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1. Introduction

In this chapter, we analyze the problem of power allocation for a distributed wireless sensor
network with sensor nodes based entirely on ultra-wide bandwidth (UWB) technology.
The network is used to perform object detection as well as object classification, where the
absence, the presence, or the type of an object is observed by the sensors independently.
UWB signals can be used for data communication between the sensor nodes as well as for
radar applications. The approach of misemploying the communication sensors as radar
sensors, such that the data transmission is misused as a radar beam in order to detect or
to classify a target object, helps in realizing an energy-efficient radar system with compact
and cheap sensor nodes. A further advantage of such radar systems is the fulfillment of
major requirements of wireless sensor networks. This exploitation presupposes that the
integration of sensing functionality into usual UWB sensors is implementable easily without
the usage of any additional hardware units. Since the compact and low complexity UWB
sensors are limited in power and communication capabilities, the detection and classification
performance of a single sensor is restricted compared to that of a common complex radar
system. To obtain an appropriate overall system performance, we consider the case of
distributed detection and classification, where the local observations of the sensors are
fused into a reliable global decision. Due to noisy communication channels and differences
in distances between the object and the sensor nodes, both, the observations and their
transmissions are unequally interfered. One simple way to suppress noise interference is
to increase the power of each sensor node. But if the total power of the entire network
is limited, then power allocation procedures are needed in order to increase the overall
detection and classification probabilities. In general, it is challenging to evaluate the detection
and the classification probabilities analytically, if possible at all. This particularly holds for
the detection probability under a Neyman-Pearson-hypotheses-test criterion as well as for
the classification probability under a Bayesian-hypotheses-test criterion [5]. This limits the
usability of these criterions for analytical optimization of power allocation. Bounds, such
as the Bhattacharyya bound [8], are also difficult to use for optimizing multidimensional
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problems. Therefore, we employ an information theoretic approaches [3], which help to
solve the power allocation problem with a lower mathematical complexity. This approach
yields a simple however suboptimal analytical solution for the power allocation problem.
Furthermore, the proposed technique enables the consideration of object detection and
classification at the same time. This is a further advantage of this method, which enables
the usage of the same allocation algorithm in both cases. Hence a sensor network, which is
used to classify target objects, can also be used to detect the absence or the presence of a target
object with equal system settings. Therefore we only describe the case of object classification,
which also includes the case of object detection, in the following sections.

The origin of research on distributed detection has been the attempt to fuse signals of different
radar devices [10]. Currently, distributed detection is usually discussed in the context of
wireless sensor networks, where the sensor unit of the nodes might be based on radar
technology [7, 9, 14]. Other applications for UWB radar systems, which require or benefit
from the detection and classification capabilities, are for example localization and tracking [6]
or through-wall surveillance [4]. The physical layer design for an integrated UWB radar
network that utilizes OFDM technology was analyzed in [11]. In [2] the case of object
detection is considered, where for the problem of power allocation an approach based on
the maximization of the Kullback-Leibler distance is used. In a recent publication [1] another
approach is discussed, where the bit-error probability of data communication is used in order
to allocate the transmission power and to increase the overall detection probability.

This chapter is divided into the following three sections except the introduction. First,
the system model of the wireless network including sensor nodes and the fusion center
is described. Here, all system parameters and assumptions with detailed mathematical
formulations are introduced. Furthermore, the global classification rule in the fusion center as
well as the local decision rules in the nodes are motivated. In the second section, we present a
novel approach for power allocation in order to increase the overall classification probability,
following which, the solution of this optimization approach is briefly discussed. The last
section shows some results and demonstrates the feasibility of object classification by using
the proposed power allocation method in UWB signaling systems. This chapter concludes
with an interpretation of the achieved system performance.

2. System model

Throughout this chapter we denote the set of natural, real, and complex numbers by N, R,
and C, respectively. Note that the set of natural numbers does not include the element zero.
Furthermore, we use the subset FN ⊆ N which is defined as FN := {1, . . . , N} for any given
natural number N. The mathematical operations |z| and |z| denote the absolute value of
a real or complex-valued number z and the Euclidian length of a real or complex vector z,
respectively.

