2,021 research outputs found

    An Efficient Implementation of Distributed Routing Algorithms for NoCs

    Full text link
    The design of NoCs for multi-core chips introduces new design constraints like power consumption, area, and ul-tra low latencies. Although 2D meshes are preferred, het-erogeneous blocks, fabrication faults, reliability issues, and chip virtualization may lead to the need of irregular topolo-gies or regions. In this situation, efficient routing becomes a challenge. Although the use of routing tables at switches is flexible, it does not scale in terms of latency and area due to its memory requirements. LBDR (Logic-Based Distributed Routing) is proposed as a new routing method that removes the need of using rout-ing tables at all. LBDR enables the implementation of many routing algorithms on most of the practical topologies we might find in the near future in a multi-core system. From an initial topology and routing algorithm, a set of three bits per switch/output port is computed. Evaluation results show that, by using a small logic, LBDR mimics the performance of routing algorithms when implemented with routing ta-bles, both in regular and irregular topologies.

    Tree-Based Multicasting in Wormhole-Routed Irregular Topologies

    Get PDF
    A deadlock-free tree-based multicast routing algorithm is presented for all direct networks, regardless of interconnection topology. The algorithm delivers a message to any number of destinations using only a single startup phase. In contrast to existing tree-based schemes, this algorithm applies to all interconnection topologies, requires only fixed-sized input buffers that are independent of maximum message length, and uses a single asynchronous flit replication mechanism. The theoretical basis of the technique used here is sufficiently general to develop other tree-based multicasting algorithms for regular and irregular topologies. Simulation results demonstrate that this tree-based algorithm provides a very promising means of achieving very low latency multicast

    LBDR: An efficient unicast routing support for CMPs

    Full text link
    LBDR is a routing distributed layer based on minimum logic that removes the need for routing tables at switches on network-on-chips (NoCs) in CMPs and enables the implementation of many routing algorithms on most of regular and irregular toplogies we may find in the near future in a multi-core system.Rodrigo Mocholí, S. (2008). LBDR: An efficient unicast routing support for CMPs. http://hdl.handle.net/10251/13476Archivo delegad

    Resilient Routing Implementation in 2D Mesh NoC

    No full text
    With the rapid shrinking of technology and growing integration capacity, the probability of failures in Networks-on-Chip (NoCs) increases and thus, fault tolerance is essential. Moreover, the unpredictable locations of these failures may influence the regularity of the underlying topology, and a regular 2D mesh is likely to become irregular. Thus, for these failure-prone networks, a viable routing framework should comprise a topology-agnostic routing algorithm along with a cost-effective, scalable routing mechanism able to handle failures, irrespective of any particular failure patterns. Existing routing techniques designed to route irregular topologies efficiently lack flexibility (logic-based), scalability (table-based) or relaxed switch design (uLBDR-based). Designing an efficient routing implementation technique to address irregular topologies remains a pressing research problem. To address this, we present a fault resilient routing mechanism for irregular 2D meshes resulting from failures. To handle irregularities, it avoids using routing tables and employs a few fixed configuration bits per switch resulting in a scalable approach. Experiments demonstrate that the proposed approach is guaranteed to tolerate all locations of single and double-link failures and most multiple failures. Also, unlike uLBDR it is not restricted to any particular switching technique and does not replicate any extra messages. Along with fault tolerance, the proposed mechanism can achieve better network performance in fault-free cases. The proposed technique achieves graceful performance degradation during failure. Compared to uLBDR, our method has 14% less area requirements and 16% less overall power consumption

    Tree-structured small-world connected wireless network-on-chip with adaptive routing

    Get PDF
    Traditional Network-on-Chip (NoC) systems comprised of many cores suffer from debilitating bottlenecks of latency and significant power dissipation due to the overhead inherent in multi-hop communication. In addition, these systems remain vulnerable to malicious circuitry incorporated into the design by untrustworthy vendors in a world where complex multi-stage design and manufacturing processes require the collective specialized services of a variety of contractors. This thesis proposes a novel small-world tree-based network-on-chip (SWTNoC) structure designed for high throughput, acceptable energy consumption, and resiliency to attacks and node failures resulting from the insertion of hardware Trojans. This tree-based implementation was devised as a means of reducing average network hop count, providing a large degree of local connectivity, and effective long-range connectivity by means of a novel wireless link approach based on carbon nanotube (CNT) antenna design. Network resiliency is achieved by means of a devised adaptive routing algorithm implemented to work with TRAIN (Tree-based Routing Architecture for Irregular Networks). Comparisons are drawn with benchmark architectures with optimized wireless link placement by means of the simulated annealing (SA) metaheuristic. Experimental results demonstrate a 21% throughput improvement and a 23% reduction in dissipated energy per packet over the closest competing architecture. Similar trends are observed at increasing system sizes. In addition, the SWTNoC maintains this throughput and energy advantage in the presence of a fault introduced into the system. By designing a hierarchical topology and designating a higher level of importance on a subset of the nodes, much higher network throughput can be attained while simultaneously guaranteeing deadlock freedom as well as a high degree of resiliency and fault-tolerance

    Adaptive turn-prohibition routing algorithm for the networks of workstations

    Get PDF
    Deadlock occurrence is a critical problem for any computer network. Various solutions have been proposed over last two decades to solve problem of deadlocks in networks using different routing schemes, like up/down routing algorithm used in Myrinet switches. However, most of existing approaches for deadlock-free routing either try to eliminate any possibility of deadlock occurrence, which can result in putting extra restrictions on the routing in the networks or put no restrictions on routing, which leads to other approach namely deadlock recovery. In this thesis emphasis is on developing hybrid approach for routing in wormhole networks, wherein some prohibition is imposed on routing along with some kind of deadlock recovery. This adaptive approach allows changing the amount of routing restrictions depending on network traffic, thus providing a flexible method to achieve better network performance compared to the existing techniques. The main idea of the proposed method consists in the sequential selections of some turns, which are prohibited to be selected during routing. After each additional turn is added, the probability of deadlock occurrence decreases gradually. Cost formula is proposed to estimate cost of implementing both strategies in a network which is basis of proposed adaptive model

    Performance Evaluation of XY and XTRANC Routing Algorithm for Network on Chip and Implementation using DART Simulator

    Get PDF
    In today’s world Network on Chip(NoC) is one of the most efficient on chip communication platform for System on Chip where a large amount of computational and storage blocks are integrated on a single chip. NoCs are scalable and have tackled the short commings of SoCs . In the first part of this project the basics of NoCs is explained which includes why we should use NoC , how to implement NoC ,various blocks of NoCs .The next part of the project deals with the implementation of XY routing algorithm in mesh (3*3) and mesh (4*4) network topologies. The throughput and latency curves for both the topologies were found and a through comparison was done by varying the no of virtual cannels. In the next part an improvised routing algorithm known as the extended torus(XTRANC) routing algorithm for NoCs implementation is explained. This algorithm is designed for inner torus mesh networks and provides better performance than usual routing algorithms. It has been implemented using the CONNECT simulator. Then the DART simulator was explored and two important components namely the flitqueue and the traffic generator was designed using this simulator

    Routing on the Channel Dependency Graph:: A New Approach to Deadlock-Free, Destination-Based, High-Performance Routing for Lossless Interconnection Networks

    Get PDF
    In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions
    corecore