175 research outputs found

    Adaptive Transmission Protocols for Wireless Communication Systems with Fountain Coding

    Get PDF
    We present low-complexity adaptive protocols for both unicast and multicast transmission in wireless communication systems that employ higher layer fountain codes. Our adaptive protocols respond to variations in channel conditions by adapting the modulation and channel coding of transmitted packets, and they provide efficient communication over wireless channels that experience fading, shadowing, and other time-varying propagation losses. The operation of our protocols is governed by simple receiver statistics that can be obtained during the demodulation of received packets. We present three adaptive protocols for fountain-coded unicast transmission, and compare the throughput performance of our protocols with that of fixed-rate systems, as well as hypothetical ideal protocols that are given perfect channel state information and use ideal fountain codes. We also present two adaptive protocols for fountain-coded multicast transmission. Our adaptive multicast transmission protocols operate with limited feedback from the destinations and provide scheduling to avoid collisions among the feedback messages. We compare the performance of our multicast protocols to systems with fixed modulation and coding, as well as hypothetical protocols that are given perfect channel state information. We demonstrate that our practical adaptive protocols for fountain-coded unicast and multicast transmission outperform fixed-rate coding schemes and provide throughput that is nearly as high as that achieved by hypothetical protocols that are given perfect channel state information

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Network Coding for Packet Radio Networks

    Get PDF
    We present methods for network-coded broadcast and multicast distribution of files in ad hoc networks of half-duplex packet radios. Two forms of network coding are investigated: fountain coding and random linear network coding. Our techniques exploit the broadcast nature of the wireless medium by permitting nodes to receive packets from senders other than their designated relays. File transfer is expedited by having multiple relays cooperate to forward the file to a destination. When relay nodes apply fountain coding to the file, they employ a simple mechanism to completely eliminate the possibility of sending duplicate packets to the recipients. It is not necessary for the nodes to transmit multiple packets simultaneously or to receive packets from multiple senders simultaneously. To combat the effects of time varying propagation loss on the links, each sender has the option to adapt the modulation format and channel-coding rate packet-by-packet by means of an adaptive transmission protocol. We use simulations to compare our network-coded file distributions with conventional broadcast and multicast techniques that use automatic repeat request (ARQ). Our numerical results show that the proposed strategies outperform ARQ-based file transfers by large margins for most network configurations. We also provide analytical upper bounds on the throughput of file distributions in networks comprising four nodes. We illustrate that our network-coded file-distribution strategies, when applied to the four-node networks, perform very close to the bounds

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    An adaptive raptor enabled data carousel for file delivery in 802.11 multicast networks

    Get PDF
    • …
    corecore