Distributed target object classification can be formally modeled by a multiple hypotheses
testing problem with hypotheses Hk∀k ∈ FK for a specified number K ∈ N of different objects.
We assume that all objects have the same size, shape, alignment, and position. They only differ
in material and are classified by their complex-valued reflection coefficients rk ∈ C, which
are ordered in a strictly increasing manner 0 ≤ |r1| < · · · < |rK | ≤ 1. Therefore the reflection
coefficients are the only recognition features in this work. Generally, this assumption is not
realistic, but, this case describes an ideal scenario for increasing the classification probability
by performing a power allocation and is not really suitable for analyzing the problems of
manifoldness.
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Figure 1. System model of the distributed wireless sensor network.

At any instance of time, a network of N ∈ N independent and spatially distributed sensors,
as shown in Figure 1, obtains random observations X1, . . . , XN ∈ R. In the case of energy

classification, Xn models the received signal at the receiver of the nth sensor. If a target
object is present, then the received energy is a part of the radiated energy of the same
sensor, which is reflected from the object’s surface and is weighted by its reflection coefficient.
We refer to this communication channel, between the sensors and the target object, as the
first communication link and denote all dedicated parameters by the superscript R. The
random observations X1, . . . , XN are assumed to be conditionally independent for each of
the underlying hypotheses, i.e., the joint conditional probability density function of all the
observations factorizes according to

f R(X | Hk) :=
N

∏
n=1

f R
n (Xn | Hk), ∀k ∈ FK , (1)

where X denotes the sequence of random variables X1, . . . , XN . In general, the observations
are not identically distributed because the sensor nodes have different distances dR

n from the
target object and their radiated powers PR

n are also different. Therefore, the signal-to-noise
ratio (SNR) varies between the sensor nodes. Due to the distributed nature of the problem, the

nth sensor Sn performs independent measurements and processes its respective observation
Xn by generating a local decision Un := θn(Xn)∀n ∈ FN , which depends only on its own
observation and not on the observations of other sensor nodes. After deciding locally,
each sensor transmits its decision to a fusion center located at a remote location. The
communication between the sensor node and the fusion center is determined by the

corresponding distance dC
n as well as by the transmission power PC

n of the same sensor
node. We refer to this communication channel, between the sensor nodes and the fusion
center, as the second communication link and denote all dedicated parameters by the
superscript C. Furthermore, we assume that both communication channels are non-fading
channels and that all data transmissions are affected only by additive white Gaussian noise
(AWGN). We disregard time delays within all transmissions and assume synchronized data
communication. We use two distinct pulse-shift patterns for each sensor node in order to
distinguish its first and second communication link from the communication links of other
sensor nodes as described in [13]. Each pattern has to be suitably chosen in order to suppress
inter-user interference at each receiver. Hence the N received signals at the fusion center are
uncorrelated and are assumed to be conditionally independent for each of the underlying
hypotheses. These received random signals correspond to the local decisions U1, . . . , UN and
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are mapped to X̃1, . . . , X̃N ∈ RK . Their joint conditional probability density function factorizes
according to

f C(X̃ | Hk) :=
N

∏
n=1

f C
n (X̃n | Hk), ∀k ∈ FK , (2)

where X̃ denotes the sequence of random vectors X̃1, . . . , X̃N . In general, these observations
are – similar to the observations X1, . . . , XN – not identically distributed, because of variation

in distances dC
n as well as that of the radiated powers PC

n . Unlike the local decision rules, the
global decision rule U0 := θ0(X̃1, . . . , X̃N) depends on all observations in order to increase the
overall classification probability.

All described assumptions are necessary in order to obtain an ideal framework suited for
analyzing the power allocation problem without studying problems of different classification
methods in specific systems and their settings.

