40,236 research outputs found

    Adaptive Query Processing on RAW Data

    Get PDF
    Database systems deliver impressive performance for large classes of workloads as the result of decades of research into optimizing database engines. High performance, however, is achieved at the cost of versatility. In particular, database systems only operate efficiently over loaded data, i.e., data converted from its original raw format into the system’s internal data format. At the same time, data volume continues to increase exponentially and data varies increasingly, with an escalating number of new formats. The consequence is a growing impedance mismatch between the original structures holding the data in the raw files and the structures used by query engines for efficient processing. In an ideal scenario, the query engine would seamlessly adapt itself to the data and ensure efficient query processing regardless of the input data formats, optimizing itself to each instance of a file and of a query by leveraging information available at query time. Today’s systems, however, force data to adapt to the query engine during data loading. This paper proposes adapting the query engine to the formats of raw data. It presents RAW, a prototype query engine which enables querying heterogeneous data sources transparently. RAW employs Just-In-Time access paths, which efficiently couple heterogeneous raw files to the query engine and reduce the overhead of traditional general-purpose scan operators. There are, however, inherent overheads with accessing raw data directly that cannot be eliminated, such as converting the raw values. Therefore, RAW also uses column shreds, ensuring that we pay these costs only for the subsets of raw data strictly needed by a query. We use RAW in a real-world scenario and achieve a two-order of magnitude speedup against the existing hand-written solution

    NoDB in Action: Adaptive Query Processing on Raw Data

    Get PDF
    As data collections become larger and larger, users are faced with increasing bottlenecks in their data analysis. More data means more time to prepare the data, to load the data into the database and to execute the desired queries. Many applications already avoid using traditional database systems, e.g., scientific data analysis and social networks, due to their complexity and the increased data-to-query time, i.e. the time between getting the data and retrieving its first useful results. For many applications data collections keep growing fast, even on a daily basis, and this data deluge will only increase in the future, where it is expected to have much more data than what we can move or store, let alone analyze. In this demonstration, we will showcase a new philosophy for designing database systems called NoDB. NoDB aims at minimizing the data-to-query time, most prominently by removing the need to load data before launching queries. We will present our prototype implementation, PostgresRaw, built on top of PostgreSQL, which allows for efficient query execution over raw data files with zero initialization overhead. We will visually demonstrate how PostgresRaw incrementally and adaptively touches, parses, caches and indexes raw data files autonomously and exclusively as a side-effect of user queries

    Just-In-Time Data Virtualization: Lightweight Data Management with ViDa

    Get PDF
    As the size of data and its heterogeneity increase, traditional database system architecture becomes an obstacle to data analysis. Integrating and ingesting (loading) data into databases is quickly becoming a bottleneck in face of massive data as well as increasingly heterogeneous data formats. Still, state-of-the-art approaches typically rely on copying and transforming data into one (or few) repositories. Queries, on the other hand, are often ad-hoc and supported by pre-cooked operators which are not adaptive enough to optimize access to data. As data formats and queries increasingly vary, there is a need to depart from the current status quo of static query processing primitives and build dynamic, fully adaptive architectures. We build ViDa, a system which reads data in its raw format and processes queries using adaptive, just-in-time operators. Our key insight is use of virtualization, i.e., abstracting data and manipulating it regardless of its original format, and dynamic generation of operators. ViDa's query engine is generated just-in-time; its caches and its query operators adapt to the current query and the workload, while also treating raw datasets as its native storage structures. Finally, ViDa features a language expressive enough to support heterogeneous data models, and to which existing languages can be translated. Users therefore have the power to choose the language best suited for an analysis

    Database Learning: Toward a Database that Becomes Smarter Every Time

    Full text link
    In today's databases, previous query answers rarely benefit answering future queries. For the first time, to the best of our knowledge, we change this paradigm in an approximate query processing (AQP) context. We make the following observation: the answer to each query reveals some degree of knowledge about the answer to another query because their answers stem from the same underlying distribution that has produced the entire dataset. Exploiting and refining this knowledge should allow us to answer queries more analytically, rather than by reading enormous amounts of raw data. Also, processing more queries should continuously enhance our knowledge of the underlying distribution, and hence lead to increasingly faster response times for future queries. We call this novel idea---learning from past query answers---Database Learning. We exploit the principle of maximum entropy to produce answers, which are in expectation guaranteed to be more accurate than existing sample-based approximations. Empowered by this idea, we build a query engine on top of Spark SQL, called Verdict. We conduct extensive experiments on real-world query traces from a large customer of a major database vendor. Our results demonstrate that Verdict supports 73.7% of these queries, speeding them up by up to 23.0x for the same accuracy level compared to existing AQP systems.Comment: This manuscript is an extended report of the work published in ACM SIGMOD conference 201

    QUASII: QUery-Aware Spatial Incremental Index.

    Get PDF
    With large-scale simulations of increasingly detailed models and improvement of data acquisition technologies, massive amounts of data are easily and quickly created and collected. Traditional systems require indexes to be built before analytic queries can be executed efficiently. Such an indexing step requires substantial computing resources and introduces a considerable and growing data-to-insight gap where scientists need to wait before they can perform any analysis. Moreover, scientists often only use a small fraction of the data - the parts containing interesting phenomena - and indexing it fully does not always pay off. In this paper we develop a novel incremental index for the exploration of spatial data. Our approach, QUASII, builds a data-oriented index as a side-effect of query execution. QUASII distributes the cost of indexing across all queries, while building the index structure only for the subset of data queried. It reduces data-to-insight time and curbs the cost of incremental indexing by gradually and partially sorting the data, while producing a data-oriented hierarchical structure at the same time. As our experiments show, QUASII reduces the data-to-insight time by up to a factor of 11.4x, while its performance converges to that of the state-of-the-art static indexes

    Leveraging Edge Computing through Collaborative Machine Learning

    Get PDF
    The Internet of Things (IoT) offers the ability to analyze and predict our surroundings through sensor networks at the network edge. To facilitate this predictive functionality, Edge Computing (EC) applications are developed by considering: power consumption, network lifetime and quality of context inference. Humongous contextual data from sensors provide data scientists better knowledge extraction, albeit coming at the expense of holistic data transfer that threatens the network feasibility and lifetime. To cope with this, collaborative machine learning is applied to EC devices to (i) extract the statistical relationships and (ii) construct regression (predictive) models to maximize communication efficiency. In this paper, we propose a learning methodology that improves the prediction accuracy by quantizing the input space and leveraging the local knowledge of the EC devices
    • …
    corecore