1,895 research outputs found

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    From serendipity to sustainable Green IoT: technical, industrial and political perspective

    Get PDF
    Recently, Internet of Things (IoT) has become one of the largest electronics market for hardware production due to its fast evolving application space. However, one of the key challenges for IoT hardware is the energy efficiency as most of IoT devices/objects are expected to run on batteries for months/years without a battery replacement or on harvested energy sources. Widespread use of IoT has also led to a largescale rise in the carbon footprint. In this regard, academia, industry and policy-makers are constantly working towards new energy-efficient hardware and software solutions paving the way for an emerging area referred to as green-IoT. With the direct integration and the evolution of smart communication between physical world and computer-based systems, IoT devices are also expected to reduce the total amount of energy consumption for the Information and Communication Technologies (ICT) sector. However, in order to increase its chance of success and to help at reducing the overall energy consumption and carbon emissions a comprehensive investigation into how to achieve green-IoT is required. In this context, this paper surveys the green perspective of the IoT paradigm and aims to contribute at establishing a global approach for green-IoT environments. A comprehensive approach is presented that focuses not only on the specific solutions but also on the interaction among them, and highlights the precautions/decisions the policy makers need to take. On one side, the ongoing European projects and standardization efforts as well as industry and academia based solutions are presented and on the other side, the challenges, open issues, lessons learned and the role of policymakers towards green-IoT are discussed. The survey shows that due to many existing open issues (e.g., technical considerations, lack of standardization, security and privacy, governance and legislation, etc.) that still need to be addressed, a realistic implementation of a sustainable green-IoT environment that could be universally accepted and deployed, is still missing
    • …
    corecore