2.1. Local classification rules

The local decision and classification rules θn are mappings of the kind θn : R → FK , ∀n ∈ FN .
In this work, hard-decision rules are used for performing local classification given by

θn(Xn = xn) = k, if τn,k < xn ≤ τn,k+1, k ∈ FK , ∀n ∈ FN , (3)

where the thresholds τn,k ∈ R are suitably chosen. The thresholds must be calculated
separately for every sensor node in order to perform optimal classification. They depend
on the prior probabilities of the hypotheses. Their values can be calculated by a suboptimal
approach which is described in Section 3.1. In this way, every sensor node has a local
probability of correct decision given by

Prob(Un = k | Hk) = Prob(τn,k < Xn ≤ τn,k+1 | Hk), ∀k ∈ FK , ∀n ∈ FN (4)

and a local probability of false decision given by

Prob(Un �= k | Hk) = 1 − Prob(Un = k | Hk), ∀k ∈ FK , ∀n ∈ FN . (5)

2.2. Fusion of local decisions and the global classification rule

The local decisions U1, . . . , UN at the sensor nodes are conditionally independent due
to uncorrelated and independent noisy communication channels. By applying the
Bayesian-hypotheses-test criterion the optimal fusion rule at the fusion center is given by

U0 = θ0(X̃ = x̃) = argmax
k∈FK

(
πk f C(x̃ | Hk)

)
, (6)

where πk := Prob(Hk) with ∑
K
k=1 πk = 1 denotes the prior probability of hypothesis Hk. We

use this formula to classify the target object. However, in order to optimize the allocation of
the total power to the sensor nodes, we have to consider the overall classification probability.
Therefore, we consider K pairwise disjoint regions R1, . . . ,RK with

Rk :=
{

x̃ ∈ R
K×N | πk f C(x̃ | Hk) ≥ πl f C(x̃ | Hl), ∀l ∈ FK , l �= k

}
, ∀k ∈ FK . (7)

168 Ultra-Wideband Radio Technologies for Communications, Localization and Sensor Applications
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Figure 2. System model of the nth sensor node with circulator and antenna.

According to [5], the expected value of correct classification is given by

Pc :=
K

∑
k=1

Prob(x̃ ∈ Rk, Hk), (8)

which in general cannot be analytically evaluated. Therefore, the previous formula cannot
be used to optimize the allocation of the total power analytically. Consequently, we choose a
different approach for the optimization, which is described in Section 3.3.

2.3. Ultra-wide bandwidth sensor nodes

In Figure 2 the system model of the considered impulse-radio UWB (IR-UWB) sensor nodes
with pulse position modulation (PPM) is shown. The transmitter generates two streams of

data symbols sC
n (t) and sR

n (t).

The symbol stream sC
n is used to transmit the local decisions un(i) ∈ FK at the time index i to

the fusion center, which are generated by the algorithm defined in (3). We describe the data

symbols by Dirac delta functions δ
(
t− [un(i)− 1]Δ

)
, which are shifted pulses on the time axis.

Their alignment is determined by the modulation index Δ. We assume that the product KΔ

is much smaller than the symbol duration. Thus K different data symbols can be transmitted

to the fusion center. The transmission power PC
n of this stream is variable in order to adjust

transmission power and to enable distributed power allocation.

The symbol stream sR
n establishes the radiation to the target object and uses always the same

data symbol. Its transmission power PR
n is also variable. In order to increase the available

power range at every sensor node, time-division multiple-access (TDMA) method is used
to separate both streams into different time slots and to periodically share the same power
amplifier.

In order to eliminate collisions due to multiple access, each user stream is assigned to a

distinctive time-shift pattern after passing through the blocks hC
n (t) and hR

n (t). Their transfer
functions are based on time-hopping sequences [13].

After superposition of both streams, a monocyclic pulse shape filter w(t) limits the bandwidth
of the signal. This filter has to fulfill the Nyquist intersymbol interference (ISI) criterion in
order to avoid the intersymbol interferences.

