838 research outputs found

    IR-UWB Detection and Fusion Strategies using Multiple Detector Types

    Full text link
    Optimal detection of ultra wideband (UWB) pulses in a UWB transceiver employing multiple detector types is proposed and analyzed in this paper. We propose several fusion techniques for fusing decisions made by individual IR-UWB detectors. We assess the performance of these fusion techniques for commonly used detector types like matched filter, energy detector and amplitude detector. In order to perform this, we derive the detection performance equation for each of the detectors in terms of false alarm rate, shape of the pulse and number of UWB pulses used in the detection and apply these in the fusion algorithms. We show that the performance can be improved approximately by 4 dB in terms of signal to noise ratio (SNR) for perfect detectability of a UWB signal in a practical scenario by fusing the decisions from individual detectors.Comment: Accepted for publishing in IEEE WCNC 201

    Ultra wideband: applications, technology and future perspectives

    Get PDF
    Ultra Wide Band (UWB) wireless communications offers a radically different approach to wireless communication compared to conventional narrow band systems. Global interest in the technology is huge. This paper reports on the state of the art of UWB wireless technology and highlights key application areas, technological challenges, higher layer protocol issues, spectrum operating zones and future drivers. The majority of the discussion focuses on the state of the art of UWB technology as it is today and in the near future

    Performance analysis of ultra wide band indoor channel

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2008.Cataloged from PDF version of thesis report.Includes bibliographical references (page 41).Research on wireless communication system has been pursued for many years, but there is a renewed interest in ultra-wideband (UWB) technology for communication within short range, because of its huge bandwidth and low radiated power level. This emerging technology provides extremely high data rate in short ranges but in more secured approach. In order to build systems that realize all the potential of UWB, it is first required to understand UWB propagation and the channel properties arise from the propagation. In this research, the properties of UWB channel for indoor industrial environment was evaluated. A few indoor channel models have been studied so far for different environments but not for indoor industrial environment and various data rates are obtained according to wireless channel environments. Therefore, an accurate channel model is required to determine the maximum achievable data rate. In this thesis, we have proposed a channel model for indoor industrial environment considering the scattering coefficient along with the other multipath gain coefficient. This thesis addresses scattering effect while modeling UWB channel. Here, the performance of UWB channel model is analyzed following the parameters, such as power delay profile and the temporal dispersion properties which are also investigated in this paper.Kazi Afrina YasmeenA. K. M. WahiduzzamanMD. Ahamed ImtiazB. Computer Science and Engineerin

    Program of the 3rd International Conference on Signal Processing and Communication Systems, Omaha, Nebraska, 28-30 September 2009

    Get PDF
    10 sessions; 2 poster sessions. Schedule and Table of Contents
    corecore