1,001 research outputs found

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Adaptive approach heuristics for the generalized assignment problem

    Get PDF
    The Generalized Assignment Problem consists in assigning a set of tasks to a set of agents with minimum cost. Each agent has a limited amount of a single resource and each task must be assigned to one and only one agent, requiring a certain amount of the resource of the agent. We present new metaheuristics for the generalized assignment problem based on hybrid approaches. One metaheuristic is a MAX-MIN Ant System (MMAS), an improved version of the Ant System, which was recently proposed by Stutzle and Hoos to combinatorial optimization problems, and it can be seen has an adaptive sampling algorithm that takes in consideration the experience gathered in earlier iterations of the algorithm. Moreover, the latter heuristic is combined with local search and tabu search heuristics to improve the search. A greedy randomized adaptive search heuristic (GRASP) is also proposed. Several neighborhoods are studied, including one based on ejection chains that produces good moves without increasing the computational effort. We present computational results of the comparative performance, followed by concluding remarks and ideas on future research in generalized assignment related problems.Metaheuristics, generalized assignment, local search, GRASP, tabu search, ant systems

    A statistical learning based approach for parameter fine-tuning of metaheuristics

    Get PDF
    Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selection of appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.Peer ReviewedPostprint (published version

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    Assigning proctors to exams with scatter search

    Get PDF
    In this paper we present an algorithm to assign proctors to exams. This NP-hard problem is related to the generalized assignment problem with multiple objectives. The problem consists of assigning teaching assistants to proctor final exams at a university. We formulate this problem as a multiobjective integer program (IP) with a preference function and a workload-fairness function. We then consider also a weighted objective that combines both functions. We develop a scatter search procedure and compare its outcome with solutions found by solving the IP model with CPLEX 6.5. Our test problems are real instances from a University in Spain.Multiobjective combinatorial optimization, metaheuristics, scatter search
    • 

    corecore