When this superposition is transmitted, a part of the radiated signal sR
n will be reflected from

the target surface back to the antenna. The received signal will pass through the matched-filter
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w(−t) and will be decoded from its time-hopping sequence by hR
n (−t). The additive noise

signal bR
n (t) will pass as well through both filters at the receiver. We denote the corresponding

noise power by Pnoise. If all receiver components are linear, then we can describe the received
power by

P̃R
n|k := PR

n
αR

n |rk |2
g2(2dR

n )
, ∀k ∈ FK , ∀n ∈ FN , (9)

where the transmitted power is weighted by the product of the factors αR
n > 0, |rk|2, and

g−2(2dR
n ). The factor αR

n includes the radar cross section, the influence of the antenna, the
impacts of the filters, and all additional attenuation of the transmitted power. Due to the
reflection coefficient rk of the target object the received power depends on the underlying
hypothesis. The path loss function g depends on the assumed multipath propagation channel
and is usually an increasing function of the distance between transmitter and receiver. Here,
the factor of two in the distance results from that back and forth transmission between the
transceiver and the object. The ratio of P̃R

n|k and Pnoise is the observed conditional SNR at the

receiver and is given by

γR
n|k := PR

n
Pnoise

· αR
n |rk |2

g2(2dR
n )

, ∀k ∈ FK , ∀n ∈ FN . (10)

Due to the Gaussian distribution of the noise, each sample is also a Gaussian random variable,
which is conditionally distributed according to

f R
n (Xn = xn | Hk) := 1√

2πPnoise
exp

(

−
(

xn−
√

P̃R
n|k

)2

2Pnoise

)

, ∀k ∈ FK , ∀n ∈ FN . (11)

The local decision probabilities Prob(Un = l | Hk), see (4) and (5), can be computed by solving
the integral

π̃n,l|k := Prob(Un = l | Hk) =

τn,l+1∫

τn,l

f R
n (xn | Hk)dxn

= 1
2

[

erf

(√

P̃R
n|k−τn,l√
2Pnoise

)

+ erf

(
τn,l+1−

√

P̃R
n|k√

2Pnoise

)]
(12)

for all k, l ∈ FK and for all n ∈ FN . Here, the mapping erf(z) denotes the error function of z.

2.4. Fusion center

After radiation of the stream sC
n by the sensor node Sn, the signal is attenuated depending

on the distance and it reaches the antenna at the fusion center as depicted in Figure 3.
The received signal is matched-filtered and decoded from its time-hopping sequence. Then
a data splitter v(t) is used to split the received signal into a K-dimensional vector space.
This is necessary in order to retain the Euclidian distances between all transmitted symbols
and achieve a higher classification probability. This filter is mathematically implemented as

∑
K
k=1 ek δ

(
t − (k − 1)Δ

)
, where ek is the standard basis vector of the K-dimensional space that

points in the kth direction. Therefore the received signals X̃1, . . . , X̃N ∈ RK are K-dimensional
vectors. This new approach extends the method given by [13].

170 Ultra-Wideband Radio Technologies for Communications, Localization and Sensor Applications
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Figure 3. System model of the fusion center.

In case of additive zero-mean noise and due to the assumptions of w(t), each vector sample
of the received signal has the expected value of

mn|l := E
(
X̃n | Un = l

)
=

√

PC
n

αC
n

g2(dC
n )

· el , ∀l ∈ FK , ∀n ∈ FN , (13)

which depends on the transmitted symbol Un = l. Thus the received power from the nth

sensor node is given by

P̃C
n := PC

n
αC

n

g2(dC
n )

, ∀n ∈ FN , (14)

where we assume that the path loss function is the same as for the first communication link.

The power P̃C
n is independent of the underlying hypothesis because the data stream sC

n has
the same power for all kinds of transmitted data symbols.

The additive noise signal bC
n (t) will also pass through all the filters. We assume that the noise

spectral density at the fusion center is the same as at the sensor nodes. Due to similarity in
architecture of the fusion center and the sensor nodes, the noise power in each dimension
of each stream is equal to Pnoise. Because of the whiteness of noise, the interferences are
uncorrelated in each dimension of each stream. Therefore the noise covariance matrix is
determined by the product Pnoise · IK . Here IK denotes the identity matrix of size K.

