assuming that the noise covariance matrix is known, the generalized-likelihood ratio test (GLRT) is formulated. Then, the noise covariance matrix is replaced by its sample estimate based on the secondary data to yield the final detector. The latter is compared with a similar detector that assumes the steering vector to be known

    Detection of a signal in linear subspace with bounded mismatch

    Get PDF
    We consider the problem of detecting a signal of interest in a background of noise with unknown covariance matrix, taking into account a possible mismatch between the actual steering vector and the presumed one. We assume that the former belongs to a known linear subspace, up to a fraction of its energy. When the subspace of interest consists of the presumed steering vector, this amounts to assuming that the angle between the actual steering vector and the presumed steering vector is upper bounded. Within this framework, we derive the generalized likelihood ratio test (GLRT). We show that it involves solving a minimization problem with the constraint that the signal of interest lies inside a cone. We present a computationally efficient algorithm to find the maximum likelihood estimator (MLE) based on the Lagrange multiplier technique. Numerical simulations illustrate the performance and the robustness of this new detector, and compare it with the adaptive coherence estimator which assumes that the steering vector lies entirely in a subspace
    • 

    corecore