7,182 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    SOTXTSTREAM: Density-based self-organizing clustering of text streams

    Get PDF
    A streaming data clustering algorithm is presented building upon the density-based selforganizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets

    Querying Temporal Drifts at Multiple Granularities

    Get PDF
    There exists a large body of work on online drift detection with the goal of dynamically finding and maintaining changes in data streams. In this paper, we adopt a query-based approach to drift detection. Our approach relies on a drift index, a structure that captures drift at different time granularities and enables flexible drift queries. We formalize different drift queries that represent real-world scenarios and develop query evaluation algorithms that use different mate-rializations of the drift index as well as strategies for online index maintenance. We describe a thorough study of the performance of our algorithms on real-world and synthetic datasets with varying change rates

    Data Stream Clustering: A Review

    Full text link
    Number of connected devices is steadily increasing and these devices continuously generate data streams. Real-time processing of data streams is arousing interest despite many challenges. Clustering is one of the most suitable methods for real-time data stream processing, because it can be applied with less prior information about the data and it does not need labeled instances. However, data stream clustering differs from traditional clustering in many aspects and it has several challenging issues. Here, we provide information regarding the concepts and common characteristics of data streams, such as concept drift, data structures for data streams, time window models and outlier detection. We comprehensively review recent data stream clustering algorithms and analyze them in terms of the base clustering technique, computational complexity and clustering accuracy. A comparison of these algorithms is given along with still open problems. We indicate popular data stream repositories and datasets, stream processing tools and platforms. Open problems about data stream clustering are also discussed.Comment: Has been accepted for publication in Artificial Intelligence Revie

    Concept drift learning and its application to adaptive information filtering

    Get PDF
    Tracking the evolution of user interests is a problem instance of concept drift learning. Keeping track of multiple interest categories is a natural phenomenon as well as an interesting tracking problem because interests can emerge and diminish at different time frames. The first part of this dissertation presents a Multiple Three-Descriptor Representation (MTDR) algorithm, a novel algorithm for learning concept drift especially built for tracking the dynamics of multiple target concepts in the information filtering domain. The learning process of the algorithm combines the long-term and short-term interest (concept) models in an attempt to benefit from the strength of both models. The MTDR algorithm improves over existing concept drift learning algorithms in the domain. Being able to track multiple target concepts with a few examples poses an even more important and challenging problem because casual users tend to be reluctant to provide the examples needed, and learning from a few labeled data is generally difficult. The second part presents a computational Framework for Extending Incomplete Labeled Data Stream (FEILDS). The system modularly extends the capability of an existing concept drift learner in dealing with incomplete labeled data stream. It expands the learner's original input stream with relevant unlabeled data; the process generates a new stream with improved learnability. FEILDS employs a concept formation system for organizing its input stream into a concept (cluster) hierarchy. The system uses the concept and cluster hierarchy to identify the instance's concept and unlabeled data relevant to a concept. It also adopts the persistence assumption in temporal reasoning for inferring the relevance of concepts. Empirical evaluation indicates that FEILDS is able to improve the performance of existing learners particularly when learning from a stream with a few labeled data. Lastly, a new concept formation algorithm, one of the key components in the FEILDS architecture, is presented. The main idea is to discover intrinsic hierarchical structures regardless of the class distribution and the shape of the input stream. Experimental evaluation shows that the algorithm is relatively robust to input ordering, consistently producing a hierarchy structure of high quality

    Mining developer communication data streams

    Full text link
    This paper explores the concepts of modelling a software development project as a process that results in the creation of a continuous stream of data. In terms of the Jazz repository used in this research, one aspect of that stream of data would be developer communication. Such data can be used to create an evolving social network characterized by a range of metrics. This paper presents the application of data stream mining techniques to identify the most useful metrics for predicting build outcomes. Results are presented from applying the Hoeffding Tree classification method used in conjunction with the Adaptive Sliding Window (ADWIN) method for detecting concept drift. The results indicate that only a small number of the available metrics considered have any significance for predicting the outcome of a build
    • …
    corecore