Similar to (10) we define an observed SNR for each data stream at the fusion center and denote
it by

γC
n := PC

n
Pnoise

· αC
n

g2(dC
n )

, ∀n ∈ FN . (15)

Due to the Gaussian distribution of noise, each vector sample is a Gaussian random vector,
which is conditionally distributed according to

f C
n (X̃n | Hk) :=

K

∑
l=1

π̃n,l|k
(2πPnoise)K/2 exp

(

− (x̃n−mn|l)
T(x̃n−mn|l)

2Pnoise

)

, ∀k ∈ FK , ∀n ∈ FN , (16)

where the operator zT denotes the transpose of any vector z.

Because of the convex superposition of multivariate Gaussian distributions, it is difficult to
use (16) with the properties of (2) to optimize the distributed power allocation. Bounds, such
as the Bhattacharyya bound [8], are also difficult to use due to multidimensional nature of (2)
and (16). Therefore we propose an applicable technique which is motivated by concepts of
information theory and is described in the next section.
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3. Allocating power to the radar and to the communication task

In this section, we motivate and present an approach to suboptimally allocate transmission
power to the radar and to the communication task. The objective is to maximize the
overall classification probability, given a limited total transmission power Ptot that can be
arbitrarily allocated to the radar task as well as to the communication task. A direct solution
to this problem does not exist, since no analytical expression for the overall classification
probability (8) is available. Instead, we independently maximize the mutual information of
both communication channels to increase the information flow and in order to determine the
power allocation. The motivation for this approach is the separation of the power allocation
problem from the object classification procedure. Because in this case the data communication
does not affect the classification of the target object.

Note that this theoretical concept is not realistic. However, we apply this concept as a
heuristical method in this work.

3.1. Threshold calculation

For the optimization of the thresholds in Section 2.1, in order to increase the overall
classification probability, the analytic evaluation of (8) is needed. Due to the fact that this
explicit form for the overall classification probability is unknown and due to the separation
of the data communication from the classification task we propose the following simple
approach to calculate the thresholds.

We increase the probability of correct decision of each sensor node independently to achieve
suboptimal values for the thresholds. Thus, the overall classification probability should be
increased as well. According to equations (4) and (12) the local probability of correct decision,
which has to be maximized, is given by

K

∑
k=1

Prob(Hk)Prob(Un = k | Hk) =
K

∑
k=1

πk
2

[

erf

(√

P̃R
n|k−τn,k√
2Pnoise

)

+ erf

(
τn,k+1−

√

P̃R
n|k√

2Pnoise

)]

. (17)

Its solution can be found explicitly by using differential calculus. The corresponding result is
identical to the one obtained by using the Bayesian-hypotheses-test criterion. It is given by

τn,k =

⎧

⎪⎨

⎪⎩

inf(In,k) if In,k �= {}, k ∈ FK ,

τn,k+1 if In,k = {}, k ∈ FK ,

∞ if k = K + 1,

(18)

for all n ∈ FN , where the function inf(In,k) is the infimum of the interval In,k that is defined
by

In,k :=
{

x ∈ R | πk f R
n (x | Hk) > πl f R

n (x | Hl), ∀l ∈ FK , l �= k
}

, ∀k ∈ FK , ∀n ∈ FN . (19)

3.2. Limitation of transmission power

We assume that both the radar and the communication signal use the same bandwidth and are
uncorrelated to each other, due to separation of the sensing task and the communication task
into different time slots (see Section 2.3). In this case and for each new classification process,

172 Ultra-Wideband Radio Technologies for Communications, Localization and Sensor Applications
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the limited total transmission power Ptot is an upper bound for the sum

N

∑
n=1

PR
n

︸︷︷︸

Radar sensing

+ PC
n

︸︷︷︸

Data communication
︸ ︷︷ ︸

Total transmission power of one sensor for a single observation

≤ Ptot . (20)

By using this restriction, we present the power allocation procedure in the next section. But,
we will have a look at some special cases previously.

In real applications the transmission power of each sensor node is also limited. Consider the

case in which all sensor nodes have the same power limitation Pmax with Ptot
N ≤ Pmax < Ptot. If

the power regulation, which is described in the next section, wants to allocate a higher power
to PR

n > PC
n of the nth sensor node than its limitation, then we set the transmission power PR

n
equal to its highest possible limitation given by Pmax, recalculate PC

n which is given in terms
of PR

n = Pmax, discard this nth sensor node from the list of unallocated sensor nodes, decrease
the given total transmission power Ptot by Pmax + PC

n (Pmax), and reallocate the remaining
total power Ptot − Pmax − PC

n (Pmax) recursively to the remaining sensor nodes by the same
procedure described in the next section. In a case, where the power PC

n instead of PR
n > PC

n
will be regulated higher than Pmax, we can reverse the roles of both transmission powers
and repeat this reallocation method until no more sensor nodes are left which exceed their
power limitation. Therefore, the described limitation of the total transmission power is the
generalized case which includes the limitation of the transmission power of each sensor node.

Note that this procedure is applicable for individual power constraints per node as well.
Furthermore, note that in each iteration more than one node can be discarded from the list
of unallocated sensor nodes in order to decrease the computation complexity.

3.3. Mutual information-based power allocation

For the maximization of the information flow we set the mutual information of both
communication channels equal. This leads to the same symbol error probabilities on both
sides for low SNR values. For each sensor node an upper bound for the mutual information
of its first and second link can simply be calculated. The identity of obtained bounds

1
2 log

[

1 + PR
n αR

n (|rK |−|r1|)2

4Pnoiseg2(2dR
n )

]

= K
2 log

[

1 + PC
n αC

n (K−1)
Pnoiseg2(dC

n )K
2

]

(21)

has to be computed in order to find the relationship between the powers for all n ∈ FN . After
calculation and usage of the simple approximation

K
√

1 + x ≈ 1 + x
K (22)

for any small values of x we obtain the analytical relationship

PC
n = PR

n · αR
n

αC
n

g2(dC
n )

g2(2dR
n )

K
K−1

(|rK |−|r1|)2

4 , ∀n ∈ FN . (23)

In the next step, we increase the overall information flow by maximization of the cumulative
mutual information subject to the given total power of the sensor network. Then the
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optimization problem is given by

maximize
PR

1 ,...,PR
N

N

∑
n=1

1
2 log

[

1 + PR
n αR

n (|rK |−|r1|)2

4Pnoiseg2(2dR
n )

]

subject to
N

∑
n=1

PC
n + PR

n ≤ Ptot. (24)

It has to be considered that the sum of concave functions is also concave and that the
arguments of the logarithms are linear functions of the powers. Furthermore, the domain
of the feasible set is a closed convex set and, therefore, only one global maximum of the
problem exists. This maximum can be explicitly calculated by using the method of Lagrange
multipliers which is equivalent to the water-filling power allocation result [3]. The result is
given by

PR
n = Pnoise

g2(2dR
n )

αR
n

4
(|rK |−|r1|)2 · max

(
0, λ

βn
− 1

)
, ∀n ∈ FN , (25)

where the factor βn is defined by

βn :=
g2(2dR

n )
αR

n

4
(|rK |−|r1|)2 +

g2(dC
n )

αC
n

K
K−1 , ∀n ∈ FN . (26)

For the following equations, we assume that the factors βn are ordered in an increasing
manner. Then the water-filling level λ is a value specified by the inequality

βÑ < λ ≤ 1
Ñ

[

Ptot
Pnoise

+
Ñ

∑
n=1

βn

]

, (27)

where the number Ñ with 1 ≤ Ñ ≤ N is a suitably chosen integer value for which the
inequality

Ñ

∑
n=1

(βÑ − βn) <
Ptot

Pnoise
(28)

holds. From (23) and (25) the allocated power for the second channel is determined as

PC
n = Pnoise

g2(dC
n )

αC
n

K
K−1 · max

(
0, λ

βn
− 1

)
, ∀n ∈ FN . (29)

This allocation has the following interpretation. The sensor node Sn with the lowest βn gets
the largest part of the total power because its communication channels are possibly the best
due to the low distances. Therefore the observation of the target object is less interfered
by noise and consequently results in better data communication. Sensor nodes with higher
distances get smaller parts of the total power and some of them do not get any power at
all. The last ones participate neither in the data communication nor in the classification of
the target object. Their information reliability is too poor to be considered for data fusion.
More and more sensor nodes will become active by increasing the total power. Then the
overall classification probability increases because more correct information is provided by
the observations.

Note that we have used the approximation (22) in order to simplify the maximization
problem and to find analytical solutions for all equations. Without any approximation the
maximization problem yields the Lambert’s trinomial equation, which still does not have any
analytical solutions. Although the above approximation is only valid for low transmission
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powers, we use the same solution for high transmission powers, too. If instead another
approximation is used, the results are indeed different, but the behavior of solutions remains
generally valid. However, this study is not the subject of this work.

3.4. Computational effort

In order to calculate the transmission powers (25) and (29) the computation of βn, λ, and Ñ
is necessary. The parameters K, N, Ptot, Pnoise, rk, αR

n , and αC
n are fixed system parameters

which are known to the computation unit. The distances dR
n and dC

n depend on the position
of the target object and are therefore unknown. They can be estimated for example by a
tracking algorithm. If these values are also determined, then the equations (25) to (29) can
be calculated with little effort, because of simple mathematical operations such as summation
and multiplication. The only difficulty is the evaluation of the path loss function g, which can
include complex mathematical operations. Its complexity depends on the given multipath
channel.

However, the computation effort of the equations (25) to (29) is less complex than the
evaluation of the classification algorithm such as (6). If one can find simpler algorithms
than (6) (see, for example [12]), then the assessment of the calculation effort becomes
important and should be considered in detail.

4. Numerical results and conclusions

In this section we present some numerical results obtained by applying the proposed
optimization method from Section 3. We simulate target objects with equal prior probabilities
πk = 1

K ∀k ∈ FK in sensor networks with different settings as described in Section 2. In all
results, we consider three different kinds of target objects with reflection coefficients chosen as
|r1| = 0, |r2| = 1

2 , and |r3| = 1. Furthermore, the path loss function is modeled as line-of-sight

propagation. The ratio SNR = 10dB log
( Ptot

Pnoise

)
, instead of received SNRs, is depicted on the

abscissa of all figures.

The verification of the proposed power allocation between both communication links of a
single sensor node is shown in Figure 4. The overall error probability of the classification
increases for higher SNR values for the case where the allocated power of one link is reduced
by 10% and at the same time the power of the other link is stepped up by this 10%. When
we reallocate a power amount of 10% − 30% to both links in an inverse manner, then the
classification probability remains almost valid. This result shows that the proposed method
allocates the given total power nearly optimal to both communication links, especially for
higher SNR values.

In Figure 5 another verification of the proposed power allocation is shown, where a network
of two sensor nodes is considered. The overall error probability of the classification decreases
if we decrease the allocated power of the sensor node, which has the smallest part of the total
power, by 10% and allocate this amount of power to the other sensor node. This result shows
that the proposed method assigns the given total power suboptimal to the sensor nodes. The
curves disperse, because of the approximation (22) which has been used for the equation (23).

As shown in Figure 6 the proposed method yields a better classification probability in
comparison to a uniform power allocation where a network of ten sensor nodes is considered.
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+30% to first link
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Figure 4. Verification of proposed power allocation between the two communication links of a single
sensor node network.
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Proposed power allocation
+10% to best sensor
+10% to worst sensor

Figure 5. Verification of proposed power allocation between two sensor nodes.

In particular, it is shown that the same overall classification probability can be achieved with
much lower transmission power, especially for low SNR values, by using an efficient power
allocation method. Furthermore, the symbol-error probability of the sensor node with the
highest part of the total power is also shown. The classification accuracy is better than the
best symbol-error probability for higher SNR values, which affirms the gain of data fusion and
illustrates the feasibility of object classification in this kind of distributed sensor networks.
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Figure 6. Comparison of proposed power allocation to a uniform power allocation in a network of ten
sensor nodes.
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